MANGROVE ECOSYSTEM ASSESSMENT GRAEME HALL NATURE SANCTUARY BARBADOS

Prepared for:

Graeme Hall Nature Sanctuary, Inc. Main Road Worthing Christ Church Barbados

Prepared by:

Environmental Engineering Consultants, Inc 5119 N. Florida Ave. Tampa, FL 33604

April 30, 2010

SIGNATURE PAGE

Enclosed please find a report detailing investigations by Environmental Engineering Consultants, Inc. of the Graeme Hall Nature Sanctuary (Sanctuary) in Worthing, Christ Church, Barbados. Investigations included sampling of sediments for chemical and benthic analyses and of surface water for chemical analyses. Also included were field reconnaissance and a review of previous drainage studies to help ascertain sources and quantities of flow into the Sanctuary. The investigations were performed at the request of the Sanctuary. This report has been prepared by Environmental Engineering Consultants on behalf of the Sanctuary in accordance with standard scientific and engineering practices.

Willo

Robert E. Wallace Professional Engineer

413011

Richard H. Pryor Professional Geologist

TABLE OF CONTENTS

Executive Summary
Introduction
Scope of Work
Site Conditions and Surroundings
Barbados Stormwater Drainage Study12
Geology and Hydrogeology12
Mangrove Quality Assessment14
Surface Water Sampling23
Surface Water Quality
Sediment Sampling for Chemical Analysis
Sediment Quality40
Sampling for Benthic Analysis43
Benthic Community
Tilapia and Crab Sampling45
Tilapia and Crab Analysis46
Sources of Surface Water Impacts
South Coast Sewage Treatment Plant
Future Considerations: Managing the Sanctuary's Health53
Conclusions
References

ATTACHMENTS

- ATTACHMENT 1 Vicinity Map
- ATTACHMENT 2 Ramsar Wetland Boundary Map
- ATTACHMENT 3 Ramsar Designation for Graeme Hall Swamp
- ATTACHMENT 4 Site Plans (Pocket)
 - A) Site Plan with Surface Water Inputs
 - B) Site Plan with Sampling Locations
 - C) Catchment Area Aerial Photo
- ATTACHMENT 5 Rainfall data, Grantley Adams International Airport
- ATTACHMENT 6 Photographs
- ATTACHMENT 7 Floodplain Elevations/Barbados Drainage Study Excerpts
- ATTACHMENT 8 Geologic Cross-Sections
- ATTACHMENT 9 Groundwater Catchment Areas
- ATTACHMENT 10 Groundwater Protection Zones
- ATTACHMENT 11 Mangrove Quality Assessment
- ATTACHMENT 12 Interview with Ryan Chenery
- ATTACHMENT 13 Correlation of Sample Point Designations
- ATTACHMENT 14 Laboratory Surface and Sediment Analytical Results
- ATTACHMENT 15 Review of Surface Water and Sediment Analytical Results
- ATTACHMENT 16 Review of Surface and Sediment Analytical Results:

A) Lake and South Pond, B) Bisecting Canal, C) South Ditch,

D) Freshwater Ponds, E) Eastern Offsite

- ATTACHMENT 17 Pesticide Uses, Effects, and Standards
- ATTACHMENT 18 Benthic Analysis Terra Environmental Report
- ATTACHMENT 19 Graeme Hall Nature Sanctuary Biological Report Comments
- ATTACHMENT 20 University of Florida Tilapia and Crab Analysis
- ATTACHMENT 21 Graph of Rainfall vs. Time and Temperature vs. Time
- ATTACHMENT 22 Stormwater Runoff Pollutant Calculations
- ATTACHMENT 23 Graeme Hall Sanctuary Water Quality and Barbados Proposed Water Quality Standards
- ATTACHMENT 24 Resumes of Key Personnel

Executive Summary

On April 12, 2006, the Government of Barbados placed the Graeme Hall Swamp on the international Ramsar List -- so named after Ramsar, Iran, where the first Convention on Wetlands was held in 1971 -- to be protected as a Wetland of International Importance. The Ramsar designation describes Graeme Hall as a "naturally created coastal wetland area with mangrove forests, a seagrass bed, and a shallow near shore coral reef, which includes a 12-acre artificially-created lake that constitutes the largest body of inland water on the island." The designation further hails a waterfowl habitat with 84 bird species and more than 20 freshwater and brackish-water fish species.

This unique ecosystem is a natural resource worthy to be protected for future generations. Private investors in the Graeme Hall Nature Sanctuary have undertaken this task while extending opportunities for public education, scientific research, and ecotourism. The venture began with the acquisition of 34.25 acres of wetlands in 1994, followed by construction of visitor center infrastructure between 1998 and 2004 and further capital improvements to the property between 2006 and 2008.

During this endeavor, however, the Sanctuary has experienced inflows of untreated stormwater, agricultural, and commercial runoff and emergency raw sewage discharges into the lake system, curtailment of seawater interchange, and frequent fish kills and recent crab kills. Concerns over these degradations prompted the Sanctuary to initiate this study of the environmental health of the Graeme Hall Mangrove Ecosystem.

In February 2010, the Sanctuary authorized Environmental Engineering Consultants, Inc. (EEC) of Tampa, Florida, to perform field investigations including sediment sampling for benthic and chemical analysis; surface water sampling for chemical and bacteriological analysis; sampling of fish and crab for chemical and pathogen analysis; surveys of onsite biological indicators; and site reconnaissance for surrounding activities impacting the Sanctuary.

This report describes how the absence of a drainage outlet and periodic tidal influences is compromising the environmental health of the wetland within the Sanctuary, erasing the brackish characteristics that are the signature of a flourishing mangrove community. It explains the increasing disappearance of a diverse community of plant and animal species as a result of assimilating and processing pollutants from upland stormwater runoff, direct pollutant discharges, and unmitigated discharges of raw sewage.

The business mandate of the Sanctuary requires a healthy and diverse ecosystem. As of this writing, the resource has been closed to the general public since March 2009 because of the apparent environmental degradation of its wetland due to pollution source points outside its boundaries. Major reinvestments in interpretative educational systems and environmental control infrastructures are now required in response to recent core changes in the wetland from a brackish to a freshwater system. Findings in this report also suggest the need for corrective measures to control external sources of contaminated stormwater, sewage, and chemical pollutants and to restore biodiversity to the wetland.

The Sanctuary has appealed without success for protections of the ecosystem that only the Government of Barbados can enact and manage.

Through inaction and failed policy, the Government of Barbados has

- permitted contaminants from throughout the catchment area to penetrate "protected" wetlands through groundwater and surface water;
- so neglected maintenance and appropriate operations of a sluice gate at the outlet of the Graeme Hall Bisecting Canal that the device has become inoperable, preventing critical tidal flow into the Sanctuary and discharge of urban stormwater runoff;
- allowed raw sewage to bypass existing sewage systems to infiltrate the Sanctuary, without remediating its deleterious effects;
- operated the sewage treatment plant and local drainage systems, in fact, without a plan or a physical design to prevent such degradation to environmental health; and

• approved plans for residential and commercial development up to the boundaries of the Sanctuary such that future environmental impacts will further threaten its very existence.

This report documents the consequences of those Government practices and omissions, as well as numerous other conditions that jeopardize the existence of the Graeme Hall ecosystem. The water and sediment quality, mangrove assessment, benthic community analysis, drainage investigation, and field observation have led to the following conclusions, explained further in this report:

- Urban and agricultural runoffs are concentrating pollutants in the water column and sediments of the lake, ponds, marsh and canal systems of the Graeme Hall Swamp. Future land use changes north and east of the Graeme Hall ecosystem will reduce buffering and bring more pollutants to the Ramsar wetland, which is already deprived of an outlet to the sea.
- Average salinity in the Sanctuary's mangrove lake has declined from 8.4 ppt in 2002 to 1.9 ppt in 2010, a 77% reduction that correlates with a 75% sodium reduction. Brackish water is a defining characteristic of the estuaries where most mangrove ecosystems are found worldwide; their salinity is typically an order of magnitude higher than the lake water results at Graeme Hall.
- Almost every biotic and abiotic indicator points to a freshwater transformation of the mangrove wetlands. In the absence of brackish water and tidal fluctuations, nearly all of the flora and fauna that typically live in the intertidal zone on red mangrove roots were missing.
- Lake tributaries were oxygen-poor and high in nutrients, a combination associated with algae overgrowth and low water quality. The relationship between runoff and water degradation is likely related to recurring fish kills.
- Water quality analyzed from the Sanctuary and its surroundings in numerous instances, violate proposed Barbadian standards for the protection of the environment and public health. Poor water quality reflects the lack of a regular influx of seawater and the inability to discharge excess rainfall runoff to the sea. Pesticides have

been detected in the water column and sediments at the Sanctuary and in high concentrations at locations outside of its boundaries.

- The low biodiversity of the Sanctuary's benthic community, as indicated by taxa and individuals observed, represents a critically endangered Mangrove Ecosystem. The invertebrate community was composed exclusively of freshwater instead of saltwater species. Analysis also revealed that some disturbance -- likely a sudden change in water chemistry -- had caused the death of otherwise healthy gastropods.
- The existence of a high-volume emergency raw sewage discharge system into the Ramsar wetland and the Sanctuary presents an ongoing threat to water quality, the wetland ecosystem, and human health.
- The dysfunctional Government-owned sluice gate increases the flooding potential for the Sanctuary and adjacent lands. Lack of operation also prevents the Sanctuary from alleviating low surface water levels during drought.
- The lack of a drainage outlet and tidal exchange mechanism encourages freshwater competitors to the red mangroves, substantially increasing the risk of loss of a mangrove forest that has been documented to exist for no less than 1,300 years.

Not only the business enterprise of Graeme Hall Nature Sanctuary, but the Ramsar Mangrove Ecosystem's survival depends on reversing these harmful trends and preventing future negative impacts.

Introduction

Barbados is a small island of 430 square kilometers with a population of about 280,000, located approximately 160 km east of the Lesser Antilles island chain in the southeastern Caribbean. The Graeme Hall Nature Sanctuary is on the southwestern coast, immediately north of Highway 7 in Worthing, Christ Church. It is located within the Graeme Hall Mangrove Ecosystem, a site protected under the Convention on Wetlands of International Importance (the "Ramsar Convention," Ramsar, Iran, 1971). Barbados ratified the Convention Treaty on April 12, 2006, and designated Graeme Hall on the Ramsar List of Wetlands of International Importance for its migratory bird habitat.

The Sanctuary and the Ramsar site are fully encompassed within a 100-year floodplain. Approximately 14+/- acres in the Sanctuary are surface water and 16+/- acres are wetlands, including shallow ponds and a 12-acre lake. (See Attachment 1 for vicinity map and Attachment 2 for Ramsar site boundary.) The wetland is a Barbados National Heritage Site and one of two Caribbean Coast Marine Productivity Program (CARICOMP) sites established in Barbados to monitor ecosystem changes within the Mangrove Ecosystem and adjoining seagrasses in the St. Lawrence Lagoon.

The Ramsar designation (Attachment 3) describes the Graeme Hall location at 13°04' N, 059°35' W as a "naturally created coastal wetland area with mangrove forests, a seagrass bed, and a shallow near shore coral reef, which includes a 12-acre artificially-created lake that constitutes the largest body of inland water on the island." The designation further notes 84 bird species and more than 20 fresh and brackish water fish species. Radiocarbon dating reported by Ramcharam (2005) indicates that red mangroves have dominated the wetland for at least the past 1,300 years.

On no other location on the island can a mangrove wetland, a seagrass bed, and a shallow nearshore hard coral reef be found in close proximity. The purpose of the Sanctuary is not only to preserve this unique ecosystem, but also to utilize its value for education, scientific research, and ecotourism. Without a healthy ecosystem, ecotourism cannot flourish and the Sanctuary cannot operate under its business mandate.

The Sanctuary in recent years has experienced inflows of untreated stormwater, agricultural, and commercial runoff and emergency raw sewage discharges into the lake system, curtailment of seawater interchange, and frequent fish kills and recent crab kills. Concerns over these conditions prompted the Sanctuary to initiate this study of the environmental health of the Graeme Hall Mangrove System.

Scope of Work

In February 2010, the Sanctuary authorized Environmental Engineering Consultants, Inc. (EEC) of Tampa, Florida, to perform the investigations at Graeme Hall Nature Sanctuary, Inc. Field investigations included sediment sampling for benthic and chemical analysis; surface water sampling for chemical and bacteriological analysis; sampling of fish and crab for chemical and pathogen analysis; surveys of on-site biological indicators; and site reconnaissance for surrounding activities impacting the Sanctuary.

Environmental Engineering Consultants (EEC) has been involved in scientific and engineering studies of water, soil, and air for private and public-sector clients since it was established in 1979. The firm has been recognized in Tampa for its pro bono contribution of groundwater studies at the Sulphur Springs Pool, which traced the source of bacterial contamination to urban stormwater runoff into upstream sinkholes. In 1988 the Greater Tampa Chamber of Commerce named EEC the Small Business of the Year.

EEC's principal investigator on site was Richard Pryor, a professional geologist specializing in water quality investigations of both surface and groundwater. Mr. Pryor has 25 years of experience in geology and environmental consulting, including more than 20 years at EEC. He has performed numerous surface water and groundwater investigations and is knowledgeable about U.S. Environmental Protection Agency (EPA) water quality test methods. His past

projects include industrial contamination, stormwater runoff, wastewater effluents, underground tank leaks, and wastewater reuse studies.

Mr. Pryor was accompanied in the field by Mr. Angelo Tulimieri, a consulting environmental scientist with a specialty in wetland systems analysis. Mr. Tulimieri also has experience in wetlands management from a regulatory perspective, having served as an environmental scientist for the Environmental Protection Commission of Hillsborough County. Since 1991, he has delineated tens of thousands of linear feet of wetland lines, which required a comprehensive knowledge of wetland plants, wetland hydrology, and wetland soils. He has written more than 2,000 qualitative wetland monitoring reports for review and approval by local, state, and federal regulatory agencies. He previously served as a naturalist guide for Hillsborough Community College (HCC), teaching students about mangrove ecology and benthic sampling at Upper Tampa Bay Park and at HCC's Environmental Study Centers on Cockroach Bay, located within mangrove swamps on the Tampa Bay estuary.

Robert Wallace, founder of EEC, participated in research at Graeme Hall Nature Sanctuary and contributed to the final report. Mr. Wallace is registered as a professional engineer in Florida, Georgia, Alabama, and Tennessee and has more than 35 years of experience in civil and environmental engineering. His projects include domestic wastewater treatment and disposal, industrial treatment and disposal, stormwater attenuation and treatment design, stormwater runoff studies, wetland mitigation and reuse studies, and water quality studies. Mr. Wallace was elected in 1994 to the Florida House of Representatives representing Hillsborough and Pinellas counties and served until 2002 under constitutional term limits.

Resumes for key personnel are shown at the end of the Attachments.

Site Conditions and Surroundings

Background

Some of the history of the Graeme Hall Swamp as researched by the Sanctuary is included here:

Graeme Hall Ecosystem has been highly impacted by anthropogenic activities during the last 150 years. A coastal roadway was first built on the sand bar separating the mangrove swamp from the sea in the early 1700s, and the bridge over the main north-south channel, which remains today, was built in 1871. Originally, during this period, the economic needs of the Graeme Hall sugar plantation, on whose lands the swamp lay, further reduced its size and eventually led to the creation of a system of canals on the eastern side of the swamp, known locally as 'vales'. Sugar cane was grown here, as were grasses, which were used to provide forage for mules and oxen used on the plantation.

The latter part of the century saw the introduction of gun clubs at Graeme Hall. It was the practice of these shooting swamps to clear-cut the mangroves so that migrating birds would have a clear view of the water trays (shallow ponds) and be enticed to fly down. As part of the Graeme Hall Estate, the freshwater marsh was extensively altered by canalled water flow into a series of freshwater trays to attract water birds for shooting, and high grass banks from which mule fodder was cut and sold. Peat and mangrove poles were also known to have been cut and sold. Sometime later, a second hunting club was established in the western quadrant, and a number of shallow ponds were cleared and maintained to attract water birds. There was also an annual cutting of the surrounding mangrove trees. A sluice gate was installed in the narrow exit channel between the swamp and the sea in the 1930s and was opened only at low tide to control the water level in the shooting pools. Tilapia were introduced to the main lake around this time, and commercial seine harvesting took place. In 1972, the main lake was dredged and the cuttings were used to fill in the western ponds and convert the land to pasture. The extensive annual mangrove cutting in the swamp ceased in the 1970s, and shooting in the swamp has been banned since 1981.

In the western quadrant of the Ecosystem, a shallow, roughly rectangular (150 m X 120 m) brackish lake is surrounded by a dense fringe of red (Rhizophora mangle) and white (Avicennia racemosa) mangroves. A detailed survey shows that the shores of the lake drop rapidly to a depth of 1 m or more, except along the northeastern shore which remains very shallow (<0.5 m) due to the presence of a deep layer of soft mud. The average depth of the lake is 1.32 m and the maximum depth is 2.71 m. Red mangroves dominate much of the lake shoreline, although white mangroves dominate the northeastern shore and are also found in isolated clusters along the southern boundary of the ecosystem. A freshwater marsh is located in the eastern quadrant of the swamp, which contains a large stand of mature white mangroves and a network of man-made drainage canals with lotus and water lilies, water lettuce, and filamentous green algae. The banks of the canals support a dense growth of sedges and strips of grassland.

Private investment in Graeme Hall Nature Sanctuary, Inc. began with acquisition of 34.25 acres of wetlands in 1994, followed by construction of visitor center infrastructure between 1998 and 2004. Further capital improvements to the property occurred between 2006 and 2008. The Sanctuary today has underground utility infrastructures, including sewerage, water, electrical, data/voice communications and security systems; civil works, including foot and vehicular bridges, paved walkways and over-water decks; a car-park area; maintenance and storage buildings; office trailers; and two large constructed aviaries. Other improvements include a water treatment facility for the avian captive breeding program, water storage cisterns, a greywater treatment system to recycle irrigation water, and a site-based stormwater drainage system with improved drainage swales and retention and detention areas. (See Site Plan in Attachment 4A.)

Site Description

The 34.25 acres belonging to the Sanctuary occupy the western portion (42%) of the 81.11-acre Ramsar wetland; the Government of Barbados owns the remainder. A stormwater ditch runs along the Sanctuary's western and southern property boundaries. The north-south Graeme Hall Bisecting Canal, defining the east boundary, drains the entire ecosystem and flows southward.

Northwest of the Sanctuary is Amity Lodge, a residential area with household grey- and blackwater disposal systems discharging to the surficial aquifer that flows to the ecosystem. Small businesses, hotels, restaurants, and some residences line the north and south sides of Highway 7. Stormwater rainfall and contaminated runoff from businesses north of the highway drain to a swale/drainage ditch system that flows eastward through the Sanctuary into the Bisecting Canal.

East of the canal and within the Ramsar site/100-year floodplain is a marsh owned by the Government of Barbados. Mangroves dominate the southwestern portion of the Government property; the northern and eastern areas are spikerush. The spikerush marsh is periodically cut and trenched to allow for more open habitat for fish that control insects and for better drainage to

the canal, which is connected to the marsh by ditches and culverts. The South Coast Sewage Treatment Plant, completed in 1997, lies immediately outside the northeast corner of the spikerush marsh and adjacent to the Ramsar site.

The Government of Barbados owns and operates about 160 acres of agricultural lands north of the Mangrove Ecosystem and outside the 100-year floodplain. These lands drain to the spikerush marsh and west into the Bisecting Canal. Groundwater recharge from the fields flows to the ecosystem in the surficial aquifer. In 1988 the Barbadian National Physical Development Plan set aside this agricultural area as a greenbelt buffer around the Mangrove Ecosystem to protect it from urban impacts. (See Attachment 4A for Site Plan with Surface Water Inputs.)

Within the Sanctuary, the lake, canal, and two "trays" (shallow ponds) support an ecosystem consisting of migratory birds, fish, crabs, mangrove, spikerush, trees and shrubs, and numerous other flora and fauna. The 12-acre lake lies in the central area, bordered by a mangrove stand to the north and east. On the west side, two small mangrove islands are heavily roosted by egrets. Springs in the northwest corner of the property supply water to two freshwater ponds that feed the lake by overland flow. West of the lake is a tray -- traditionally referred to as the "brackish tray" -- that receives water pumped from the lake and overflow from the freshwater tray immediately to the south. Water pumped from the springs supplies the freshwater tray. East of the freshwater tray lies the south pond, which connects directly to the southwest and southeast corners of the lake. (See Attachment 4B for the relative locations of these elements of the Sanctuary.)

Below-normal rainfall was recorded in Barbados for December 2009 and January and February 2010. Average annual rainfall in the coastal regions of the island varies from 1100 mm to 1300 mm. (See Attachment 5 for rainfall data.) During the dry period, the spring was the main source of water for the lake and trays. The lake was approximately 0.7 m (2 ft) below normal seasonal high water levels, based upon biological indicators. The brackish tray was virtually void of standing water, the freshwater tray had less than 0.15 m, and the south pond and stormwater ditch each had about 0.3 m (1 ft) of water. The only direct connections to the Bisecting Canal

appeared to be the eastern extent of the southern stormwater ditch and the southeastern corner of the lake. During wetter periods, surface water levels rise and the two halves of the ecosystem interconnect as water backs up through the Bisecting Canal and flows through the mangrove stand along the eastern and northern shores of the lake.

Historically, multiple open natural and later manmade channels connected the lake and the Graeme Hall ecosystem with the sea. Over time, the wetland-to-sea channels have been reduced to just one, the Bisecting Canal. Discharge from the canal into the Caribbean Sea is currently blocked downstream by an inoperative sluice gate located immediately inland from the shoreline.

It has been reported that the sluice gate was opened several times a month in the 1980s and 1990s, not only to allow for drainage of stormwater from the ecosystem, but also in periods of high tide to allow seawater to enter the lake. The Government's Drainage Unit managed the sluice gate under the jurisdiction of the Ministry of Public Works. The Drainage Unit since has been reorganized under the Ministry of Environment, Water Resources and Drainage.

The sluice gate -- the main drainage path from the Graeme Hall wetland and Ramsar site -- has not been operational since 2006, when wooden components rotted to the point of failure. (See photos in Attachment 6.) Since 2006, the Government of Barbados has attempted to manage wetland water levels and allow flows within the Bisecting Canal by removing sand with a frontend loader and backhoe. The staff of the Sanctuary reported that the canal was last allowed to drain off water in August 2009, when government staff manually jacked open the sluice gate and excavated a trench through the beach sands to the open water. This was believed to be the only opening of the sluice gate in 2009.

Barbados Stormwater Drainage Study

Cumming Cockburn Limited, et al., under contract to the Government of Barbados, estimated the flood levels of the Graeme Hall ecosystem in the 1996 Barbados Stormwater Drainage Study. According to the study (see Table 2-6 in Attachment 7), a 100-year storm of 24-hour duration would achieve an elevation of 1.60 m, assuming the normal water level of 0.40 m at the outset of the storm with no outflow during the event. Table 2-6 also shows the estimated flood levels from 3-hour and 24-hour storms for recurrence intervals of 2, 5, 10, 20, 50, and 100 years.

The Barbados drainage study recommended a monitoring program to record lake water levels, gate operation, and outflow volumes. To EEC's knowledge, this has not been undertaken; nor have the study's other recommendations been followed. The study recommended flood proofing via a berm raising the perimeter of the ecosystem to elevation 1.6 m (pages 3-24 and 3-25) and extending the concrete-lined outlet of the Graeme Hall Bisecting Canal approximately 40 m beyond the existing channel, to be coupled with water jet pumps for sand removal.

The study noted that "water draining from the swamp typically has a high level of tannins, resulting in discoloration of the sea water near the outlet," and it acknowledged challenges to its recommendations: "Local tourist operations have frequently expressed concerns...about potential water quality impact on adjacent beaches."

Geology and Hydrogeology

Barbados lies approximately 160 km east of the Lesser Antilles volcanic islands on the eastern edge of the Caribbean tectonic plate. The island is relatively flat, with its highest point just over 330 m above sea level near the center. Reef limestones were deposited on Tertiary aged deep marine strata and subsequently uplifted by subduction as the North Atlantic Plate slipped under the Caribbean Plate (Geological Society of London, 2004). The base of exposed Tertiary rocks consists of sandstones, clay, and shale. The upper part of the Tertiary, up to 1.2 km thick, is composed of Eocene to middle Miocene biogenic and volcanogenic beds of the Oceanic series.

The Oceanic series rocks are fine white clays, locally known as chalk. Shallow-water carbonate deposition began in the Pleistocene in the form of coral-reef tracts as the island was uplifted. Successively younger reef terraces have been exposed. The terraced coral cap cover is up to 100 m thick and covers most of the island, except on the far central-eastern part, where Tertiary rocks are exposed. The dominant features of the topography are two terraces described as the First High Cliff, located in the south part of the island, and the older, higher Second High Cliff, near the center of the island (Banner, J., Musgrove, M., & Capo, R.).

Rainfall averages 1100-1300 mm per year. Groundwater flow patterns in the coral cap are controlled by (1) the markedly higher permeability and porosity of the coral cap relative to the underlying Tertiary aquitard, (2) the distribution of rainfall recharge, which is greatest in the central, elevated part of the island, and (3) the topography of the Pleistocene-Tertiary contact (Banner, J., Musgrove, M., & Capo, R.). Groundwater in the area of Graeme Hall is depicted to be a freshwater lens approximately 15 m thick and extending about 6 km inland, overlying saline water that extends 4 km inland. (See Attachment 8 for plan and cross-sectional views of the island.)

The Graeme Hall ecosystem occupies an 81 +/- acre relict sinkhole immediately below the First High Cliff. It is located within the Christ Church Groundwater Catchment Area, one of the largest of 19 groundwater water catchment areas in Barbados (Attachment 9, The National Natural Resources Data Base, Government of Barbados, 1998).

Within the 19 large groundwater catchment areas are smaller surface water catchment areas, based upon surface water runoff and the connection of gullies formed in the limestone. The Graeme Hall ecosystem receives surface water runoff from an estimated 1,156 acres of the Hilbury Watershed (Government of Barbados, Gully Ecosystem Management Study, 2004). After filtering and deposition through the ecosystem, the surface water runoff and groundwater discharges flow into the Graeme Hall Bisecting Canal.

Two freshwater springs are located on the northwest corner of the Sanctuary. At least one spring has been reported in the marsh east of the Bisecting Canal (University of West Indies, 2004). Freshwater irrigation wells are reported to exist on Ministry of Agriculture lands immediately northeast of the Sanctuary. Upland recharge and groundwater flowing through the coral cap supply freshwater to these wells and springs.

Groundwater and coastal water quality throughout Barbados is influenced by urban, commercial, industrial, recreational, and agricultural activities and the coral limestone underlying the island, which is highly permeable (Arriola, 2008).

Barbados' groundwater protection zones (Attachment 10) are designed to protect public water supply sources from bacteriological contamination. The Graeme Hall ecosystem and associated catchment area lie within Zone 5, which currently has no restriction for physical development. Blackwater and graywater are routinely discharged into the limestone through suckwells. Surface water directed to the ecosystem consists of rainwater runoff of varying quality, based upon precipitation rates, land use, and discharge practices. Similarly, groundwater quality of percolated rainwater varies with the pollutant load, precipitation rates, and filtering capacity of the underlying limestone.

Mangrove Quality Assessment

This report addresses the qualities of the mangrove wetland and 12-acre lake (mangrove-lake ecosystem), based on field information collected February 7-14, 2010. Changes within the Graeme Hall Nature Sanctuary are described by Angelo Tulimieri in Attachment 11. More on the dominant flora and fauna, as well as wetland definitions and mechanisms, can be found in the full report. In Attachment 12, the former chief naturalist at the Sanctuary, Ryan Chenery, provides an inventory of birds observed February 8-13, 2010, as well as a historical account of the Sanctuary garnered over a 5-year period.

An ecosystem is the interaction of living (biological) components with nonliving components

(i.e., water and sediment quality) within a scaled boundary, as well as an exchange of energy, materials, and organisms across that boundary. This report addresses the biological changes in the Sanctuary's mangrove-lake ecosystem that are related to a freshwater transformation. Indicators of this transformation, such as salinity measurements and benthic community analysis, are derived from other parts of this report.

Historically, water flowed in both directions across the Sanctuary's mangrove-lake ecosystem boundary when the sluice gate was regularly opened to the sea. For at least the last 3.5 years, only freshwater has entered the ecosystem. This water departs via seepage, evaporation, and evapotranspiration. Organic wastes enter the mangrove-lake ecosystem via drainage basin runoff or are generated from within the ecosystem. Some of the organic wastes are converted to nutrients and biomass via biogeochemical cycles; the degree of conversion was not measured in this study. In a normal mangrove wetland, some of the generated biomass and nutrients flow out to sea with tides. Wastes other than organic matter enter the ecosystem boundary; among them are organophosphate pesticides, for which no comparable biogeochemical cycling is readily available and which may be lethal, depending on the concentration.

Normal mangrove wetlands -- synonymous, for purposes of this report, with mangrove forest and mangrove swamp -- provide important functions. They are very effective at converting wastes into minerals and nutrients for biomass production. They provide nursery grounds and breeding sites for various species, including birds, fish, crustaceans, reptiles, and mammals (Alongi, 2002). They provide nutrients to nearshore fisheries, seagrasses, and coral reefs. Mangroves have been shown to act as a vegetative buffer zone between disturbed freshwater sources and coastal water (Lin, 2004).

By definition, mangrove wetlands inhabit brackish water and dominate the area between the highest and lowest tides, i.e., the intertidal zone. One way to classify mangrove wetlands is by their position along a salinity gradient, with salinity decreasing the closer the mangroves get to their freshwater source, such as when they begin to move into rivers from estuaries. An estuary is an embayment where freshwater and saltwater mix, resulting in brackish water with salinities

of 5-30 ppt. This is the expected range of salinity for a healthy mangrove ecosystem that supports saltwater flora and fauna. The average salinity in the Sanctuary's mangrove-lake ecosystem was found to be 1.9 ppt, which is considered freshwater. Mangroves survive well in freshwater, yet mangrove forests don't emerge there because of freshwater plant competition.

According to research by Simberloff (1983) and Tomlinson (1986) as reported on the Smithsonian Web site, "One reason mangroves do not develop in strictly freshwater communities is due to space competition from freshwater vascular plants. By growing in saline water, mangroves reduce competitive threat, and thus are able to dominate the areas they grow in."

In 1986, Christopher Parker from the University of West Indies found water salinity in the Bisecting Canal in the range of 29-34 ppt, which indicated a seawater connection. The salinity reading in the canal was 1.3 ppt in February 2010. Salinity results are in the Surface Water Quality section of this report.

The wetland hydroperiod in the Sanctuary's ecosystem resembles that of an isolated freshwater wetland. Normal mangrove wetlands develop in intertidal zones, areas between the highest and lowest daily tides, and or in subtidal zones that are saturated daily with brackish water. It was evident that water levels in the Sanctuary mangrove ecosystem change slowly in the absence of daily tidal fluctuations and that the water levels were well below the level of the historic low tide. A severe drought had been in effect since at least December 2009.

By definition, wetlands are less than 3 m in depth, since this is the maximum depth in which vascular wetland plants such as waterlily can root. Graeme Hall contains the following wetlands within the Sanctuary and the Government-owned land:

• The Sanctuary's mangrove wetland, which is reportedly one of the largest and most significant of its kind in Barbados and which constitutes the major portion of the mangroves within the preserve.

- The two waterlily (*Nymphea*) ponds in the northwest corner of the Sanctuary, just outside the white mangrove portion of the forest. Each is dominated by a different species of waterlily; one pond also supports a significant amount of spikerush (*Eleocharis mutata*), which is in the sedge family (*Cyperacae*).
- The freshwater marsh on Government property, consisting of an almost monoculture of the same spikerush.
- The Bisecting Canal, which was supporting emergent freshwater vascular plant species.

Whereas wetlands are surface waters, not all surface waters are wetlands because not all surface waters support wetland vegetation. Swamps are wetlands dominated by wetland trees; marshes are wetlands dominated by wetland herbs. Classically, three parameters define a wetland: wetland hydroperiod, wetland plants, and wetland soils. Surface waters lack wetland plants and wetland soils.

The surface waters found at Graeme Hall included but were not limited to several ditches inside and outside the Sanctuary boundaries, as well as four open water bodies in the Sanctuary as follows:

- The Sanctuary's 12-acre lake, which is shallow enough to permit the growth of freshwater vascular plants; these were absent, possibly because of the tilapia -- voracious herbivores -- that thrive there.
- The small pond, connected to the south side of the lake at two points.
- The temporal freshwater pond or tray on the west side.

The temporal "brackish" tray, so named before the end of seawater inputs.

Water levels in the surface waters mentioned were below normal when first encountered on February 8, 2010. The stain line on the red mangrove roots around the lake indicated that the water level was as much as 0.6 m below normal. At the same time, water levels in the two "trays" were below ground. These trays have very shallow bottoms that are as much as several feet higher than the lake bottom.

In periods of drought, the Sanctuary pumps freshwater from the springs to assist with hydration. Such pumping occurred during the monitoring event, and subsequently the freshwater tray, but not the higher "brackish" tray, filled with water. Although no overland connection between the pump(s) and the lake was found, the lake water rose by several centimeters without the aid of rainfall. It was also noted at the end of that week that soils were saturated around the white mangrove pneumataphores on the north side of the Sanctuary's mangrove forest at an intermediate elevation. The pneumataphores would have developed during periods when this area was wetter.

Two small red mangrove islands in the lake have been in constant use by wading birds, primarily egrets. The future of these islands is uncertain, as the lower branches on the red mangroves there were dead, and attempts to replant them were reported to have been less than successful. Mangroves are known for their island building ability, but in the absence of daily tidal fluctuations, the islands' soils could be subsiding. Their loss would be very detrimental to the wading birds that find protection there from local predators such as mongooses and monkeys. There are also two small mangrove islands in the so-called brackish tray, but their bottom elevations appeared to be perched above the mostly empty bottom of the tray, and there was relatively no wading bird activity there.

The Bisecting Canal inside the eastern edge of the Sanctuary crosses under Highway 7 and stops a few meters short of the sluice gate, bifurcating the Graeme Hall mangrove forest with one part inside the Sanctuary and the other inside Government-owned land. The canal was filled in large part with arrowhead (*Sagittaria*) and waterlily plants.

The following table identifies the major plant species associated with the Graeme Hall wetlands.

Habit	Scientific Name	Common Name	Wetness Rating	Location
Tree	Conocarpus erectus	Buttonwood	FACW	Upper white mangrove forest
Tree	Ficus citrifolia	Bearded fig	FAC / FACU	Disturbed edges of Sanctuary mangroves
Tree	Laguncularia racemosa	White mangrove	OBL	Sanctuary mangrove forest
Tree	Rhizophora mangle	Red mangrove	OBL	Sanctuary mangrove forest
Shrub	Cordia obliqua	Clammy cherry	FAC?	Disturbed edges of Sanctuary mangrove
Herb	Cladium jamaicense	Sawgrass	OBL	Government marsh
Herb	Eleocharis mutata	Spikerush	OBL	Government marsh + north lily pond
Herb	Nymphea odorata (exotic)	Waterlily	OBL	North lily pond
Herb	Nymphea ampla (native)	Waterlily	OBL	South lily pond

Graeme Hall Sanctuary's Most Important Wetland Plant Species

Remarks:

(OBL) Obligate wetland species occur more than 99% of the time in wetlands.

(FACW) Facultative wetland species occur in wetlands 67-99% of the time or in uplands 1-33% of the time.

(FAC) Facultative species occur in wetlands or uplands 34-66% of the time. They tolerate wet and dry conditions.

(FACU) Facultative upland species occur in uplands 66-99% of the time or in wetlands 1-33% of the time.

(UPL) Upland species occur more than 99% of the time in uplands.

The Sanctuary mangroves, verdant and healthy, were found in textbook zonation patterns: red mangroves at the lower, wetter elevations and white mangroves at the higher, drier locations. Red mangroves dominated in terms of area, whereas white mangroves tended to dominate in height, some being upwards of 20 m. The median red mangrove height around the edge of the lake appeared to be about 5-6 m, with some red mangroves appearing to reach about 10 m. Buttonwood (*Conocarpus erecta*) was located in the more elevated parts of the white mangrove forest but provided less than 5% coverage overall. Bearded fig (*Ficus citrifolia*), a tall tree with a wide canopy, was found near white mangroves at comparable or slightly higher elevations in disturbed soils that were dry or moist. Its seedlings were found in some moist soils, which is consistent with their wetness rating as a facultative or transitional species.

On Government land, a red mangrove forest was surrounded and in some places infiltrated by freshwater spikerush, which left scattered patches of red mangroves. The exposed soils in the marsh varied from moist, to saturated, to inundated by what appeared to be shallow water.

Laboratory analysis of the benthic community in the lake found that all of the saltwater macroinvertebrates had been replaced by freshwater species: segmented worms (Annelida), freshwater snails (Mollusca), and freshwater insects (Arthropoda). Analysis also revealed that the benthic community had experienced a disturbance that caused the death of snails or

gastropods, attributable to a sudden change in water chemistry.

No intertidal community was encountered on the mangroves within Graeme Hall. In a healthy intertidal mangrove ecosystem, algal collars composed of fungus and chlorophyte filaments grow on the roots in the intertidal zone. Small algal collars were found on only a few red mangrove roots in the Sanctuary and Bisecting Canal. These appeared to be surviving by wicking water.

Several fauna normally associate with these algal collars in a mangrove ecosystem. These include the spotted mangrove tree crab (*Goniopsis cruentata*) and the mangrove periwinkle (*Littorina angulifera*, which were not encountered during the monitoring event and may be considered a missing part of the food chain. Ryan Chenery reported that he had never seen them in the Sanctuary. If daily tidal fluctuations were reestablished, reintroducing these species and their associates would be a method to increase diversity and enhance the food chain. The spotted tree crab, which has been found in Barbados, feeds on fallen mangrove leaves (Raulerson, 2004) and is a favorite in the ibis diet.

Blue land crabs (*Cardisoma guanhumi*) inhabit the upper parts of the mangrove forest in both white and red mangrove zones. A substantial number of blue land crab burrows in the upper part of the white mangrove zone were either abandoned or plugged in order to preserve moisture. An equal or greater number of active burrows were encountered at lower elevations, and their density or number of holes per area appeared to be high. Blue land crabs are most active at night and therefore may not be expected to be observed in daylight, when the Sanctuary was open to perform the monitoring.

Reports by Chenery and others indicate that both blue land crabs and fiddler crabs (*Uca bergersi*) have declined in numbers. A small number of fiddler crabs and their burrows were found. A historical newsletter mentioned that fiddler crabs were once so abundant that they swarmed over the Sanctuary sidewalks. Their reduced numbers may be attributable to a combination of factors, including susceptibility to pesticides. Massive fogging with malathion,

an organophosphate associated with toxicity to fish species, has been reported within the Government's wetlands.

Glossy ibis (*Plegadis falcinellus*) was identified in the Sanctuary during this monitoring period. This wading bird is a tactile forager with a long curved beak adapted to probing inside fiddler crab burrows. One study in a Brazilian mangrove forest found that an ibis species there fed mostly on fiddler crabs (*Uca*) taken directly from their burrows (Olmos, et al., 2001).

During the February 2010 sampling, Chenery identified 37 bird species in the Sanctuary, including 16 migratory species (Attachment 12). Chenery also identified two wild mongooses (*Herpestidae*) entering the Sanctuary from the west. Easily spotted almost daily around the Sanctuary parking lot were several green monkeys (*Chlorocebus*), individually and in groups of up to five. In the lake, dozens of tilapia (*Oreochromis mossambicus*) and several Atlantic tarpon (*Megalops atlanticus*) were observed. Several termite nests (*Isoptera*) were found on the west side of the Sanctuary amid white mangroves, both on the ground and in tree crotches.

One freshwater species that may compete with white mangroves if given an opening is clammy cherry (*Cordia obliqua*), which was scattered around the edges. Clammy cherry is a shrub capable of reaching heights of 7-8 meters and providing significant canopy coverage. If gaps were to open in the white mangrove canopy, then clammy cherry could become established there and in time begin to dominate. Already clammy cherries were found to have infiltrated some of the white mangrove part of the forest. This may happen within the red mangrove forest as well.

Currently the interior of the mangrove forest is dense enough to prevent sunlight from reaching the forest floor. Without sunlight, nothing else can grow there, which in part accounts for the lack of plant diversity in mangrove forests. If an opening in the mangrove canopy were to occur through a fire, lightning strike, hurricane, or other event, then sunlight could penetrate and freshwater plants could invade and eventually outcompete the mangroves.

Summary

Reports of fish kills and raw sewage inputs prompted an ecosystem study of the mangrove-lake ecosystem within the Sanctuary. Almost every biotic and abiotic indicator pointed to an advanced state of freshwater wetland transformation for the mangrove forest, which by definition should be an intertidal wetland dominated by salt-tolerant flora and fauna. Although mangroves grow well in freshwater, they have no defense against being outcompeted by freshwater plants in a freshwater environment. Examples of this were found in the Government's adjacent mangrove wetland, where patches of red mangroves were surrounded and in some places infiltrated by freshwater spikerush herbs.

In hydroperiod and water salinity, the Sanctuary mangrove wetland and lake are identical to isolated freshwater wetlands. Freshwater plants found in Sanctuary ponds and in the adjacent Government-owned wetlands were growing in water salinities only 1 ppt lower than the salinity found in the lake. The lake is shallow enough to support the growth of emergent freshwater plants, but the large number of herbivorous tilapia may be preventing this. All of the benthic saltwater macroinvertebrates have been replaced by freshwater species; in time, the same may be expected of the plants as well. Water salinities at all wetland sample stations were below the brackish water salinities required by mangroves to maintain their dominance against freshwater plants in the long term.

This transformation to a freshwater wetland threatens the very survival of a mangrove community that provides all-important habitat for Barbados' wading birds and waterfowl, of which 37 species were identified during the monitoring period, including 16 migratory species. A restoration of regular, if not daily, tidal fluctuations within the Sanctuary mangrove ecosystem would begin to restore its estuarine condition. Without reconnection to the sea, the eventual loss of the Sanctuary's mangrove ecosystem, including its wading bird community, can be expected.

The conversion from a brackish mangrove wetland to a freshwater wetland in which freshwater plants replace mangroves may take a long time; nonetheless, it could be accelerated by a major perturbation, which may be inevitable. Such a change at Graeme Hall would permanently eliminate the mangrove ecosystem and the wading bird and waterfowl community it supports, hallmarks of this internationally recognized site.

Surface Water Sampling

The sampling plan prepared by EEC for the 2010 event called for performing surface water and sediment sampling for chemical analysis at the same locations presented in the two initial Sanctuary Water Quality Monitoring Reports (2000-2001 and 2002-2003). However, some locations did not have sufficient surface water to sample. (See Attachment 4B for sample locations and Attachment 13 for the correlation of 2010 locations to previous locations and the rationale for choosing alternative locations.)

Richard Pryor performed the sampling in accordance with the Florida Department of Environmental Protection's Standard Operating Procedures for Field Activities, dated March 2008. Field readings were obtained within measured depths of water columns by holding respective probes within the approximate middle of the water column. The following field readings were recorded and instruments used:

- Temperature, using a Hach HQ30d
- pH, using an Oakton pH 6
- Conductivity, using an Oakton Con 6
- Dissolved oxygen, using a Hach HQ30d
- Salinity, using a YSI 63

The Government of Barbados provided containers to EEC for bacteria samples, which were collected first because of the limited 6-hour hold times allowed prior to analyses. Sampling was performed by submerging each container approximately 6 inches below surface and subsequently removing the cap until the container was close to full. Once filled, containers prelabeled with sample name and analysis had date and time recorded and then were put on ice in a cooler. Samples were collected for:

- Fecal coliform
- Fecal streptococci
- Fecal enterococci

Bacteria samples were delivered within 6 hours of sampling to the Ministry of Agriculture, Government Analytical Services laboratory in St. Michael, Barbados.

Chemical analyses required a laboratory out of the Caribbean region. EEC selected Test America's laboratory in Tampa, which shipped empty sample containers to Barbados in coolers with chain-of-custody seals. EEC performed sampling at each station by submerging each container approximately 6 inches below surface and subsequently removing the cap until the container was close to full. Containers with preservative were not allowed to overfill. Once filled, containers pre-labeled with sample name and analysis had date and time recorded and then were put in a cooler with ice cubes double-bagged in 1-gal plastic bags. For shipping purposes, EEC maintained a chain of custody to the lab. Samples were appropriately iced and coolers were sealed with chain-of-custody seals and all appropriate shipping documentation.

Samples for chemical analyses were shipped on the day of collection to Test America's laboratory in Tampa, using FedEx Priority overnight delivery. Sample coolers all arrived at Test America two days after shipping rather than one day because of customs inspections. Sample temperatures were all within the prescribed 4° C upon receipt, as shown on the laboratory analytical receipt sheets. Laboratory analyses were performed for:

Nutrients and Other Water Quality Parameters	Metals
Turbidity	Magnesium
Biological Oxygen Demand (BOD)	Sodium
Tannin	Chloride
Nitrate	Copper
Nitrite	Iron
Ammonia	Lead

Surface Water Quality

Lake and South Pond

Water in the lake was very low, based on stain lines observed on bridges and mangroves. The water level was approximately 0.6 meters below seasonally high water levels and about 1.3 m below a flood stage indicator under one of the walking bridges. The connection at the southeast corner of the lake between the south pond and the lake was unsaturated. Water depth in the south pond (S6B) was 0.16 m (0.5 ft) to 0.3 m (1 ft); depths around the edges of the lake -- S3A, S3B, S7A, S7B, and S10 -- averaged 0.5 m (1.5 ft). Temperatures averaged 29.2° C. (Complete laboratory analytical results are shown in Attachment 14. A review of field collected results and analytical data appears in Attachment 15.)

Comparisons of 2002 and 2010 water quality results indicate that these water bodies have changed from brackish to freshwater. Brackish water is defined as a mixture of saltwater, which ranges from 16 to 30 parts per thousand (ppt), and freshwater, which has 5 ppt or less of salts. Brackish water ranges from 6 to 15 ppt (Texas A&M University, 2006). In April 2002, average salinity for the five on-site water quality stations sampled within the lake and south pond was 8.4 ppt; average sodium concentration was 2,426 mg/l. In February 2010, average salinity was found to be reduced by 77% to 1.9 ppt from the six stations sampled within the lake and south pond;

average sodium concentration had diminished by 75% to 598 mg/l. (A review of historic and current data compiled for five sampled wetland and stormwater control areas is shown in Attachment 16.)

Concentrations of the analyzed dissolved metals were relatively low compared with other sampled areas. There were no occurrences of lead, mercury, or copper above laboratory detection limits and relatively low concentrations of iron, potassium, zinc, and magnesium. However, the average zinc concentration of 0.01 mg/l was higher than the recorded 2002 concentration of <0.005 mg/l. Concentrations of copper, lead, and mercury were below the Government's proposed Marine Pollution Control standards, as shown in Attachment 15. Although these standards are only proposed, they are referred to by the Barbados Environmental Protection Department and industry as compliance criteria.

Within the lake, dissolved oxygen values generally ranged from 5.99 to 8.32 mg/l. Sample location 7A in the very southeastern corner of the lake exhibited the lowest concentration, 3.17 mg/l, similar to the average recorded at this location throughout the 2002-2003 sampling period. The reading likely reflects a mixing zone of lake water with water from the Bisecting Canal and areas eastward. Samples from 3A and 7B exhibited supersaturated concentrations of dissolved oxygen -- that is, concentrations greater than the theoretical maximum for the respective temperature at atmospheric pressure. The most likely cause is that aquatic algae and plankton have produced additional oxygen through photosynthesis during daylight hours. During darkness, the reaction is reversed: Oxygen is consumed from the water, and carbon dioxide is released and dissolved as carbonic acid. Both supersaturated and low levels of dissolved oxygen can be toxic to fish.

The average biological oxygen demand (BOD) was a relatively low 4.5 mg/l. The Barbadian Government has proposed that BOD -- a measure of the amount of oxygen used by bacteria to decompose organic substances in 5 days -- not exceed 30 mg/l within a 50:1 mixing zone with discharged domestic waste. The average chemical oxygen demand (COD) was 52 mg/l. COD is a measure of the quantity of oxygen required to oxidize organic matter into carbon dioxide and

water. The COD/BOD ratio of approximately 12 indicates that most of the dissolved organic matter is not easily biodegraded. While reviewing monthly data from the 2002-2003 sampling period from station 7B, EEC noted that the BOD peaked in August 2002 to 20.43 mg/l and dissolved oxygen dropped to 2.95 mg/l, coinciding with a prolonged period of hot weather and a spike in rainfall. Similarly, at S7A, BOD rose and dissolved oxygen dropped in the summer months in 2001, when 36 fish were reported killed in July and 3,000 fish killed in September.

Alkalinity averaged 440 mg/l, reflecting the limestone (calcium carbonate) geology of the island; pH averaged 8.23. Alkalinity greater than 400 mg/l is relatively high (EPA, 1988). The alkalinity of ocean water near Barbados has been reported at 120 mg/l (U.S. Department of Energy, 2006). High alkalinity provides good buffering capabilities against pH swings; thus pH values tend to remain above neutral.

Ammonia levels had declined from 0.5 mg/l in 2002-2003 to approximately 0.1 mg/l in 2010; levels in the south pond, 0.11 mg/l, were similar to the average exhibited in 2002-2003. Ammonia toxicity is enhanced by warmer temperatures, pH values over 7 su, low dissolved oxygen, and elevated zinc or copper concentrations. Different species of fish can tolerate different levels of ammonia (Tucker, 1998). While reviewing data for station 7B from the 2002-2003 sampling period, EEC noted that ammonia levels were relatively high in August 2002, pH values were near 8 standard units (su), BOD peaked, dissolved oxygen was relatively low, and temperatures were relatively high. Around the time of the reported 2001 fish kills, temperature peaked in August and September, ammonia levels peaked, dissolved oxygen was low (0.93 mg/l), and pH values were near 8 su at station 7A.

Turbidity levels averaged 5.4 nephelometric turbidity units (NTU), more than three and half times the Barbadian Government's proposed marine water quality standard of 1.5 NTU. Tiny soil particles that wash into a water body from the land often cause turbidity. These particles can contain nutrients that, when combined with water and sunlight, cause explosive growth of algae. The various substances increasing turbidity can also have a high biological oxygen demand. The highest turbidity and BOD results were observed from sample 6B from the south pond.

Nitrogen, sulfur, phosphorus, and carbon dioxide are important nutrients when analyzing the health of a water body. In general, high levels can lead to excessive algae growth and subsequent changes in dissolved oxygen content. Phosphorus levels were higher than Barbados' proposed marine standard of 0.015 mg/l, ranging from 0.11 mg/l to less than 0.1 mg/l. Nitrate concentrations were all less than 0.1 mg/l, similar to the average of the 2002-2003, and nitrite concentrations were all less than 0.1 mg/l. Sulfate concentrations averaged 150 mg/l, and chloride concentrations averaged 1000 mg/l. Carbon dioxide results averaged approximately 50 ug/l.

Fecal coliform averaged 684 colonies/100 ml; fecal streptococcus, 325 colonies/100ml -- results far in excess of the ambient marine surface water standards, which would limit fecal coliform to 200 colonies/100 ml and fecal streptococcus to 35 colonies/100 ml. Bacterial counts were similar in April 2002, also a dry period.

The trophic state classification system is designed to rate individual lakes and ponds based on the amount of biological productivity occurring in the water, as indicated by decreasing clarity and rising concentrations of chlorophyll, phosphorus, and nitrogen. In increasing order of productivity, the classifications are oligotrophic, mesotrophic, eutrophic, and hypereutrophic. Based primarily on chlorophyll-a results in the range of 30 ug/l, the lake exhibited a high level of biological productivity. Therefore, the lake and south pond may be classified as eutrophic.

Tannins and lignins averaged 1.7 mg/l, reflecting decomposition of leaf matter from the surrounding mangroves. There typically are no drinking water or surface water standards for tannins. However, based upon the high level of biological activity and the relatively high coliform concentrations outside prescribed limits, the lake is not suitable for swimming.

In summary, the lake and south pond have decreased in salinity since 2002 to the point of becoming primarily freshwater. Alkalinity is relatively high, which tends to keep pH above neutral. Dissolved oxygen, ammonia, and BOD results within the lake were for the most part

good, although they are expected to degrade in summer months, based upon past results. Ammonia toxicity is directly related to elevated pH and temperatures, low dissolved oxygen, and elevated zinc and copper concentrations. The average zinc concentration in the lake and south pond rose from <0.005 mg/l in 2002 to 0.01 mg/l in 2010. Drainage and regular tidal influxes would alleviate the low dissolved oxygen readings expected in summer months, a condition associated with areas east of the Bisecting Canal, as described below.

Bisecting Canal

The Bisecting Canal receives water from the lake, stormwater ditch, and freshwater marsh. Water from the canal either seeps into groundwater or moves into the lake or adjacent mangroves via culverts and openings in the mangroves. Water levels were low, based on stain lines observed on mangroves. Depths averaged 1 ft at the three sample locations, S8A, S11A and S12. Temperature averaged 27.3° C. The northern third of the canal was unsaturated. The sluice gate at the southern end was not operational, and culverts leading from the east were dry. (A review of field collected results and analytical data, as compared with the Barbadian Government's proposed ambient marine standards, is shown in Attachment 15. Average results for the canal, compared with other sampled areas and historic results, are shown in Attachment 16.)

Like the lake, the Bisecting Canal is exhibiting fewer saltwater characteristics and is more appropriately classified as freshwater. Results showed that salinity decreased 67% from 3.98 ppt in 2002-2003 to 1.33 ppt in 2010. The average sodium concentration decreased 66% from 1237 mg/l to 420 mg/l. Sulfate concentrations averaged 117 mg/l; chloride, 690 mg/l. Concentrations of iron, potassium, and magnesium were relatively low, and no occurrences of lead, mercury, or copper above laboratory detection limits were found. The average zinc concentration of 0.018 mg/l was greater than the 2002 average of <0.005 mg/l and marginally above the Barbadian Government's proposed ambient marine standards.

Within the Bisecting Canal, dissolved oxygen values ranged from 0.5 to 5.01 mg/l. Sample location 8A, near the northern extent of the saturated canal, exhibited the lowest concentration. Higher results near the southern end are related to mixing from the lake, which was shown to

have higher dissolved oxygen concentrations. Turbidity levels ranged from 3.5 to 45 NTU, with the highest result exhibited at the southern end.

The average biological oxygen demand was less than 2.0 mg/l. The average chemical oxygen demand was 29 mg/l. The COD/ BOD ratio, approximately 15, was similar to that of the lake, indicating that most of the dissolved organic matter is not easily biodegraded.

Nitrate concentrations were all less than 0.1 mg/l, similar to the average of 2002-2003, and nitrite concentrations were all less than 0.1 mg/l. Alkalinity averaged a moderately high 277 mg/l (200-400 mg/l, EPA, 1988), indicating a pH above neutral (readings averaged 7.48) and good buffering capabilities against pH swings. Ammonia levels declined from 0.42 mg/l in 2002-2003 to approximately 0.27 mg/l in 2010. Phosphorus levels were all less than 0.1 mg/l, and carbon dioxide results averaged approximately 112 ug/l. Chlorophyll-a results averaged 17 ug/l. Tannins and lignins averaged 1.1 mg/l. Based upon the chlorophyll-a, phosphorus, and nitrate results, the Bisecting Canal exhibited a high level of biological productivity and can be classified as eutrophic.

Bacteria results in 2010 were lower than in the similarly dry period of April 2002. Fecal coliform averaged 67 colonies/100 ml. The average for fecal streptococcus, 64 colonies/100ml, was marginally above the standard of 35 colonies/100 ml proposed by the Barbadian Government for ambient marine surface water quality.

In summary, the Bisecting Canal is a freshwater body and has decreased in salinity since 2002. Based on chlorophyll levels, the canal may be classified as eutrophic. Average dissolved oxygen results within the canal were moderate, reflecting an average of the east side of the Ramsar site and the lake on the west side. Nutrient and dissolved metal concentrations, with the exception of zinc, and ammonia levels were low in this relatively dry period.

Onsite Stormwater Ditches

Connecting stormwater ditches run north to south near the western boundary of the property. The

culminating ditch turns eastward at the southwest property corner and runs along the south property boundary. The ditches collect stormwater from residences and light industrial properties to the west and south, as well as runoff from the Sanctuary itself. The ditch discharges near the southern end of the Bisecting Canal. Water also backs up from the canal into the stormwater ditch system. The southern ditch lies adjacent to a large number of blue land crab burrows and an area of reported crab kills in 2009.

Water levels in the ditches were low, based upon observed floodplains, low flows, and unsaturated sections. Depths averaged 0.23 m (0.75 ft) at the four sample locations, S4B, S4C, S4D, and S4E. Temperature averaged 26.2° C. (A review of field collected results and analytical data is shown in Attachment 11.) Salinity results averaged 1.2 ppt, down 50% from 2.4 ppt in 2002, and reflected mixing from the canal and stormwater inputs. Average sodium concentration decreased 63% from 947 mg/l to 350 mg/l. Sulfate concentrations averaged 82 mg/l, and chloride concentrations averaged 523 mg/l. (A review of current and historical data is shown in Attachment 16.)

Average concentrations of the analyzed dissolved metals were highest in the stormwater ditches and an offsite stormwater swale (S4F) relative to the other areas sampled. Onsite, the results for metals from S4B primarily influenced that ranking. The sample exhibited concentrations of 0.095 mg/l for lead, 0.044 mg/l for copper, and 0.041 mg/l for zinc -- higher than the Barbadian Government's proposed standards of 0.0044 mg/l, 0.0013 mg/l and 0.015 mg/l, respectively, as shown in Attachment 15 -- as well as an iron concentration of 5.1 mg/l. The average zinc concentration (0.041 mg/l) was higher than in 2002 (0.001 mg/l). These results reflect contaminants in stormwater runoff from residential, highway, and commercial uses in the catchment area. Metals in the other ditch locations were within proposed standards.

The average BOD was a relatively low 7.99 mg/l. COD ranged from 41 mg/l to 270 mg/l. The 270 mg/l result was recorded from S4B, along with relatively low BOD; these results indicated a dissolved recalcitrant organic material. Excluding the result from S4B, COD averaged 51 mg/l. The COD/BOD ratio of approximately 6 indicates that, compared with the conditions in the lake

and the Bisecting Canal, most of the dissolved organic matter is relatively easily biodegraded. Within the ditches, dissolved oxygen values averaged 1.50 mg/l, indicating a hypoxic condition. Turbidity levels averaged 12 NTU. Nitrate concentrations were all less than 0.1 mg/l, similar to the average of 2002-2003, and nitrite concentrations were all less than 0.1 mg/l. Sulfate concentrations averaged 82 mg/l, and chloride concentrations averaged 523 mg/l, reflecting freshwater conditions.

Alkalinity averaged 538 mg/l, the highest compared with the other areas, and pH averaged 7.49. Average ammonia levels increased from 0.18 mg/l in 2002-2003 to approximately 0.33 mg/l in 2010. Average phosphorus levels were relatively high at 0.3 mg/l, compared with the other sampled areas; the average concentration of phosphate was less than 0.005 mg/l in 2002. Carbon dioxide results were relatively high, averaging approximately 243 ug/l. Chlorophyll-a ranged from 3.2 ug/l to 91.8 ug/l, with the highest results at stations S4C and S4D, where a light green algae was observed (see pictures in Attachment 6). Stations S4B and S4C were the only onsite stations to exhibit sulfide with respective concentrations of 1.3 and 1.1 mg/l. Sulfide is indicative of anaerobic processes, typical in sediment layers, and associated with low oxygen conditions. Hydrogen sulfide is very toxic to fish. Tannins and lignins averaged 3.2 mg/l, also relatively high. Overall the conditions are eutrophic with decaying organics in a relatively low oxygen environment.

Bacteria results were higher in 2010 than in the dry period of April 2002. Fecal coliform averaged 1583 colonies/100 ml, and fecal streptococcus averaged 2275 colonies/100ml, exceeding the proposed standards limiting fecal coliform to 200 colonies/100 ml and fecal streptococcus to 35 colonies/100 ml. The highest onsite results for fecal streptococcus were observed at S4C and S4D.

In summary, the ditches represent a mixing of stormwater inputs and water from the Bisecting Canal. Water levels were exceptionally low with little or no flow. Water quality was eutrophic with low dissolved oxygen, visible algae growth, elevated phosphorus levels, and high bacteria levels. Elevated results for metals were observed at location S4B, where stormwater enters the
property from the west, suggesting an offsite commercial source. The average zinc concentration in the ditches rose from 0.001 mg/l in 2002 to 0.041 mg/l in 2010.

Freshwater Ponds

The springs in the northwest corner of the property receive groundwater from upland areas in the southern part of the island. These areas are classified as Zone 5 with no restriction for physical development as it pertains to groundwater quality. Blackwater and graywater are routinely discharged into the upland limestone through residential suckwells on properties within the associated catchment area. Within the Sanctuary, water from the springs is pumped to the freshwater tray and the water treatment tank and discharges into the two adjacent freshwater lily ponds. The ponds also receive overland stormwater flow from adjacent residential neighborhoods and likely the agricultural fields north of the Sanctuary.

Average salinity at S1 in the west pond and S2A in the east pond decreased 50% from 1.2 ppt in 2002-2003 to 0.6 ppt in 2010. Average sodium concentration decreased 61% from 252 mg/l to 98 mg/l. The results suggest that the ponds have been influenced by brackish water in the past, likely from high lake levels, but in 2010 can be classified as freshwater. Temperature averaged 26.0° C. (A review of current and historical data is shown in Attachment 16. A review of field collected results and analytical data is shown in Attachment 15.)

Copper concentrations were relatively high, averaging 0.004 mg/l for the two ponds. The average zinc concentration of 0.029 mg/l was similar to the average observed from all onsite and offsite sample locations with the exception of the lake, which averaged 0.01 mg/l, but represented an increase over the ponds' 2002 concentration of <0.005 mg/l. The copper and zinc averages exceeded the Barbadian government's proposed marine ambient standards of 0.0013 mg/l and 0.015, respectively. Concentrations of dissolved lead and mercury were less than laboratory detection limits. Potassium and magnesium concentrations were relatively low, reflecting the freshwater condition of the ponds.

The average concentration of iron -- likely a natural component of the limestone -- was higher

from the two ponds than from other sampled areas. This result, 1.35 mg/l, taken together with dissolved oxygen averaging a relatively low 1.79 mg/l, suggests that groundwater from the springs was oxygen-poor -- iron dissolves more readily in groundwater with dissolved oxygen levels of less than 1 mg/l. Large influxes of oxygen-poor groundwater have adverse implications for the health of the lake, into which these two ponds feed. The average biological oxygen demand was a relatively low 5.88 mg/l; the average chemical oxygen demand, 30 mg/l. The COD/BOD ratio of approximately 5 indicates that organic matter was more easily degraded in the freshwater ponds than in the lake or the Bisecting Canal.

The eastern pond exhibited a nitrate concentration of 0.33 mg/l, marginally above laboratory detection limits; the western pond exhibited a nitrate concentration of less than 0.1 mg/l. Nitrate concentrations in 2002-2003 were less than 0.02 mg/l. The nitrate result, although relatively low, reflects nutrients within the discharge from upland areas or is a result of natural organic decay. Relatively high phosphorus concentrations, averaging 0.16 mg/l, were exceeded only by those in the stormwater ditches, suggesting influence from offsite sources or mobilization of phosphorus from sediment as a result of hypoxic conditions.

The average ammonia level from the two ponds increased from 0.021 mg/l in 2002-2003 to 0.141 mg/l in 2010. The average alkalinity, 275 mg/l, twice the alkalinity of seawater near Barbados, suggests that groundwater discharging from the springs has a moderately high alkalinity attributable to the carbonate geology of the island.

Phosphorus levels averaged 0.16 mg/l, compared with phosphate levels in 2002 of less than 0.005 mg/l. Chlorophyll-a results ranged from 25.3 ug/l in the east pond to 137 ug/l in the west pond. The high reading reflected the most algae of all onsite and offsite sample locations, indicating potentially high nutrient load and eutrophic conditions. Tannins and lignins averaged a relatively low 0.8 mg/l, reflecting the groundwater source for the ponds. Fecal streptococcus averaged 565 colonies/100ml, approximately 325% higher than results from April 2002. Fecal coliform averaged 460 colonies/100 ml, down approximately 50% from 2002.

In summary, dissolved oxygen was low and iron concentrations were high, likely reflecting the discharge of oxygen-poor groundwater from upland areas. The occurrence of nitrate is attributable to the upland discharge or organic decay. Abundant algae growth is a reflection of relatively high levels of nutrients. Elevated phosphorus concentrations, possibly being mobilized from sediments in the hypoxic conditions, are another indicator of nutrient impacts. The average zinc concentration increased from <0.005 mg/l in 2002 to 0.029 mg/l, above the proposed Barbadian standard, possibly reflecting transport from upland areas.

Eastern Offsite Area

The area east of the Bisecting Canal is characterized by spikerush over approximately 75% of the area, with mangrove adjacent to southern extremities of the canal comprising the remaining 25%. At the time of sampling, northwestern parts of the area were dry. Although flow was negligible, water appeared to emanate from the northeastern corner of the swamp, where the sewage treatment plant was located, and move southward toward the coast and westward toward the Bisecting Canal. An access road to the sewage treatment plant marked the south edge of the area, and Government-owned agricultural fields on top of the First High Cliff lay adjacent to the northern property boundary.

Samples S9A, 13, and 14 were obtained from areas east of the Bisecting Canal. Sample 9A was obtained from the northern extent of saturation, approximately 100 feet east of the canal. Samples 13 and 14 were obtained within a cleared waterway that ran parallel to the access road along the southern edge of the wetland. Water appeared to emanate from the northeastern corner of the wetland, where the sewage treatment plant was located. In 2002-2003, water along the access road was not sampled, but two locations east of the Bisecting Canal were sampled, including water near a spring (location 9).

At the time of the sampling in 2010, the average water depth was 0.25 m (0.8 ft). Temperatures averaged 26.7° C. Average salinity was 0.7 ppt, down 66% from 2002. Average sodium concentration was 177 mg/l, down 74% from 2002. These results indicate more freshwater characteristics. (A review of current and historical data is shown in Attachment 16.)

Analyses for dissolved metals showed moderate concentrations of iron and zinc, low concentrations of potassium and magnesium, and no occurrences of lead, mercury, or copper above laboratory detection limits. The average zinc concentration increased from 0.004 mg/l in 2002 to 0.023 mg/l in 2010 and was marginally above the Barbadian Government's proposed marine standard, as shown in Attachment 15.

Alkalinity averaged a moderately high 290 mg/l with pH of 7.46. Average ammonia level increased marginally from 0.045 mg/l in 2002-2003 to approximately 0.14 mg/l in 2010. Dissolved oxygen concentration was 2.18 mg/l, down 58% from the average in April 2002. Average biological oxygen demand was 1.63 mg/l.

Nitrate concentrations averaged 2.04 mg/l, down approximately 50% from 2002, when a high reading of 10.6 mg/l near the spring raised the average, but highest among the sample areas in 2010. The location nearest the sewage treatment plant yielded the highest nitrate value from sample S13, 5.8 mg/l, and the only result for nitrite above laboratory detection limits during the sampling event, 0.016 mg/l. The proposed marine ambient standard for total nitrogen compounds is 0.1 mg/l. Phosphorus levels were all less than 0.1 mg/l. Carbon dioxide results averaged approximately 140 ug/l. Chlorophyll-a results averaged 36 ug/l. Tannins and lignins averaged a relatively low 0.9 mg/l.

Fecal streptococci results were approximately 100% higher than results from April 2002, averaging 790 colonies/100ml. Fecal coliform averaged 290 colonies/100 ml, down approximately 50%. Ambient marine surface water standards proposed by the Barbadian Government would limit fecal coliform to 200 colonies/100 ml and fecal streptococcus to 35 colonies/100 ml.

In summary, the freshwater marsh east of the Bisecting Canal exhibited the highest concentrations of nitrate, possibly from the sewage treatment plant, and bacteria counts exceeding proposed marine water quality standards. Average dissolved oxygen was 2.18 mg/l,

just above the level classified as hypoxic, a low oxygen condition. The condition suggests that the area would have difficulty digesting a heavy organic load such as was reported to have occurred at the sewage treatment plant in 2005. An expected consequence of such an event would be lower dissolved oxygen conditions and further reduced water quality for the Graeme Hall ecosystem. The average zinc concentration increased from 0.004 mg/l in 2002 to 0.023 mg/l in 2010, above the Barbadian Government's proposed marine standard.

Western Offsite Sample 4F

Offsite sample 4F was obtained from a stormwater swale behind a restaurant/bar on Highway 7. The water, directed there by a stormwater gutter, contained debris from the restaurant and mosquito larvae. It was cloudy gray with no visible sheen and had a sewage smell. Water depth was 0.3 m (1.0 ft), temperature was 24.6° C, and salinity was 0.4 ppt. Other areas of the swale were dry. (A review of field collected results and analytical data is shown in Attachment 15.)

The sample from S4F exhibited concentrations of 0.0069 mg/l for lead, 0.018 mg/l for copper, and 0.056 mg/l for zinc. The results were relatively high, compared with other sample locations. The Barbadian Government's proposed marine standards would limit those concentrations to 0.0044 mg/l, 0.0013 mg/l, and 0.015 mg/l, respectively, as shown in Attachment 15. Concentrations of potassium, magnesium, sodium, sulfate and chloride were relatively low, reflecting the low salinity of the sample. Iron concentrations were 1.4 mg/l.

This site yielded the lowest dissolved oxygen result observed during 2010 sampling, 0.2 mg/l, and the highest BOD result, 88 mg/l, indicating a relatively high mass of biodegradable organic matter in the water. Alkalinity, at 160 mg/l, was lower than levels from other sample locations, suggesting a source other than surface water. Nitrate and nitrite concentrations were less than 0.1 mg/l; pH was 7.37. Results for sulfide, at 5.3 mg/l, and ammonia, at 1.1 mg/l, were the highest observed during the sample event.

The elevated ammonia and sulfide levels, together with low nitrate/nitrite, low dissolved oxygen, and the appearance of the water, indicate anaerobic decomposition of organics. The relatively

high results for carbon dioxide, 310 ug/l, and chlorophyll-a, 98.9 ug/l, are other indicators of decomposing organic waste in a relatively oxygen-poor surface water. The phosphorus result of 1.3 mg/l was an order of magnitude higher than observed from any other sample location. Potential sources include detergent in the water or additional phosphorus mobility from sediments in anaerobic conditions. The chlorophyll and phosphorus results indicated hypereutrophic conditions.

Bacteria results showed fecal coliform too numerous to count -- no other sample station had higher levels -- with fecal streptococcus at 4500 colonies/100 ml and enterococcus at 1600 colonies/100 ml.

In summary, the appearance and smell of the sample suggest the swale behind the restaurant/bar contained wastewater, possibly old wash water, as opposed to stormwater. The water exhibited hypereutrophic qualities with high concentrations of lead, copper, and zinc, high bacteria counts, low oxygen, and byproducts of anaerobic decomposition, ammonia and sulfide, that are very toxic to fish.

Freshwater Tray Sample 5A

Results were similar to the pond results with a few exceptions. The iron concentration, 8.5 mg/l, was the highest recorded during the sampling event -- approximately four times higher than that observed from the ponds. Copper (0.012 mg/l) and lead (0.0099 mg/l) concentrations also were relatively high. Dissolved oxygen of 15.55 mg/l indicated supersaturated oxygen conditions attributable to the mechanical pumping from the spring in the northwest corner of the property or to photosynthesis of algae in the very small amount of water that occupied the northwestern corner of the tray. However, the location exhibited average chlorophyll-a results of 22 ug/l.

Surface Water Trends

Notwithstanding the difficulty of comparing one sampling event in 2010 to multiple sampling events in 2002-2003, EEC looked at average concentrations for locations within the Sanctuary that were identical over the two sampling periods. All 13 common locations exhibited a clear

trend of reduced temperatures -- attributable to the February sampling time -- and downward concentrations of salinity, fecal coliform, fecal streptococcus, and biological oxygen demand. Reduced rainfall at the time of the 2010 sample event would account for lower levels of bacteria, which is carried with organic debris in runoff. Salinity has been discussed as a result of the inoperative sluice gate. Trends over the 7-year interval were mixed for pH, dissolved oxygen, nitrate, phosphorus, and total suspended solids.

Pesticides in Surface Water

The Barbadian Government's proposed marine standards call for undetectable concentrations of pesticides, based upon best available technology. Several onsite and offsite locations showed concentrations indicating that agricultural runoff from upland areas has impacted the ecosystem. Samples 1 and 2A, obtained from the two spring-fed ponds in the northwest corner of the property, exhibited dieldrin at 0.0027 ug/l and 0.035 ug/l, respectively. The sample from the freshwater tray, which receives water pumped from the freshwater ponds, also exhibited dieldrin at 0.0034 ug/l. Samples 13 and 14, collected on the Government side of the ecosystem, showed respective dieldrin concentrations of 0.016 ug/l and 0.0028 ug/l. Offsite sample S4F behind the restaurant/bar exhibited 0.25 ug/l of the organophosphorous pesticide malathion, a typical residual from spraying for mosquitoes.

Sediment Sampling for Chemical Analysis

Protocol: After surface water sampling, sediment samples were collected at 12 of the 20 locations by dropping a stainless steel Petite Ponar Grab vertically onto the sediment. Pulling up the sampler would close the clamshell device and collect a sample. Samples were emptied onto clean plastic trays, homogenized using a stainless steel spoon, and then spooned into the respective sample containers. Once filled, containers pre-labeled with sample name and analysis had date and time recorded and then were put in a cooler with ice cubes double-bagged in 1 gal plastic bags. Samples were shipped the same day using FedEx Priority overnight delivery.

Sample temperatures were all within the prescribed 4° C upon receipt at the laboratory. Laboratory analyses were performed for:

- Cadmium
 Sodium
- Chromium
 Strontium
- Copper Sulfur
- Iron Titanium
- Lead Vanadium
- Manganese
- Mercury
- Zinc
- Arsenic
- Aluminum
- Boron
- Barium
- Calcium
- Cobalt
- Magnesium
- Phosphorus

- Total Organic Carbon (TOC)
- Orthophosphate
- Ammonia

• pH

• Nitrate

• Nitrite

• Sulfate

• Sulfide

- Organochlorine Pesticides (EPA Method 8081)
- Chlorinated Herbicides (EPA Method 8151)
- Organophosphorous Pesticides (EPA Method 8141)

Sediment Quality

Lake and South Pond

Compared with 2002 results, average sodium concentration declined 88% from 9540 mg/kg to 1170 mg/kg, and magnesium dropped 92% from 16,600 mg/kg to 1,300 mg/kg. Concentrations of zinc, which was found in fish tissue, averaged 7.3 mg/kg. Metals concentrations in general dropped approximately 75% and were lower than in other sampled areas. The change to freshwater from a lack of seawater is the most plausible explanation for the reduction of metals in sediment.

The northeast corner of the lake yielded the highest result for orthophosphate onsite or offsite, 3.9 mg/l. The location is closest to the Government of Barbados' agricultural site, suggesting influence from agricultural runoff. Orthophosphate is a soluble form of phosphorus that occurs naturally but is commonly found in fertilizers and other manmade products. Within the lake, ammonia levels were also highest in the northeast corner at S10, possibly associated with the cattle egret nesting area in the adjacent mangrove area. Ammonia is a natural byproduct of decomposition in anaerobic sediments. Fecal bacteria results in this area of the lake were also high.

Bisecting Canal

Average sodium concentration in canal sediments declined 82% from 4160 mg/kg to 750 mg/kg, reflecting movement toward freshwater conditions in overlying surface water. The sample from the south end of the canal exhibited relatively high results for arsenic at 0.72 mg/kg and for mercury at 0.024 mg/kg, results, coinciding with elevated metals concentrations in the stormwater ditches. Metals concentrations otherwise dropped 50% or more in the canal, compared with 2002 results.

Onsite Stormwater Ditches

With the exception of offsite sample 4F, the stormwater ditches exhibited the highest average result for arsenic, a relatively toxic substance, at 0.87 mg/kg and the highest concentration of zinc, 51 mg/kg. The average result for mercury, 0.023 mg/kg, also was relatively high. In general, the ditches exhibited the second-highest concentration of metals, after the freshwater ponds. Compared with 2002, results for magnesium, manganese, lead, strontium, titanium, and vanadium decreased by approximately half. Samples in 2010 were taken from 4B and 4E because 4A, the location farther north where the 2002 sediment sample was obtained, was dry.

Freshwater Ponds

The increased result for mercury, 0.023 mg/kg, was higher than at other sample locations and suggested a source related to human activity. The ponds also exhibited the highest concentrations for barium, cadmium, cobalt, iron, manganese, strontium (with the exception of the offsite

sample 13), titanium, and vanadium. Relatively high concentrations of metals may be associated with the presence of iron, which is more mobile in anaerobic groundwater. Average zinc concentration of 8.2 mg/kg was similar to that of the lake. Metals concentrations in general (excluding mercury and titanium) dropped 50-75% in comparison with 2002 results. Average sodium concentration declined 77% from 2,605 mg/kg to 595 mg/kg, reflecting increasing freshwater conditions in overlying surface water.

Station 1A in the west pond exhibited the highest result for ammonia, onsite or offsite, at 65 mg/kg. The result reflects degradation of nitrogen compounds within anaerobic sediments and the low-to-moderate dissolved oxygen content in surface water. The presence of the relatively soluble compound orthophosphate -- the second-highest such result at 3.5 mg/l -- suggests potential impacts from fertilizer or other manmade compounds.

Eastern Offsite Area

The sample from the south end of the canal exhibited the highest result for strontium, 3100 mg/kg, and relatively high results for titanium, 43 mg/kg. as well as averages of 6.4 mg/kg for vanadium, 0.023 mg/kg for mercury, and 2,500 mg/kg for iron. As in the freshwater ponds, metals may be binding with iron. The average zinc concentration of 21 mg/kg was second-highest among the sample areas. No comparisons were made to 2002 results, as samples were obtained in widely different locations.

Western Offsite Sample 4F

The sample from a commercial site north of Highway 7 exhibited the highest concentrations of arsenic, chromium, copper, and zinc and a relatively high concentration (3.1 mg/kg) of orthophosphate, suggesting the presence of fertilizer waste or other manmade products. In general, metals concentrations in sediments were reduced from the 2001 and 2002 samplings. The loss of seawater, which has trace levels of all metals and minerals, could explain this reduction. Increases in some select metals could be due to stormwater runoff impacts. The sample also exhibited the highest concentration of sulfide, indicating strong anaerobic degradation. Hydrogen sulfide is very toxic to fish.

Pesticides in Sediment

The pattern of surface water and sediment results suggests that pesticides have entered the Sanctuary from offsite areas. (Attachment 15 lists the sediment chemical analysis results by location. Attachment 17 discusses historical pesticide use.) Sediment at sample station 4B exhibited 0.19 ug/kg dieldrin. Further downstream within the stormwater ditch at 4E, dieldrin was exhibited at 0.42 ug/kg and 4.4 DDE at 0.51 ug/kg. Concentrations of dieldrin at 0.29 ug/kg and chlordane at 14 ug/kg were found in the south pond at location 6B. Offsite concentrations of dieldrin were present west of the Sanctuary at 4F (1.4 ug/kg) and east of the Sanctuary in the freshwater marsh at sample location S13 (1.0 ug/kg). Chlordane was present at 4F in a concentration of 85 ug/kg, as was heptachlor epoxide at 0.17 ug/kg.

Sampling for Benthic Analysis

The benthic community is a useful indicator of the health of a key element of an ecosystem. At 10 locations within the Sanctuary and the Bisecting Canal, sampling for benthic analysis was performed similar to the sediment sampling for chemical analysis, using a Petite Ponar sampler. Samples were emptied into clean plastic trays. A portion was put into a sample container, and the rest was sieved with a 45 micron sieve. The sieve material was used to half-fill as many sample containers as necessary, and the containers were filled with formalin (3.7% formaldehyde). Once filled, containers were labeled with sample name, date, and time and then put in a cooler for shipping purposes. Because of the preservative, no icing was required. Angelo Tulimieri hand-carried the samples, which were shipped by American Airlines passenger baggage service.

Benthic Community

Dr. Bruce Barber of Terra Environmental Services, Inc. in St. Petersburg, Florida, prepared the benthic sample analysis in conjunction with Dr. Gregg Brooks of Eckerd College Sediment Laboratory. They analyzed the samples for species richness, abundance, Shannon Diversity

Index, sediment grain size, carbonate percentage, and organic percentage. The complete report is in Attachment 18.

From the 10 samples taken throughout the Graeme Hall ecosystem, 777 benthic macroinvertebrates representing 17 taxa were identified. All were exclusively freshwater. (See Attachment 4B for locations of benthic samples.) Of the 17 taxa identified, 8 were Annelids, 4 were Molluscs and 5 were Arthropods. The greatest biodiversity was in Sample B4 in the north end of the "brackish" tray. The lowest biodiversity was in Sample B9 in the southeast corner of the lake at the interconnect with the Bisecting Canal. Samples B6 and B10, in close proximity on the lake, were the most similar in taxonomy. Samples B1 and B3 were similar, as calculated on the Bray-Curtis Similarity Index. B3 is in the stormwater ditch nearest the entry to the Sanctuary, and B1 is at the discharge point of the emergency raw sewage line from the sewage treatment plant. Apparently, similar benthic communities adapt to these conditions. The small grain size of the samples overall is indicative of poor circulation and sediment from land drainage.

According to the report, "There is evidence of sudden disturbance to the freshwater community of the Graeme Hall Nature Preserve. Eight of the ten samples examined for this project contained numerous dead gastropod shells (mostly *Melanoides tuberculatus* and *Hydrobiidae* spp.) that appeared to be in otherwise good condition. This might be the result of low dissolved oxygen levels occurring at night and exacerbated by the high organic content of sediments and high water temperature."

The fish and crab kills that have been reported could be attributable to one or more such disturbances. The raw sewage discharge of 2005, which entered the ecosystem from the east, could explain this finding. It is worthy of note that the two sample sites without dead gastropod shells, B3 and B4, were the westernmost, farthest from the sewage treatment plan. The one with the highest biodiversity, B4, was farthest from stormwater impacts from all ditches and culverts draining to the lake. The lack of dead gastropods in the stormwater ditch at B3 tends to relieve stormwater as the sole cause of the "sudden disturbance."

All locations indicate an ecosystem low in biodiversity. A red mangrove community in Florida had benthos of more than 300 taxa and densities of 22,591 to 52,914 individuals. The Graeme Hall results, by contrast, reported 17 taxa and densities from 304 to 10,609 individuals. If the connection to the seawater were restored, it is likely the biodiversity of the lake and canal would increase.

Tilapia and Crab Sampling

The Sanctuary's biological reports record a historical tendency toward fish kills following periods of heavy rains and high temperatures, including one affecting 3,000 fish in September 2001. Fish kills also were reported anecdotally in association with a massive untreated wastewater release into the Graeme Hall wetland in July 2005. Other reports of fish kills from 2005 to 2009 are documented in Attachment 19. The crab kills started in 2009.

Tilapia and blue land crabs were sampled from the lake and shoreline -- some iced and shipped whole, others dissected and placed in a 10% formalin solution and shipped by Federal Express overnight delivery. The fish samples were taken near location S6B; the crab samples, between S4C and S4D.

Denise Petty, DVM, at the University of Florida's College of Veterinary Medicine and Fisheries and Aquatic Sciences in Gainesville, Florida, performed an array of tests as follows:

- necropsy with parasitic exam and bacterial culture
- bacterial identification
- histology
- virology
- copper
- lead
- zinc
- mercury

• organochlorine analysis

Tilapia and Crab Analysis Results

Seven dead tilapia were shipped to the University of Florida for analysis, all appearing to be in good body condition. No parasites were observed on any external tissue. A few small granulomas were observed in the liver, spleen, and kidneys of all fish; all other organs appeared to be within normal limits. Bacterial cultures were negative for growth. No viral particles were observed by electron microscopy. Low numbers of metacercariae (encysted nematode larvae) were found in the liver, spleen, and kidneys of all fish.

Tissues were analyzed for lead, mercury, zinc, copper, and toxic organic compounds. The concentration of 91.8 ppm of zinc in the gills of the tilapia was higher than anticipated. Dr. Petty referred to a paper by Hilmy reporting that elevated water temperatures can make tilapia more susceptible to zinc toxicity.

The full report is in Attachment 20. Dr. Petty suggested that the fish be sampled again during the hotter summer months to determine whether higher water temperatures were affecting the fish due to zinc toxicity. Addressing the finding of trematode larvae in some organs of the tilapia, the report included a copy of a paper by Keiser and Utzinger on human health concerns associated with eating improperly cooked tilapia.

The two blue land crabs were observed to have no significant pathogens, lesions, or remarkable features. Bacterial cultures revealed an environmental organism (Halomonas sp.) on one crab; the other crab showed no growth.

The Sanctuary's monthly biologist reports from 2000-2001 provide data to support a correlation between rainfall and fish kills. In Attachment 19, a table records heavy rainfall followed by a time lag and then a fish kill after temperatures increased. Two graphs in Attachment 21 show rainfall vs. time and temperature vs. time. The data indicate that the recorded fish kills were all

between July and October, when rainfall and temperature are highest. These data show the fish kills correlate with rainfall and temperature.

This pattern is consistent with a phenomenon much reported in scientific literature: a low dissolved oxygen (DO) fish kill. Inadequate DO in aquatic environments is a well-established cause of fish morbidity and mortality (Choi, 2007). It is attributed to stormwater runoff carrying large amounts of sediments, organic debris, nutrients, and other chemicals that increase the oxygen demand of the water column. This, coupled with an increase in temperature, reduces the water's ability to hold oxygen; DO and temperature have an inverse relationship. Oxygen depletion in the water kills fish.

This is the most likely explanation of fish kills in the Graeme Hall Mangrove Ecosystem. Other possible explanations include algal blooms, zinc toxicity with elevated water temperatures, ammonia toxicity, or a combination of chemical or biological influences. A major fish kill in a fish farming area in the Philippines in 2002 was the consequence of a DO sag followed by a bloom of dinoflagellate Prorocentrum (San Diego-McGlone, 2008). It has also been demonstrated that Nile tilapia exposed to acute hypoxia (low DO) have a weakened immune system and become more susceptible to disease (Choi, 2007).

Sources of Surface Water Impacts

A total catchment area of approximately 1156 acres (468.2 ha) flows into the Graeme Hall Mangrove Ecosystem. Starting from an elevation of 100-110 m at Upton and Kent, water flows toward the shoreline through swales, ditches, and culverts to larger and larger drainage conveyance systems. Storm events carry runoff from residential, commercial, and agricultural activities, as well as schools and highways. Each type of land use produces different pollutant loads.

Two large ditches enter the Sanctuary from the west, conveying a significant stormwater load. Stormwater ditches at the north end of the Graeme Hall Bisecting Canal convey runoff from the agricultural lands and beyond. The eastern flow to the Sanctuary comes through the spikerush marsh, fed into the Bisecting Canal by ditches and culverts. The main lake is the ultimate reservoir of the flow. (See Attachment 4C for aerial photographs of The Graeme Hall Catchment Area.)

Historical records and studies of surface runoff for the island of Barbados are "very limited, with little reliable data available" (Arriola, 2008). Because Barbados is similar in its geological and hydrogeological characteristics to Florida, EEC researched published literature from Florida stormwater runoff studies. The Florida Department of Environmental Protection has accumulated data on typical pollutants and nutrients and runoff rates expected from various types of land use -- namely, agriculture row crops and pasture, residential, low-intensity commercial, and forested lands. These stormwater pollutant concentrations can be utilized to estimate the impact of stormwater events on biochemical oxygen demand, total suspended solids, nutrients, and heavy metals carried off the generating site and discharged to Graeme Hall Sanctuary.

The continual dosing of urban and agricultural runoff into a system that cannot itself discharge regularly to the sea ultimately leads to a concentrating effect of pollutants in the water column and sediments of the lake, pond, and canal system. Attachment 22 provides an estimate of the accumulated pollutants on an annual basis. Based on the average annual rainfall of 1266 mm (49.9 in), the catchment area is estimated to produce annual runoff containing 4468 lb of total nitrogen, 727 lb of total phosphorus, 15,830 lb of biochemical oxygen demand (BOD), 100,344 lb of total suspended solids, 34 lb of copper, 9 lb of lead and 137 lb of zinc.

Historically, seawater did enter the ecosystem by way of the sluice gate that controls the hydraulic connection between the mangrove ecosystem and the coastal near shore. Since the early 2000s, the gate has been opened only infrequently, and in 2006 it fell into permanent disrepair, stuck in the closed position. Since 2004, appeals to the Government to get the gate repaired and operational have failed despite the Sanctuary's written offers of technical and financial assistance.

It should be noted that the Government-owned spikerush marsh receives runoff from surrounding urban lands, residences, and commercial properties north and east of the marsh. Near the northern end of the Bisecting Canal are other drainage paths from agricultural lands owned by the Barbadian Government.

North and west of the Graeme Hall Sanctuary, residential subdivisions discharge street and surface runoff into the ecosystem. West of the lake, two large drainage ditches and a smaller stormwater swale drain urban lands, road systems, commercial properties, and undeveloped land to the west. On the south side, commercial entities along the highway back up to the Graeme Hall Nature Sanctuary and discharge stormwater. In one case, poor water quality in a stormwater ditch behind a restaurant indicated a wastewater discharge along the southern perimeter of the Sanctuary. Each of these sources in its own way discharges pollutants that accumulate in the Graeme Hall Nature Sanctuary.

From west, south, north and east, stormwater runoff conveyances bring significant loads of organic debris, nutrients, bacteria, chemicals, and suspended solids into the Sanctuary. The present operational scenario does not allow these to be discharged out to sea in any manner.

At 8 of 20 sample points in the Graeme Hall lake and pond system, fecal bacteria concentrations exceeded the proposed water quality standards for Barbados' marine protection (Appendix F: Marine Pollution Act, Proposed Discharge Standards, 2004), which would limit fecal coliform to 200 col/100 ml. These results dictate that no swimming or human contact with the water is advisable. A study conducted along the West Coast of Barbados in the mid-1990s showed that 80% of the beaches sampled should have been posted "closed for swimming" for exceeding national bacteriological beach bathing water quality standards (Arriola, 2008).

For primary contact recreation, the United Nations Environment Program (UNEP) recommends fecal coliform counts of less than 100 col/100 ml for 50% of the samples collected. The World Health Organization (WHO) guidelines are less stringent, recommending that 90% of the

samples show less than 1000 col/100 ml. The Blue Flag Organization, an international nongovernmental organization, uses a fecal bacteria count of 100 col/100 ml as an international bathing standard. Barbados unsuccessfully sought Blue Flag certification for Worthing Beach in the early 2000s.

In other testing by EEC in February 2010, sample results were abnormally high compared with the proposed Barbadian water quality standards for fecal streptococci, enterococci, nitrate, total phosphorus, total suspended solids, chlorophyll-a, and turbidity. The results were abnormally low compared with the water quality standards for salinity and dissolved oxygen. The following table, also contained in Attachment 23, compares the on-site results and the Barbados standard.

Parameter (unit)	2010 Graeme Hall Result (avg)	Barbados Proposed Marine Standard	Parameter Notes	Human Health Consideration
Enterococci (cols/100 ml)	842	35	Indication of waste from animals	Disease
Nitrate (mg/l)	0.15	0.0098	NO ₃ oxide of nitrogen nutrient/fertilizer	Drinking water less than 10 ppm
Total phosphorus (mg/l)	0.4	0.015	Nutrient/fertilizer	Drinking water
Total suspended solids (mg/l)	39	5	Amount of material suspended in water column: sewage 200+/-	Drinking water less than 5 ppm
Chlorophyll-a (ug/l)	33	0.0005	Indicator of eutrophication	N/A
Turbidity (NTU)	12.3	1.5	Clarity of water	N/A
Zinc (ug/l)	0.029	0.015	Trace metal bioaccumulation	Drinking water standard
Salinity (ppt)	1.4	n/a	Brackish 6-15 ppt Seawater 30-35 ppt	N/A
Dissolved oxygen (mg/l)	4.6	90% sat. (7.01 mg/l at 27.7°C, 3000 uS)	Greater than 5 mg/l for fish recommended	N/A

Graeme Hall Water Quality vs. Marine Water Quality Standards

South Coast Sewage Treatment Plant and the Emergency Discharge Structure

The South Coast Sewage Treatment Plant, located east of the Graeme Hall ecosystem, was constructed to provide preliminary treatment of wastewater prior to repumping to an ocean outfall. This is simply a screening system -- the least intensive among three levels of sewage treatment: primary, which utilizes sedimentation; secondary, which reduces biochemical oxygen demand and total suspended solids; and tertiary, which removes nutrients. The treatment plant was designed within an emergency bypass line directed into the Graeme Hall Bisecting Canal. Two 8-inch lines constructed in 2003 release raw sewage into the canal when the treatment plant has an emergency situation. (See the location of the discharge pipes on the Site Plan Attachment 4A.)

The Barbados Storm Water Drainage Study (excerpts, Attachment 7) reported how an emergency sewage discharge would occur with the sluice gate controlling the overflow. "If an emergency overflow were to occur the discharge to the sea could be controlled and monitored in order to minimize environmental impacts. . . . Some cleanup of the channel banks may be required to remove plastics, rags and other objectionable floating debris." The design of the emergency discharge structure depended on the sluice gate to be fully operational to allow the discharge of raw sewage out to sea. With the sluice gate closed, the pipes allow raw sewage to flow freely into the main lake of the Sanctuary.

It was reported in 2005 that a raw sewage spill from the treatment plant discharged anywhere from 3 million to 6 million gallons of raw sewage via overland flow that made its way across the Government-owned spikerush marsh and ultimately into the lake. That discharge brought organic waste, nutrients, and pathogens, as well as chemicals, cleaners, oil and grease, and all the other components of urban sewage. Benthic sampling in February 2010 indicated that some "sudden disturbance" had killed the gastropods in 8 of 10 locations, a finding consistent with the

impact of just such an event.

Other discharges, either by overland flow or by emergency discharge pipe, have not been logged for public review, such that the total quantity of raw sewage discharged into Graeme Hall Sanctuary cannot be quantified at this time. The discharge of untreated raw sewage has human health implications -- diseases such as hepatitis, typhoid, cholera, and salmonella, to name a few. Any pathogens discharged into the ecosystem without being recovered or disinfected in some manner present a disease threat to persons who come in contact with the water.

Public health protocols typically require that disinfectants be used to minimize the impact of pathogens from a raw sewage spill. A typical response to such an emergency would require containment and retrieval of the waste to put it back into the treatment system. None of these measures appears to have been implemented during the raw sewage spill that flowed to the Graeme Hall Nature Sanctuary in 2005. Rather, the Government seems to have used the wetland itself as the containment area.

The Barbados Storm Water Drainage Study confirmed this de facto Government policy to allow dumping of sewage into the wetland ecosystem. Upon inquiry, the Barbadian Environmental Protection Department advised that there was no formal protocol for dealing with sewage spills and that each occurrence would be dealt with on an individual basis. As designed and built, the emergency sewage discharge lines have no automatic controls to open the downstream sluice gate when the emergency raw sewage discharge is activated. In fact, the discharge structure appears to have been abandoned.

The discharge of raw sewage into the spikerush wetland, as happened in 2005 with no remediation, can only exacerbate the accumulation of pollutants in the Graeme Hall lake system. Any future emergency discharge of raw sewage in the canal -- an inevitability, given the potential for mechanical failure at the sewage treatment plant -- will further degrade the water quality and sediment at the Sanctuary.

Future Considerations: Managing the Sanctuary's Health

Municipal point sources and urban runoff are the two leading sources of water quality impairments to estuaries, according to the most recent U.S. National Water Quality Inventory reports (EPA, 2000). Of 15,676 square miles of estuaries that this inventory determined to be impaired, 5,045 square miles (32%) were polluted by urban runoff, and 2,811 square miles (18%) were impaired by agricultural runoff (EPA, 2000). Urban development is one of the major contributors to mangrove destruction (Alongi, 2002).

Consequently, Graeme Hall Nature Sanctuary faces a potentially greater problem from stormwater runoff than from agricultural runoff. EEC estimated nutrient loadings on the Sanctuary based on existing and proposed land uses within the entire stormwater catchment area. Increased nitrogen, phosphorus, metals, biological oxygen demand, and total suspended solids are the expected result as Government land use changes and the 2003 National Physical Development Plan diminish environmental buffers. (See Attachment 22A for the future estimated increases.)

Agricultural lands owned by the Government of Barbados have been redesignated to allow residential and commercial development, with resulting stormwater runoff and contaminants, right up to the edge of the Ramsar site and the Sanctuary. Approximately 160 upgradient agricultural acres adjoin the Ramsar site. Compounding the issue, the Sanctuary's main lake is on the receiving end of the 1156-acre catchment area. Further groundwater impacts can be expected if blackwater and greywater suckwells are constructed upgradient of the Sanctuary.

Additionally, the benefits of a recharge area and vegetation buffer stand to be lost as residential and commercial uses proliferate right up to the ecosystem boundary.

Given the stresses from manmade impacts that have impeded its original purpose of promoting preservation, tourism, and education, the Sanctuary found it necessary to close its doors to the public in March 2009. Recognizing that the health of the Mangrove Ecosystem is paramount to

the preservation of the resource as a vital habitat for waterfowl and for future generations of Barbadians, the Sanctuary acknowledges its position:

- The Sanctuary cannot control the agricultural runoff that flows to it from lands owned by the Government of Barbados. There is insufficient land in the Sanctuary to attempt to pretreat the runoff before it enters the Sanctuary.
- The Sanctuary cannot regulate or enforce clean stormwater runoff standards or prosecute wastewater violations by commercial entities that border it on the south.
- The Sanctuary cannot control the influx of stormwater runoff and groundwater discharges driven by force of gravity from the suburban residential development to the north. Water quality issues from blackwater and greywater systems contribute contaminants to the shallow aquifer, affecting the onsite springs.
- The Sanctuary cannot restrict or treat the inflow from the large ditches on the western boundary, which bring contaminants of all sorts from the highway, pastureland, institutional, and residential runoff in the catchment area.
- The Sanctuary cannot restrict the flow of raw sewage from the emergency overflow lines designed by the Government-owned Water Authority to use the Mangrove Ecosystem as a dumping ground when the inevitable mechanical failure of the South Coast Sewage Treatment Plant occurs. The Sanctuary cannot protect itself from the human pathogens present in this sewage.
- The Sanctuary cannot control the regular and consistent operation of the Governmentowned sluice gate to help restore natural salinity to the Mangrove Ecosystem. The longterm deprivation of this salinity is having devastating consequences for the future health of this ecosystem.

• The Sanctuary cannot restore the natural flushing that historically cleansed the lake, ponds, wetlands, and canal. The Government's failure to maintain the sluice gate is imposing a burden on the Sanctuary not imposed on any other catchment area on the island, namely, the prohibition of discharge from natural rainfall events. This runoff discharge during critical storm events is vital to maintaining water quality within the Sanctuary.

Any of these by itself is enough to warrant concern. Taken in aggregate, they constitute a harmful Government policy that will continue to degrade the natural Mangrove Ecosystem. This is the same mangrove system that Barbados recognizes as a National Heritage Site, worthy to be placed on an International Registry of Important Wetlands -- a resource of paramount importance not only to the waterfowl its habitat sustains, but to generations of Barbadians.

Conclusions

- Urban and agricultural runoff are concentrating pollutants in the water column and sediments of the Sanctuary's lake, pond, and canal system. The catchment area of 1,156 acres (468.2 ha) delivers tons of organic matter, nutrients, oils and greases, trace metals, and chemicals in annual stormwater runoff. Septic waste from suckwells permeates upland limestone and coral rock. A swale behind a business on Highway 7 contained wastewater exhibiting high levels of ammonia and sulfide, which are very toxic to fish, and fecal coliform bacteria too numerous to count. All of these pollutants drain toward the Sanctuary without the discharge to the sea that is typical of other catchment areas. Some can be processed and assimilated in the natural cycles of a healthy mangrove forest; others, such as heavy metals and pesticides, accumulate in the system.
- Average salinity in the Sanctuary's mangrove lake has declined from 8.4 ppt in 2002 to 1.9 ppt in 2010, a 77% reduction that correlates with a 75% sodium reduction. Brackish water is a defining characteristic of the estuaries where most mangrove ecosystems are found worldwide; their salinity is typically an order of magnitude higher than the lake water results at Graeme Hall. Salinity in the Bisecting Canal, reported at 29-34 ppt in 1986, was 1.33 ppt in 2010.

- Almost every biotic and abiotic indicator points to a freshwater transformation of the mangrove wetlands. In the absence of brackish water, nearly all of the flora and fauna that typically live in the intertidal zone on red mangrove roots were missing. Benthic analysis indicated the invertebrate community consisted exclusively of freshwater rather than saltwater species. Analysis also revealed that some disturbance -- likely a sudden change in water chemistry -- had caused the death of otherwise healthy gastropods in all but two sample sites: those farthest from the sewage treatment plant.
- Lake tributaries were oxygen-poor and high in nutrients, a combination associated with algae overgrowth, low water quality, and fish kills. Poor circulation in the absence of tidal flushing contributes to low dissolved oxygen in the ponds, ditches, canal and marsh. Heavy nutrient loads from stormwater runoff stress the ecosystem's ability to metabolize nutrients and support aquatic life. High chlorophyll-a and phosphorus readings correspond to ratings of eutrophic to hypereutrophic on the Trophic State Classification Index, indicative of high-nutrient water bodies with algae growth. The relationship between high quantities of stormwater runoff and water degradation is likely a factor in recurring fish kills.
- Water quality analyzed from the Sanctuary and its surroundings in numerous instances, violate proposed Barbadian standards for the protection of the environment and public health. Some surface water samples fell below desired levels for salinity and dissolved oxygen and exceeded the limits for fecal coliform, fecal streptococci, fecal enterococci, nitrate, total phosphorus, total suspended solids, chlorophyll-a, and turbidity. Poor water quality reflects the lack of a regular influx of seawater and the inability to discharge excess runoff to the sea.
- Fish analysis revealed trematode larvae and elevated levels of zinc in tilapia. Zinc, which some water samples exhibited in amounts exceeding the proposed standard, can be toxic to fish, especially in oxygen-poor water during periods of high temperature. Trematode larvae identified in fish organs can lead to human health concerns from eating improperly cooked fish.
- Pesticides were detected in the water column and sediments at the Sanctuary and found in high concentrations offsite. Samples from the freshwater marsh and the

spring-fed freshwater ponds exhibited dieldrin, chlordane 4,4 DDE, and heptachlor epoxide, pesticides that persist in the environment and tend to bioaccumulate. Together with the orthophosphate found in sediments, they indicate an impact on the Sanctuary from agricultural runoff.

- The dysfunctional Government-owned sluice gate increases the flooding potential for the Sanctuary and adjacent lands; it also precludes a remedy for low surface water levels during drought. The Barbados Drainage Study in 1996 indicated that a 100-year rainfall event of 24 hours would flood the wetland to at least 1.6 m. Cumming Cockburn, et al., advised in that report that a perimeter berm be installed around the ecosystem to this elevation to prevent flooding of adjacent residences and businesses. No such precaution has been undertaken.
- The existence of a high-volume emergency raw sewage discharge line into the Ramsar wetland and the Sanctuary presents an ongoing threat to water quality, the wetland ecosystem, and human health. The disrepair of the sluice gate makes it likely that any emergency bypass of the South Coast Sewage Treatment Plant will bring raw sewage and low-oxygen water to the Sanctuary, further degrading water quality and stressing aquatic life.
- Land use changes north and east of the Graeme Hall ecosystem will bring more pollutants and reduce greenbelt buffering. Zoning of 160 acres of Government-owned agricultural lands will allow residential and commercial development right up to the ecosystem boundary. This will funnel more pollutants into an ecosystem already deprived of an outlet to the sea.
- The low biodiversity of the Sanctuary's benthic community, as indicated by taxa and individuals observed, represents a critically endangered mangrove ecosystem. Seventeen taxa were identified in densities from 304 to 10,609 per square meter; by comparison, a healthy red mangrove community in Florida had 300 taxa and densities from 22,591 to 52,914 per square meter. Benthic biodiversity was highest in sites farthest from stormwater runoff inputs and would likely increase if connectivity to the ocean were reestablished. The Sanctuary staff has also noted the decline of fiddler crab and blue land crab populations, yet another indicator of an ailing ecosystem.

• A red mangrove forest that has existed for no less than 1,300 years is at substantial risk of being lost unless its connection to seawater and tides is restored. Salt-tolerant mangroves lose their competitive edge in a freshwater environment. Any openings in their canopy that would allow sunlight to reach the forest floor -- especially the sudden impact of a fire, hurricane, lightning, or disease -- could permit their displacement by an invasion of freshwater plants. Many freshwater species already are present, indicating an increased risk for failure of the Graeme Hall Mangrove Ecosystem.

REFERENCES

- Alan Armstrong Associates, Catchment Area Map for Graeme Hall, Floodplain Maps. Misc. Maps. Topographic Surveys.
- Alongi, Daniel M. (2002). "Present state and future of the world's mangrove forests." *Environmental Conservation*, 29:331-49.
- Arriola, S. G. 2008. "Implementation of a spatial decision support system for water quality protection and management in the Holetown Watershed, Barbados: A case for the establishment of a NSDI for environmental management." (Thesis, McGill University, Montreal, 2008)
- Banner, J. L., Musgrove, M., & Capo, R. C., "Tracing groundwater evaluation in a limestone aquifer using Sr isotopes: Effects of multiple sources of dissolved ions and mineral-solution reactions." *Geology*, August 1994.

Cumming Cockburn Ltd., et al. Barbados Stormwater Drainage Study, (1996).

- Choi, K., Lehmann, D. W., Harms, C. A. & Law, J. M. (2007). "Acute hypoxiareperfusion triggers immunocompromise in Nile tilapia." *J Aquat Anim Health* 19,128-40.
- Ecological Aspects of the Graeme Hall Swamp Water Analysis of the Drainage Canal, 1986
- US Environmental Protection Agency. 2000 National Water Quality Inventory.
- EPA 2009 Nutrient Criteria for FL Lakes. *Federal Registry*. 75(16)
- Geological Society of London. (2004). Flow Processes in Faults and Shear Zones.
- Harries, K. J., *Relationships between Nitrates in Groundwater/Marine Waters and Coral Reef Communities.* Holcrow and Parkton.(1997).
- Lin, Brenda B. and Dushoff, J. (2004). "Mangrove filtration of anthropogenic nutrients in the Rio Coco Solo, Panama." *Management of Environmental Quality: An International Journal* 15,131-42.
- Ministry of the Environment, Water Resources and Drainage Government of Barbados, Marine Pollution Act, Proposed Discharge Standards.

Monthly Biologists reports for Graeme Hall Bird Sanctuary, May 2000 through July 2001

- Parker, Christopher. Ecological Aspects of the Graeme Hall Swamp Water Analysis of the Drainage Canal, University of West Indies. May 1986.
- Reference Guide Section 4 Hydrology and Wastewater Graeme Hall National Park Proposal.
- Ramcharan, E. K., Late Holocene ecological development of the Graeme Hall Swamp, Barbados, *Caribbean Journal of Science*, 2005
- Relationship Between Nitrates in Groundwater/ Marine Waters and Coral Reef Communities on the West and South West Coasts of Barbados, 1997
- San Diego-McGlone, M. L., R. V. Azanza, C. L. Villanoy, and G. S. Jacinto. 2008. Eutrophic waters, algal bloom and fish kill in fish farming areas in Bolinao, Pangasinan, Philippines. Mar Pollut Bull 57:295-301.
- Simberloff, D. S., (1983). *Mangroves in Costa Rican Natural History* 273-276, University of Chicago Press, Chicago, IL
- State of the Environment Report 2000, Ministry of Physical Development and Environment, Barbados, 2001
- The Annotated Ramsar List of Wetlands of International Importance Barbados, electronic source.
- The Graeme Hall Nature Sanctuary Water Quality Monitoring Programme: Report for the Period October 2000 – October 2001, University of West Indies (UWI)
- The Graeme Hall Nature Sanctuary Water Quality Monitoring Programme: Report No: 2, April 2002 – March 2003, University of West Indies (UWI), April 2004
- The Ecosystem, Agriscience 381, Wildlife and Recreation Management #8984, Texas A&M University, 2006
- Tucker, John W., Jr., *Marine Fish Cuture*, (1998) Kluwer Academic Publishers, Norwell, MA.
- Tomlinson, P. B., (1986) *The Botany of Mangroves*, Cambridge University Press, London.

- Williams, Dr. Alan N., The Wetlands of Graeme Hall. The Challenge to Conservation Policy. 2008.
- World Health Organization. 1999. Health-based monitoring of recreational waters: The feasibility of a new approach (the 'Annapolis Protocol').Geneva: WHO/SDE/WSH/99.1.

ATTACHMENT 1

Vicinity Map

ATTACHMENT 2

RAMSAR Wetland Boundary Map

Environmental Engineering Consultants Graeme Hall RAMSAR Boundary Map

Approximate Scale: 1 mm = 5 km.

ATTACHMENT 3

RAMSAR Designation

The Annotated Ramsar List of Wetlands of International Importance

BARBADOS / BARBADE

The Convention on Wetlands came into force for Barbados on 12 April 2006. Barbados presently has 1 site designated as a Wetland of International Importance, with a surface area of 33 hectares.

site; date of designation; region, province, state; surface area; coordinates site; date de désignation; région, province, état; superficie; coordonnées sitios; fecha de designación; región, provincia, estado; área; coordenadas

Graeme Hall Swamp. 12/12/05; 33 ha; 13°04'N 059°35'W. A naturally created coastal wetland area with mangrove forests, a seagrass bed, and a shallow nearshore coral reef, which includes a 12-acre artificially-created lake that constitutes the largest body of inland water on the island. At least 84 bird species have been recorded, including Caribbean coot (Fulica caribaea) and Yellow warbler (Dendroica petechia), and the site's Red mangrove (*Rhizophora mangle*) and white mangrove (*Laguncularia racemosa*) stands are the largest healthy mangrove areas left on the island. There are more than 20 fresh and brackish water fish species, among the most interesting of which are those marine species that have become isolated from the sea and become breeding residents of the lake. Fishing has been suspended pending study of the effect of the water quality for human consumption of fish and the effects on fish populations of the introduction of aggressive tilapia species. Ecotourism and environmental educational and research activities are the chief human uses of the site, which has been proposed as a National Heritage Site. Ramsar site no. 1591. Most recent RIS information: 2005.

http://www.ramsar.org/cda/en/ramsar-pubs-annolist-annotated-ramsar-16727/main/ramsar/1-30-168^16727_4000_0___

ATTACHMENT 4

Site Plan

<u>GHNS</u>

Pocket 4A – Sediment and Surface Water Sampling Locations Pocket 4B – GHNS Surface Water Runoff Inputs Pocket 4C – Graeme Hall Catchment Area – Land Use

Rainfall Data Grantley Adams International Airport

ATTACHMENT 5 METEOROLOGICAL DATA GRANTLEY ADAMS INTERNATIONAL AIRPORT (From Barbados Meteorological Service)

RAINFALL		LL	UNIT OF MI	EASUREME	NT = mm								
YEAR	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ОСТ	NOV	DEC	Total
2000	76.0	76.9	54.4	46.3	63.6	71.6	83.6	70.4	148.4	98.3	364.8	125.5	1279.8
2001	35.4	37.0	7.3	13.2	39.8	71.9	248.7	125.9	107.4	347.7	60.9	122.5	1217.7
2002	41.0	55.6	15.0	43.1	97.9	81.7	68.7	158.2	148.5	158.4	81.5	15.1	964.7
2003	48.7	59.3	21.7	15.3	11.5	47.2	113.3	157.1	75.6	205.5	203.4	21.1	979.7
2004	50.8	45.5	48.3	127.0	204.9	128.0	127.0	125.2	125.5	130.3	403.9	106.9	1623.3
2005	200.4	19.2	16.9	17.6	249.1	197.6	111.4	183.3	62.5	118.6	378.4	130.0	1685.0
2006	140.6	88.9	34.6	22.6	22.2	87.2	53.2	148.9	112.5	197.0	141.3	98.8	1147.8
2007	68.5	43.0	42.8	74.2	12.2	217.6	69.2	212.7	79.3	197.0	138.9	119.1	1274.5
2008	89.2	41.6	34.5	49.3	16.9	142.1	150.6	125.1	184.3	330.8	176.8	137.5	1478.7
2009	127.5	24.6	34.8	70.8	54.1	74.9	121.4	160.5	125.2	82.1	125.9	13.3	1015.1
2010	23.11*	3.05*											

Annual Average Rainfall 2000-2009 = 1266.6 mm Typical Annual Average Rainfall = 1150-1200 mm

	AVERAGE MAX		TEMP	UNIT OF M	IEASUREM	ENT = ° C						
YEAR	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
2000	28.5	28.5	28.7	29.8	30.5	30.3	30.9	31.7	29.7	30.7	29.3	28.9
2001	28.6	28.5	29.3	30.0	30.8	31.0	30.7	30.7	30.9	30.2	30.7	29.8
2002	29.3	29.1	29.9	30.6	30.6	30.7	30.9	30.8	30.9	30.6	30.0	29.9
2003	29.9	29.4	29.8	30.6	31.1	31.2	30.8	31.1	31.6	31.1	30.8	30.0
2004	29.4	29.2	29.6	30.1	29.8	29.9	30.2	30.7	31.2	31.5	30.4	29.6
2005	28.7	30.0	30.8	31.3	31.4	30.7	30.8	31.3	32.0	31.7	30.3	29.4
2006	28.9	28.7	29.7	30.5	31.4	31.5	31.3	31.5	31.8	31.5	30.5	29.6
2007	29.1	29.5	29.9	30.3	31.2	30.6	30.6	30.5	31.1	30.8	31.1	29.7
2008	29.1	28.8	29.2	29.5	30.5	30.6	30.6	31.1	31.1	30.9	30.6	29.3
2009	29.0	29.0	29.0	29.9	30.4	31.1	30.7	31.0	31.1	31.5	30.6	30.4
2010	30.5*	30.4*										

* - Taken from www.tutiempo.net

Photographs

Lake Looking northwest

Connection between southeast corner of Lake and South Pond

Stormwater inlet from west to Sanctuary's west Stormwater Ditches

Freshwater Pond

Pump in Springs at Freshwater Pond

Low water condition in Freshwater Pond

Brackish Tray looking southwest

South Pond

Freshwater Tray looking South

Algae in South Stormwater Ditch

Agricultural fields north of Graeme Hall Swamp, looking south

Canal and sluice gate south of HWY 7, looking south

Stormwater inlet into canal, south of HWY 7

Dead crab in canal, south of HWY 7.

Canal, looking north towards HWY 7.

Sluice Gate, looking north

f sluice gate: left showing mounded beach sand; right showing mounded sanc

Debris in canal at Sluice Gate

Bisecting Canal

ccess Road to Sewage Treatment Plant and lift station for sewage, looking ea

Ends of 2-8" emergency discharge pipes

Dischrage point into Bisecting Canal from emergency discharge pipes

Exposed mangrove roots in Bisecting Canal

West end of culvert from freshwater marsh into Bisecting Canal

Beach area near Sluice Gate, looking east

Sewage Treatment Plant, looking north

Freshwater Marsh looking northwest

Freshwater Marsh looking west

Mangrove island with egrets

we plant and low water conditions at northwest connection between Lake and

Tide lapping up to Sluice Gate

Smoke over lake from brush fire in Freshwater Marsh, looking east

Storwater Ditch in southwest corner of Sancturay, looking south

Graeme Hall Swamp Flood Plain Elevations for Various Storm Events

Table 2-6 and Excerpts from Report Barbados Stormwater Drainage Study - 1996 Cumming Cockburn Ltd.

Graeme Hall Swamp Flood Levels

Recurrence Interval	Estimated Flood Level*						
(years)	3 Hour Storm (m)	24 Hour Storm (m)					
2	0.45	0.54					
5	0.50	0.67					
10	0.55	0.81					
20	0.60	0.98					
50	0.70	1.29					
100	0.83	1.60					

Assumes the normal water level in the swamp prior to the storm event is 0.40 m and no out-flow during the storm.

BARBADOS STORMWATER DRAINAGE STUDY Cumming Cockburn Limited Errol Clarke Associates Limited Franklin and Franklin (1983) Limited Charlesworth & Associates

. *

2-53

BARBATYE STORY WATER DRAW WERE MIXIN DEPORT CUMMINE CONCERNENT LT EDOL CLADUE ASSOCIATES UTD REALES & FRANKLING (BEE) UTD CHARLES LOPATA & SCORES

122.5

be required for majoraflood events, e.g., larger than the 2 year storm). The environmental concerns would be similar to those noted in alternative (b) above.

Based on a review of the operation schedule of the existing sluice gate and the pumping capacity of the proposed sewage treatment plant it would appear that in order to maintain, a relatively constant water level within the swamp during the rainy season the pumps must run at a peak level on a daily basis (off peak hours only). The only possibility of reducing the operation time is to increase the pumping capacity of the new sewage treatment plant. It is estimated that the proposed pumping option would provide floodproofing protection up to the two year event. The existing sluice gate would continue to be maintained and would act as an emergency overflow during the more infrequent rainfall events.

Assuming that the configuration of the overflow manhole is modified, this option could easily be tested as part of a pilot project subsequent to the completion of the STP.

3) Outlet Pipe To The Sea

The second option to provide drainage of excess flows from the swamp would be to construct an outlet pipe for gravity drainage into the sea beyond the coral reef. The estimated length of pipe is 400m. A drop inlet structure would be constructed within the swamp which would convey flow to a 600 ø pipe that would extend into the sea. The exact location and extent of the pipe would have to be confirmed through a more detailed field and technical assessment. Therestimated drawdown time for a 24 hr trainstorm event is two days. For the more infrequent events the existing sluice gate would have to be operated in order to minimize increases in upstream water levels. The level of protection could be increased to approximately a 20 year design event if the outflow pipe diameter was increased to 900 mm. This option would eliminate the need to operate the sluice gate on a continuing basis. It would provide unrestricted outflow with the mixing of swamp effluent and sea water occurring beyond the beach area.

Instead of having a gravity drainage outflow system to the sea, a pumping station could be constructed upstream from the existing sluice gate. This station would pump excess storm water from the swamp to the sea via a forcemain. The drawdown characteristics of the system would be similar to that of the gravity fed system. It could however, be reduced by increasing the size of the pump. This option has the advantage of a reduced outlet pipe size but a disadvantage in regard to future ongoing maintenance and operation costs. Proposals for further development within the swamp area to enhance tourist and site-seeing opportunities are currently being considered. For example, a current proposal for development of a bird sanctuary and aviary is being considered for the area just west of Western Lake. (It is our present understanding that the birds could be mainly non-native species and would be confined and not part of the natural environment - although any aspects of the proposal await approval). This would include boardwalks, viewing areas and other tourist facilities.

Environmental

The main environmental features of the wetland are summarized in Table 2.7. This information is summarized from previous environmental investigations of the swamp (Reid, Crowther, 1990) and is intended to support the general view that the Graeme Hall Swamp is an important natural resource in Barbados.

A comparison of environmental features in the wetland mapped Circa 1980 with an interpretation of 1991 aerial photographs of the same area has revealed several changes in the Graeme Hall swamp area. In general, the changes are summarized as follows:

- a feature previously referred to as Eastern Lake appears to have been significantly altered by a complex of drainage canals.
- drainage canals appear to have been extended to the limits of a sedgeland zone on the east side of the wetland. An area previously referred to as the Sedge Pool appears to have become drier, with some increase in sedges extending to the north of the original feature. Other sedgeland areas north and west of Western Lake appear to have become more overgrown by brush and trees.
- some grassland areas have been lost to minor urban expansion while shrublands to the West and South of Western Lake appear to have been cleared to grassland.
 - a small portion of the Red Mangrove complex on the east side of Western Lake appears to have been removed and the White Mangrove stand extending from the east of Western Lake appears to have had its most eastern 1/3 replaced with drainage canals.

It should be noted that many of the features in the swamp have depended on maintenance activities undertaken in the past. Pruning of trees in the shooting areas previously controlled growth, etc.. Local residents have also noted an increase in growth of mangroves and a

2.24

general feeling that the amount of water surface area has increased in the swamp in recent years.

The connection between the wetland and the sea is considered by local environmentalists to be of some environmental significance¹. This connection is presently intermittent and occurs when the sluice gates are open. This allows the two way movement of fish and the outflow of water stored in the swamp. The latter is also considered to be of benefit to the near shore ocean environment¹.

Discussions with the Coastal Conservation Unit have indicated a concern in regard to the quality of storm water and potential sanitary sewage releases to the nearshore areas. The first concern is a potential liability issue with respect to the health of swimmers and users of the beach areas near the storm canal outlet. The second concern is related to potential water quality impacts on the near shore environment and the coral reef which is situated approximately 400 m offshore (Delcan, 1995). If a submerged discharge were to be considered, the coastal conservation unit has indicated a preference to the discharge.

South Coast Sewerage Project

The project area includes the South Coast of Barbados from Bay Lands in the West to Oistins in the East. This project is currently under construction and will ultimately provide a sanitary sewage collection and disposal system for an area of about 550 has extending approximately 10 km along the coast. 253 yr 1360 Arm Theoton = 247 Am

The sewage treatment plant is currently being constructed on the northeast side of the swamp adjacent to the agricultural lands.

The influent and effluent pipelines have been routed around the edge of the swamp in order to minimize impacts on the swamp. Inflows to the plant will be by gravity sewer (600 - 675 mm ϕ at a depth of about 5 m) and outflows will be pumped via forcemain out to sea off Needhams' Point. (750 mm ϕ forcemain at a depth of 1.5 m). The plant is designed to treat an initial

Personal Communication; South Coast Sewage Project, July 1996.

¹ Personal Communication, Dr. L. Nurse, May 1996

2.38,000 1 m3 = 264 gali

average daily flow of 9000 m³/d with provision to increase the future treatment rate to 11,300 m³/d. $7/2\pi$ mey

An emergency overflow will be constructed for the sanitary sewer influent pipeline. The overflow would discharge to the drainage canal from the swamp just to the north of Highway 7. In times of extreme emergency, raw sewage will overflow into this canal. Such an event could occur if:

- there is both a utility power failure and the stand-by generator at the treatment plant fails to operate.
- there is a catastrophic failure of the pumping equipment at the plant.
- after pump failure, the available storage in the sanitary pipes and manholes is exceeded, and the head builds up to exceed the overflow elevation in the overflow manhole.

The overflow elevation is presently anticipated to be 0.45 m¹. During construction of the treatment plant, the dewatering operation at the construction site has required significant pumping to the swamp. This has resulted in a rise in the normal water level of the swamp to about 0.7 m². (The latter elevation is also similar to water levels that occur in the swamp subsequent to rain storm events). The higher water levels during the dewatering operations have required frequent operation of the sluice gate (once every 2 - 3 days) to avoid flooding of developed areas around the edge of the wetland. It is also noted that, due to the increased frequency of operation of the sluice gate, that the blockage by sand of the outlet channel from the sluice gate to the sea has been reduced.

The outlet channel location was chosen to receive emergency overflows since the outflow from the swamp is controlled by the sluice gate. Therefore, it was concluded that if an emergency overflow were to occur, that the discharge to the sea could be controlled and monitored in order to minimize environmental impacts. It was also concluded that "After such an event, some clean-up of the channel banks may be required to remove plastics, rags, and other objectionable floating debris"³

- ² Reid Crowther Personal Communication, May, 1996.
- ³ Reid Crowther Inc. "South Coast Sewerage Project" Environmental Study of the Treatment Plant Site", Barbados, Ministry of Health, 1990.

¹ Reid Crowther - South Coast Sewerage Project Emergency Overflow Structure Details

It is possible that the operation of sluice gates for flood control purposes might conflict with the potential need for the gates to remain closed during a catastrophic failure of the pumping system at the treatment plant. (i.e., should such a failure occur during or immediately after a storm event). We also note that the end of the overflow pipe to the canal would be fitted with a check valve to prevent backflow from the swamp to the treatment plant (i.e., for conditions when the water level in the swamp is higher than 0.45 m). Regular inspection and maintenance of this check valve will be required to ensure its proper maintenance.

improved by the construction of infiltration galleries. A typical subsurface infiltration trench/gallery is shown on Figure 2.15.

(b) Graeme Hall Swamp

While a few low-lying lands experience frequent flooding, the present flood damage potential is considered to be low. On the other hand, the Graeme Hall Swamp is considered to be an unique environmental feature (see Section 2.3.5 (b)), and therefore, the water levels should be maintained at a fairly constant elevation to ensure that it's ecological condition is preserved.

The existing flood prone development which is located primarily adjacent to Highway 7 should be protected from potential flooding either by the placement of fill on the lots, raising of the buildings, or by construction of a low dyke to be located between the property and the swamp, which would include raising a portion of the path along the bank of the outlet canal near Highway 7. A low dyke is recommended to be constructed to a minimum elevation of 1.0 m which would provide sufficient protection against nuisance flooding and most larger flood events. (A dyke constructed to an elevation of 1.6 m would be more intrusive although it would afford protection up to about the 100 year event). Sufface drainage for some areas behind the dykes would have to be provided by connection to the proposed sanitary sewer. Alternatively, the sluice gate could be moved to the east side of Highway 7 to allow drainage of the lands between the dyke and Highway 7. In some cases, property acquisition should also be considered as a viable alternative.

If future development is proposed in close proximity to the swamp area it should be flood proofed by construction of roads and first floor elevations above the flood risk level. Based on the results of a detailed hydrologic and hydraulic analyses a flood proofing elevation of 16 m is recommended for consideration. A detailed environmental impact statement should also accompany any development applications in the wetland.

As discussed in Section 2.3.5(b), the release of water stored in the swamp also poses some environmental concerns in regard to adjacent tourist operations and the marine environment.

With regard to the drainage of excess water from the swamp, the following approaches are considered:

- 1) Improve the operation, of the existing sluice gate, in conjunction with the installation of dykes.
- 2) Construct a gravity fed outlet pipe with discharge to the STP during off peak hours.
- 3) Construct a gravity fed outlet pipe with discharge to the sea

The feasibility of these approaches are discussed in the following sections.

1) <u>Sluice_Gate</u>

If the dyke or fill placement recommended above is undertaken, the potential for flooding existing developments would be significantly reduced. The continued operation of the existing sluice gate could then be undertaken in a more flexible manner since more storage would be available in the swamp. (i.e., water levels could be allowed to rise higher before the sluice gates need to be operated).

The use of a pump to provide a jet of water to hydraulically flush sand accumulations from the sluice gate to the sea could also be given some consideration. This would require extension of the existing concrete channel for a distance of approximately 40 m. This approach might reduce the noise associated with the night-time operation of backhoes and could result in a faster removal of the sand accumulations. It is recommended that a pilot project be undertaken to test the effectiveness of this alternative for the removal of sand in conjunction with continued operation of the gate.

It_tis also recommended, that the monitoring program should be continued (DelCan, 1995) to record water levels in the swamp, gate operation, and outflow volumes is

2) Outflow To The STP Pumping System

The sanitary sewage overflow manhole, which is to be provided upstream from the existing sluice gate, could be modified to allow the possibility of drainage of excess water from the swamp via the STP. The pumps at the sewage treatment plant will have a capacity of 10,900 m³/day (24 mgd.), which is in excess of the anticipated sanitary sewage flow. Excess drainage from the wetland could as a result be handled during off-peak hours via the proposed gravity sanitary sewer to the STP and pumped to the sea off Needham's Point. This would maximize use of the proposed STP pumping facilities, avoid the construction of another pipe outfall, and minimize the required operation of the sluice gates. (Operation of the sluice gates, would still

A concern has been expressed related to an increased potential for higher levels of bacteria on the beaches and the possibility of nose and throat infections of swimmers. Todate, there is no data to support this concern.

If this option is selected the undertaking of an environmental study would be required to determine if existing storm water discharges are beneficial to the sea-grass, etc.. It is also noted that the drainage area and hence, the volume of storm water temporarily stored and released from the swamp is significantly smaller than historical releases due to changes in the drainage area directly contributing to the swamp.

The construction of an outlet pipe would also further impact the surface connection of the swamp and the sea, and consequently the potential movement of fish and other aquatic animals.

Finally, it is recommended that should an extreme emergency condition where sanitary sewage is discharged to the swamp outlet area from the overflow manhole, that the sluice gate should remain closed if possible. (This becomes more feasible if the flood protection dyke or fill is placed as previously recommended). Subsequent to re-starting the pumps at the sewage treatment plant, the clean-up of spilled sewage should be undertaken by draining back through the overflow manhole to the STP (or by using portable pumps if needed). In our opinion, this procedure for clean-up of spilled sewage should be utilized whether or not the off-peak usage of the STP pumps is considered to be feasible for handling the excess drainage from the wetland.

For all of the outlet pipe options discussed above, the outlet pipe could have an impact on the littoral drift pattern. Prior to the implementation of any outfall works, these impacts must be assessed during the final design. Of special consideration is the potential impacts of the structure on the sand accretion and deletion within the beach area.

Conclusions and Recommendations for Graeme Hall Swamp

For Graeme Hall Swamp two flood control alternatives have been given for consideration (Based on the previously described tasks) and cost estimates provided in Section 3.2.5. The main components of each are identified as follows:

Alternative A

- Construct an earth dyke to protect existing development. New development below an elevation of 1.6 m within or adjacent to the swamp is to be prohibited.
- Extend existing concrete lined outlet channel by approximately 40 m² and undertake pilot projects to test effectiveness of using water jets for sand removal, and use of STP, pumping system as an overflow. The residual need for the sluice gate is to be monitored as well as water levels and outflows from the swamp.

Alternative B

 Undertake environmental investigations to confirm appropriate location for outflow of swamp-effluent to the sea. The study would confirm the potential impact of pipe discharge on the beaches, sea-grass and coral reef.

<u>م</u>

 Construct a drop inlet gravity system with the outflow pipe to the sea.» The length of the outflow pipe would be determined based on the environmental investigation.

It is recommended that <u>Alternative</u> <u>A first be</u> considered for implementation as it represents the most economical approach. If it is found that the flood control objectives are not being satisfied then consideration could be given to implementing Alternative B.

3.2.5 Construction Cost Estimates

Construction cost estimates have been prepared for the proposed structural measures for both the "Nuisance Flood Hazard Areas" areas and for the "Major Flood Hazard Areas". The cost estimates as provided in Tables 3.2 and 3.3 respectively are based upon preliminary concepts and would require refinement at the pre-design and/or final design stages. Preliminary costs for land acquisition associated with the diversion channels have been included in the estimates. The estimates provided do not account for such items as; special construction requirements, legal and appraisal fees, detailed soils, hydrogeological or environmental investigations, monitoring, etc..

Geologic Cross-Sections

Source: Banner, J., Musgrove, M, Capo, R.

Groundwater Catchment Areas

Source: State of the Environment Report 2000

Map 5.2: Ground Water Catchments

PARISH BOUNDARY ALLEYNEDALE ASHTON HALL BOURBON CARLTON CHRIST CHURCH CLERMONT CODRINGTON CONTENT HEYMAN'S MOLYNEUX **NEW CASTLE** NORWOOD PORTERS **RAGGED POINT** SCOTLAND DISTRICT ST. LUCY ST. MICHAEL NORTH ST. MICHAEL SOUTH ST. PHILIP NORTH ST. PHILIP SOUTH THE WHIM TRENTS

CARLTON CHRIST CHURCH CLERMONT CODRINGTON CONTENT HEYMAN'S MOLYNEUX

Groundwater Protection Zones

Source: State of the Environment Report 2000

Map 5.3: Ground Water Zones, Wells & Springs

Mangrove Quality Assessment

Angelo Tulimieri Environmental Scientist

Mangrove Quality Assessment Graeme Hall Nature Sanctuary Barbados

This report is Attachment 11 (eleven) in the parent document (Wallace, Robert and Richard Pryor, *Wetland Ecosystem Assessment for Graeme Hall Nature Sanctuary Barbados*, Environmental Engineering Consultants, Inc. Tampa, Florida, 2010). Part I presents a scientific report and Part II a descriptive report.

PART I

Mangrove Quality Assessment A Freshwater Transformation Graeme Hall Nature Sanctuary Barbados

The findings presented here should be reproducible if performed under similar environmental conditions.

Mangrove Quality Assessment A Freshwater Transformation Graeme Hall Nature Sanctuary Barbados by Angelo Tulimieri, Environmental Scientist

Abstract

The ecology of how the biology has been or may be affected by changes in hydroperiod and salinity are described for the mangrove wetland and 12-acre lake complex (mangrove ecosystem) in the Graeme Hall Nature Sanctuary within the Barbados' Graeme Hall preserve. Quantitative and qualitative data were collected. Dominant biological species and biological indicators were identified and as much as possible photo documented. History, scientific references and authoritative witness accounts were considered. Almost every biotic and abiotic indicator found pointed to an advanced state of freshwater transformation in the Sanctuary mangrove ecosystem that by definition should be an intertidal wetland dominated by salt tolerant flora and fauna. A freshwater wetland hydroperiod was found instead of a seawater tidal flux which had been absent since August 2006, and irregular and infrequent before that. Water salinity in the "bisecting" canal went from 29-34 ppt in 1986 after the gate was opened to 1.3 ppt currently. The benthic saltwater macroinvertebrates in the Sanctuary's 12-acre lake had been replaced with freshwater species. Emergent freshwater plants were found dominating the "bisecting" canal and the other wetlands in Graeme Hall except for the remnant mangrove forest on government land where nonetheless spikerush (*Eleocharis mutata*) had infiltrated outer mangrove fragments. The average salinity in Graeme Hall's five wetlands, which includes the government's mangrove, was 1 ppt whereas in the Sanctuary's mangrove-lake ecosystem it was 2 ppt. The 12-acre lake is shallow enough to support vascular plants but none were due possibly to numerous herbivorous tilapia inhabitants. Mangroves grow well in freshwater but only dominate in saltwater and brackish water. Parts of the Sanctuary's mangrove ecosystem have been transformed into a freshwater ecology due the prolonged absence of seawater inputs. If freshwater conditions persist then over time the Sanctuary's mangroves may be out competed by freshwater plants. If so, then the Sanctuary's mangrove ecosystem which supports an internationally recognized Caribbean avian flyway stopover and Barbados' most important wading bird habitat will be lost.

Introduction

The mangrove ecosystem within the Graeme Hall Nature Sanctuary is being transformed into a freshwater wetland due to a prolonged absence of seawater exchange. This freshwater transformation was discovered in February 8-20, 2010, during a study to determine if raw sewage inputs correlated with the fish kills that had occurred over the years in the Sanctuary. For that study, water and sediment quality samples as well as benthic community samples were collected and the results analyzed, synthesized and reported (Wallace, R. and R. Pryor, 2010).

The Sanctuary is located within Graeme Hall in Barbados (13°04'N 059°35'W). In 2006, Barbados and the Ramsar Convention on Wetlands designated 33 hectares (81.5 ac) of "naturally created coastal wetland with ... the largest healthy mangrove areas left on the island" as a Wetland of International Importance within Graeme Hall (Ramsar site no. 1591) (www.ramsar.org), and Ramsar noted at that time that this area "has been proposed as a National Heritage Site." The 33 ha included a "12-acre artificially-created lake that constitutes the largest body of inland water on the island." Ramsar also noted that 84 bird species and 20 fish species had been identified associating with the "mangrove forest" and 12-acre lake." These species included mainly wading and or migratory bird species and at least one marine species, tarpon (*Megalops*). The area is also well known as a Caribbean stopover for migratory birds in the North and South American flyway.

Before this study, the freshwater transformation of the Sanctuary's mangrove ecosystem was unknown or unreported. If the freshwater transformation continues then the mangroves may be replaced by freshwater plants and if left unchecked then this nationally and internationally recognized wading bird community habitat will be lost.

No historic scientific baseline data was found with which to compare the current findings except for water salinity values from 1986 and 2002. Reported, CARICOMP has been measuring mangrove primary productivity for years. However, mangroves are halophytes No research was found on internet search engines regarding strictly freshwater mangrove wetlands. However, telling references were provided by the Smithsonian Marine Station

at Fort Pierce (Florida, USA), "Simberloff (1983) and Tomlinsion (1986) suggested that one reason mangroves do not develop in strictly freshwater communities is due to space competition from freshwater vascular plants. By growing in saline water, mangroves reduce competitive threat, and thus are able to dominate the areas they grow in."

The Sanctuary's mangrove ecosystem hydroperiod is supplied by rainfall and drainage basin runoff. An 80 year old sluice gate on a narrow, even older "bisecting" canal would open periodically to allow the exchange of seawater between the mangrove ecosystem and the Caribbean. ("Bisecting" describes the effect of bifurcating the once contiguous Graeme Hall mangrove forest into two parts that now only connect during flood or seasonal high water periods.) The sluice gate has been closed since if fell into disrepair in 2006 (See Sluice gate, Part II, Attachment 11).

The evidence of the mangrove ecosystem's freshwater transformation is presented below and may be of benefit to the decision makers that control the seawater connection as to whether or not the freshwater transformation will be continued or reversed.

Methods

For purposes of this study, an ecosystem boundary was created around the Sanctuary's mangrove wetland and 12-acre Lake that had bee carved from the mangrove forest decades ago, and a field study was conducted. The mangrove ecosystem's floral and faunal species and associations were identified. Salinity measurements were acquired for the six wetlands located within Graeme Hall and compared to the salinity in the Sanctuary Lake. The lake's freshwater macroinvertebrate benthic community was identified by qualified scientists. The mangrove wetland hydroperiod was identified based on stain lines, which is a standard method. Wetland terminology as well as flora and fauna species inventories are included at the located in Part 2, Attachment 11 (Wallace and Pryor, 2010).

The methods for collecting salinity measurements and benthic community samples, as well as statistical analysis of the latter, are detailed in *Wetland Ecosystem Assessment for Graeme Hall Nature Sanctuary* (Wallace and Pryor, 2010).
Results

Reported are the results of the wetland identification and plant dominance, salinity measurements, hydroperiod identification, and benthic community analysis.

Wetlands and plant dominance: There are four wetlands within the Sanctuary and two on government Graeme Hall land although these two may be combined into one. All the wetlands were dominated by a wetland plant species (Table 1). The Sanctuary mangrove ecosystem was dominated by red mangroves (*Rhizophora mangle*) and sub-dominated by white mangroves (Laguncularia racemosa). The Sanctuary mangroves were verdant and healthy and the gaps in the canopy appeared to be small and few in number based on aerial photographs. The two Sanctuary waterlily ponds in the northeastern corner were each dominated by different species freshwater Nymphaea. The bisecting canal inside the eastern boundary was dominated by waterlily (Nymphaea odoratus) and arrowhead (Sagittaria lancifolia), both freshwater species.

Habit	Scientific Name	Common Name	Wetness Rating	Location		
Tree	Conocarpus erectus	Buttonwood	FACW	Upper white mangrove forest		
Tree	Ficus citrifolia	Bearded fig	FAC / FACU	Disturbed edges of Sanctuary mangroves		
Tree	Laguncularia racemosa	White mangrove	OBL	Sanctuary mangrove forest		
Tree	Rhizophora mangle	Red mangrove	OBL	Sanctuary mangrove forest		
Shrub	Cordia obliqua	Clammy cherry	FAC?	Disturbed edges of Sanctuary mangrove		
Herb	Cladium jamaicense	Sawgrass	OBL	Government marsh		
Herb	Eleocharis mutata	Spikerush	OBL	Government marsh + north lily pond		
Herb	Nymphea odorata (exotic)	Waterlily	OBL	North lily pond		
Herb	Nymphea ampla (native)	Waterlily	OBL	South lily pond		
Remarks: (OBL) Obligate wetland species occur more than 99% of the time in wetlands.						

Table 1. Important plant species in Graeme Hall wetlands

(FACW) Facultative wetland species occur in wetlands 67-99% of the time or in uplands 1-33% of the time.

(FAC) Facultative species occur in wetlands or uplands 34-66% of the time. They tolerate wet and dry conditions.

(FACU) Facultative upland species occur in uplands 66-99% of the time or in wetlands 1-33% of the time.

The wetland(s) on the government Graeme Hall property consisted of a red mangrove forest surrounded by a marsh dominated by a freshwater spikerush (*Eleocharis mutata*). Structurally, these were two different wetlands but shared the same hydroperiod and may be considered one wetland. The outer edge of the government's mangrove appeared to be fragmenting and infiltrated by spikerush (Figure 1).

Figure 1. Government mangrove fragments infiltrated by freshwater spikerushes

(Photo by Angelo Tulimieri)

Salinity:

Table 2. Salinity field measurements							
A. Sanctuary lake							
Sample Station	S3A	S3B	6B	7A	7B	10	All stations
Location	Lake	Lake	South Pond	Lake	Lake	Lake	average
Salinity, (ppt) - 2002	na	na	8.85	8.03	8.25	8.05	8.30
Salinity, (ppt) - 2010	1.9	1.9	1.9	2	2	1.9	2

B. Sanctuary wetlands

Sample Station	1A	S2A	8A	11A	12A	All
Location	Lily pond	Lily pond	Bisecting canal (marsh)			average
Salinity, (ppt) - 2002	1.28	na	3.4*	4.55	na	3.08
Salinity, (ppt) - 2010	0.6	0.5	0.9	1.7	1.4	0.9

C. Bisecting canal measured at different times

Date	1986	2001	2002	2010
Bisecting Canal Salinity (ppt)	29-34	0.1	4.0	1.3

D. Government-owned mangrove and marsh

13	14	9A	All stations
			Average
na	na	na	na
0.5	0.8	0.8	0.7
	na 0.5	13 14 na na 0.5 0.8	13 14 9A na na na 0.5 0.8 0.8

Salinity measurements from February 2010 were compared to those collected historically (Table 2). The average salinity in the Sanctuary's lake dropped from about 8 ppt in 2002 to about 2 ppt in 2010. The average salinity of the Sanctuary's "bisecting" canal and the

and R. Pryor, 2010))

two Sanctuary lily ponds dropped from about 3 ppt in 2002 to about 1 ppt in 2010. The salinity in the Sanctuary's "bisecting" canal dropped from about 31 ppt in 1986 to about 1.3 ppt in 2010.

Wetland hydroperiod: The hydroperiod in the Sanctuary's mangrove wetland was identified using stain lines, which is a widely accepted method. The stain lines develop at the normal seasonal high water elevation. The stain line on the red mangroves in the south pond that is connected to the lake was about 0.6 meters or less above the surface of the lake (Figure 3).

Figure 3. Hydroperiod stain lines in pond connected to south side of lake

Photo and location supplied by Richard Pryor. Stain line identified by Angelo Tulimieri

Benthic community

Benthic community samples collected at 10 stations within the Sanctuary revealed 777 macroinvertebrates from 17 taxa that were all freshwater species (Table 3). Samples B3, B5, B6, B7, B9 and B10 were stationed within the lake and sample B8 was stationed within the open water pond that is connected to the south side of the lake. Samples B1 and B2 were stationed in the "bisecting" canal and sample B4 was stationed at the northern end of the so called "brackish" pond or "tray" (Attachment 18 (Wallace and Pryor, 2010))

B-2 B-5 B-6 B-7 B-8 B-9 Таха Phylum B-1 B-3 B-4 B-10 Tubificoid Naididae spp. Annelida 20 212 1 Limnodriloidinae spp. Annelida 1 Limnodrilus hoffmeisteri Annelida 3 1 5 6 2 Annelida Naidinae spp. Pristina nr. plumaseta Annelida 4 6 1 Dero furcata Annelida 1 Dero pectinata Annelida 1 19 19 12 1 28 1 6 Dero nr. obtusa Annelida Haitia cubensis Mollusca 4 Pyrgophorus platyrachis Mollusca 4 4 7 3 3 Melanoides tuberculatus 1 Mollusca Planorbidae spp. Mollusca 1 1 Arthropoda Talitridae spp. Arthropoda 12 Hyalella spp. 9 Arthropoda 1 1 1 Chironomidae spp. 4 Chironomus spp. Arthropoda 8 35 203 63 33 25 1 Goeldichironomus spp. Arthropoda 3

Table 3. Graeme Hall Nature Sanctuary (Preserve) benthic community analysis

Numbers of benthic macroinvertebrates by taxa found at each station in the Graeme Hall Nature Preserve

Table and species analysis provided by Terra Environmental Services, Inc. St. Petersburg, Florida, USA

Discussion:

In hydroperiod and water salinity, the Sanctuary mangrove wetland and lake are identical to isolated freshwater wetlands. Freshwater plants found in Sanctuary ponds and in the adjacent Government-owned wetlands were growing in water salinities only 1 ppt lower than the salinity found in the lake. The lake is shallow enough to support the growth of emergent freshwater plants, but the large number of herbivorous tilapia may be preventing this. All of the benthic saltwater macroinvertebrates have been replaced by freshwater species; in time, the same may be expected of the plants as well. Water salinities at all wetland sample stations were below the brackish water salinities required by mangroves to maintain their dominance against freshwater plants in the long term.

This transformation to a freshwater wetland threatens the very survival of a mangrove community that provides all-important habitat for Barbados' wading birds and waterfowl, of which 37 species were identified during the assessment period, including 16 migratory

species. A restoration of regular, if not daily, tidal fluctuations within the Sanctuary mangrove ecosystem would begin to restore its estuarine condition. Without reconnection to the sea, the eventual loss of the Sanctuary's mangrove ecosystem, including its wading bird community, can be expected.

The conversion from a brackish mangrove wetland to a freshwater wetland in which freshwater plants replace mangroves may take a long time; nonetheless, it could be accelerated by a major perturbation, which may be inevitable. If left unchecked, such a change at Graeme Hall Nature Sanctuary may permanently eliminate its mangrove ecosystem and the wading bird and waterfowl community it supports, hallmarks of this internationally recognized site.

Several issues related to the restoration of daily tidal fluctuations within the Sanctuary mangrove ecosystem bear further study and remain unresolved. Could the algal collars that inhabit mangrove roots in an intertidal zone but that were not found be (re)established? Could the spotted mangrove tree crab (Goniopsis cruentata) and mangrove periwinkle snail (Littorina angulifera) that associate with these algal collars that were not found be (re)introduced? Is the herbivorous tilapia (Oreochromis *mossambicus*) that appeared to be abundant in the lake preventing the growth of vascular plants there? Would the tarpon (Megalops atlanticus) that for years have been confined to the lake benefit from a seawater reconnection? Why did the number of fiddler crabs (Uca bergersi) and blue land crabs (Cardisoma guanhumi) appear to be so low? If the seawater connection was re-established, would the nearshore fishery and coral reef benefit from the detritus and nutrients from the mangrove ecosystem? Would the mangrove ecosystem serve as a nursery for the near shore fishery? How pervasive and invasive are volunteer freshwater plant species found in the Sanctuary, and in some cases within the white mangrove forest, such as clammy cherry (Cordia obliqua)? What local freshwater plants might invade openings in the mangrove canopy created by perturbation(s) such as hurricanes and or fires which were occurring due to the severe drought in near proximity to the Sanctuary during February 2010 (Figure 3)?

Figure 3. Smoke hangs over egret islands from nearby fires February 2010

(Photo by Richard Pryor)

References:

Simberloff, DS. 1983. Mangroves. In: Janzen, DH., ed. Costa Rican Natural History. 273-276. University of Chicago Press. Chicago, IL.

Tomlinson, PB. 1986. The botany of mangroves. Cambridge University Press. London.)

Wallace, R. and R. Pryor, Wetland Ecosystem Assessment for Graeme Hall Nature Sanctuary, Environmental Engineering Consultants, Inc., Tampa, Florida, 2010 Part II describes the quality of the mangrove ecosystem within the Graeme Hall Nature Sanctuary (Sanctuary) as found February 8-13, 2010. Most notably, its saltwater ecology was being and had been in part replaced by a freshwater ecology due to the absence of seawater inputs since August 2006 and irregular and infrequent inputs before that.

- Background brief
- Ecosystem boundary
- Wetland values
- Wetland characterizations
- Classical wetland definition
- Contemporary wetland definition
- Hydroperiod definition
- Sluice gate
- Wetlands vs. Surfacewaters
- Non-wetland surfacewaters
- Wetland descriptions
 - Mangrove forest Sanctuary
 - Mangrove islands Santuary
 - Wetland ponds Sanctuary
 - "Bisesting" canal Sanctuary
 - Mangrove forest Government-owned
 - Marsh Government-owned
- Intertidal zone
- Vertebrate identification
- Invertebrate identification
- Summary
- References
- Graphic: Mangrove communities vs. salinity gradient

Background

Daily tidal cycles have been absent in the Sanctuary mangrove ecosystem possibly for decades or even longer following its steady disconnection from the sea starting in the 1700's due to construction, channelization, sluice gate control and finally permanent closure of the sluice gate in 2006. Upon commencement of this field study, a drought was and had been in effect that had depressed the water levels well below what is normal for a mangrove ecosystem. The current wetland water supply was totally dependent on electrical pumps and staff to operate them and water levels had improved only slightly before the end of the study. Given that the Sanctuary was closed for business in December 2009 staff, electricity and wetland water supply should not be taken for granted.

A coral reef formed in the nearshore waters in front of the mangrove wetland well before the alterations that began in the 1700's. Coral reefs commonly form in close proximity to mangrove esturaries due to their mutually beneficial relationship. In such an ecosystem relationship, natural exchange of the mangrove lagoon and the coral reef would be mutually beneficial. The mangrove community would provide nutrients to reef fishes. Fishes from the reef and sea would use the mangrove estuary to reproduce juveniles that would feed and be protected amongst the mangroves. Upon maturity, these would venture into the sea to the reef and beyond.

The 12 acre lake within the Sanctuary that was carved from the mangrove forest is an integral part of the mangrove forest ecosystem since this appears to be where most of the biogeochemical cycling occurs.

Ecosystem boundary

An ecosystem is the interaction of living (biological) components with non-living components within a scaled boundary as well as energy, materials and in this case organisms across that boundary. The parent document to this report dealt with the non-

living components, i.e., water and sediment quality. This following report addresses the biological changes in the Sanctuary's mangrove ecosystem that are related to a freshwater transformation. Data from the parent document are used as indicators of this freshwater transformation such as salinity measurements and benthic community analysis. Setting an ecosystem boundary is arbitrary since boundaries of larger and smaller sizes and scales can be created.

For purposes of this report, an ecosystem boundary was created around the Sanctuary's mangrove-lake. Historically, water flowed across this ecosystem boundary in both directions when the sluice gate was regularly opened to the sea. For about the last 3.5 years only freshwater has entered the mangrove-lake ecosystem and has normally departed via evaporation and evapotranspiration. Organic wastes enter the mangrove-lake ecosystem via drainage basin runoff and or are generated from within the lake by fish. Some of the organic wastes are converted to nutrients and biomass via biogeochemical cycles; the degree of conversion was not measured in this study. In a normal mangrove wetland, some of the generated biomass and nutrients flow out to sea with tides which is commonly known throughout the world to be beneficial to nearshore fisheries and coral reefs. Wastes other than organic matter enter the ecosystem boundary as well such as organophate pesticides for which no comparable biogeochemical cycling is readily available and which may be lethal depending on the concentration.

Humans play a role in each of these boundaries.

- A smaller window around just the lake, which was carved from the mangrove forest which includes the biogeochemical cycling occurring in the benthos.
- A larger window that includes the above domain and adds the fresh and so called "brackish" open water pond, lily ponds and ditches internal to the Sanctuary.
- A bigger window around that and the seaward bisecting canal and the government-owned freshwater marsh and mangrove.
- An even larger window that includes those and the drainage basin and the ditches from the commercial district.

- A much larger window that includes all of the above as well as the coral reef off Worthing Beach in front of the sluice gate.
- Finally, these ecosystem system boundaries connect to the Barbadians and the world at large mainly via information and image. Graeme Hall history dates back to the 1600's and culminates with the images and education that were provided to school children, tourists and even via marriage ceremonies that were conducted at the Sanctuary. Information and image reached the global scale at the point that the Graeme Hall wetland became a RAMSAR wetland and at the point where tourists were attracted to visit.

Valuation

Mangrove ecosystems provide important functions and values, and contribute a significant and important amount of work not only to the region but the nation of Barbados as well. During this era of seeking alternative energy sources, wetlands and ecosystems in general are gaining recognition as being the most efficient solar energy biomass converters on the planet, and mangrove ecosystems are recognized among the best if not the best. Mangrove wetlands are very effective at converting wastes into minerals and into nutrients for biomass production. They provide nursery grounds and breeding sites for various species including birds, fish, crustaceans, reptiles, and mammals (Alongi, 2002). They provide nutrients to nearshore fisheries and coral reefs. Mangroves have been shown to act as a vegetative buffer zone between disturbed freshwater sources and coastal water (Lin, 2004).

In 2008, the Macro-Economist Dr. Allan N. Williams valued the Graeme Hall wetlands at over \$1.1 billion Barbadian or over \$550 million US. William's table reference to GHNS stands for Graeme Hall Nature Sanctuary and CARICOMP for Caribbean Coast Marine Productivity Program.

WETLAND SERVICES	WETLAND VALUE	Value Method	ESTIMATE
Wetland Conservation Values	GHNS Replacement Value	Replacement Cost	\$ 23,635,520
	Buffer Zone Value	Real Estate Market Prices	\$ 6,048,000
Heritage Cultural Landscape Values	Tourism Sector Support	Proportionate Tourist Expenditure Estimates	\$105,736,000
Wetland Emergency Avoidance	Risk Aversion	Avoidance Cost - Market Price	\$173,000,000
CARICOMP Monitoring	Disaster Preparedness		
Bio Diversity	Quality of Life Support – South coast community	Shadow-value: Net Factor Income	\$242,868,780
	Total Value Estimate		\$551,288,300

Unlike the market table above that appears to be based on market value, there is a method that determine the amount of work an ecosystem contributes to the Gross Domestic Product of a nation (Odum, Howard T., 1996.) Little if any consideration has been given to the value of the work that wetlands provide. Historically, wetlands have been considered worthless and something to be "improved."

Wetland characterizations

Mangrove swamps are intertidal wetlands that support salt tolerant flora and fauna. Swamps are wetlands dominated by wetland trees, and marshes are wetlands dominated by wetland herbs. In 2006, Ramsar designated the Graeme Hall wetland as a mangrove "forest" which was in accordance with their wetland classification system. The term "swamp" is part of the Canadian wetland classification system (Mitsch, W.J. and J.G. Gosselink, 2000) a term that is widely used in the United States. Hereafter, "forest" will be used in lieu of "swamp," and "mangrove" may be used in lieu of "mangrove forest." Mangrove, mangrove wetland, mangrove forest and mangrove swamp are synonymous.

In 2006, RAMSAR used the phraseology "mangrove forest" when they added the Graeme Hall wetland that includes the Sanctuary to their protection list. Mangrove,

mangrove forest, mangrove swamp and mangrove wetland are synonymous for purposes of this report.

By definition, mangrove wetlands inhabit brackish water and dominate the area between the highest and lowest tides, i.e., the intertidal zone. One way to classify mangrove wetlands is by their position along a salinity gradient; with salinity decreasing the closer the mangroves get to their freshwater source, such as when they begin to move into rivers from estuaries. By definition, an estuary is an embayment where freshwater and saltwater mixing results in brackish water with salinities of 6-30 ppt. This is the expected range of salinity for a healthy mangrove ecosystem that supports saltwater flora and fauna. The average salinity in the Sanctuary's mangrove-lake ecosystem was currently found to be 1.9 ppt, which is considered freshwater. Mangroves survive well in freshwater but mangrove forests don't emerge there due to freshwater plant competition.

Classical wetland definition: Wetlands have classical and contemporary definitions. Classically, three parameters must be met to qualify as a wetland: a wetland hydroperiod (defined below), wetland or hydrophytic (water-loving) plants, and wetland soils. Mangroves are hydrophytic as well as halophytic (saltwater and freshwater-loving).

Contemporary wetland definition: The contemporary definition of a wetland only requires the presence of a wetland hydroperiod and a dominance of wetland plants, and lacks the wetland soil requirement. This definition arose from development and wetland destruction. Before the advent of wetland protection, wetlands were filled which often led to inundation and or saturation in upland or transitional soils that hitherto had supported only upland or transitional vegetation but that subsequently supported wetland vegetation. Hence wetlands began to develop in the new low spots in the drainage basin in upland soils instead of wetland soils. Also, the contemporary definition of a wetland applies to "wetland mitigation areas" i.e. manmade wetlands created in upland soils that were excavated deep enough to form a wetland hydroperiod.

Hydroperiod definition: Wetlands are areas that are regularly and periodically inundated or saturated even if only for relatively brief periods. Hydroperiod is the word often used to describe the normal depth to which water pools, which is sometimes synonymous with the seasonal high water level. Technically, however, it includes the length of time of inundation since biological indicators of hydroperiod take time to develop. For instance, the algal collars that normally grow on red mangrove roots do so in the intertidal zone, which is the vertical zone between high tide and low tide.

Sluice gate:

The sluice gate sits at the head of the narrow "bisecting" canal on Worthing Beach on St. Lawrence lagoon in the Caribbean, and has been non-operational since August 2006.

(Photo by Angelo Tulimieri)

Noteworthy was the observation that the tide was lapping at the foot of the sluice gate during the inspection. Given that there appeared to be less than a meter difference in height between surface of the beach sand on the beach side of the sluice gate and the surfacewater in the canal, it was evident that water could have flowed into the canal without discharging back over the beach.

Caribbean lapping at sluice gate

(Photos by Richard Pryor)

Wetlands vs. Surfacewaters: Whereas wetlands are surfacewaters not all surfacewaters are wetlands i.e. the absence of wetland vegetation. The surfacewaters associated with the Sanctuary include the "Sanctuary bisecting" canal, four (4) wetlands (five (5) if you include the canal), four (4) open water bodies devoid of vegetation, ditches inside and outside the Sanctuary, and the greater drainage basin at large that includes urban and agricultural runoff. A ditch drains from the Highway-7 commercial district into the Sanctuary's internal ditches during high-water overflow periods. There are subsurface connections as well that include the groundwater table that appears in the laks as surfacewaters. There are reports of direct spring water connections but this is unverified for purposes of this report.

Non-wetland surfacewaters: The four (4) open surfacewater bodies that are not wetlands include the 12 acre lake and its small pond to the south connected at two points

that are both surrounded by mangroves, and two temporal open water ponds or "trays," one so called "brackish" and the other fresh. The name "brackish" tray was applied before the termination of seawater inputs and this appears to be supported solely by freshwater as well. None of these open water bodies qualified as wetlands since they were not dominated by wetland plants during the February 2010 field study. A very small number of plants were found growing in both trays but these provided about a tenth of one percent (0.01%) or less coverage.

Wetland descriptions: The Graeme Hall RAMSAR wetlands are divided between those located within the Sanctuary and those located on government owned land.

The wetlands within the Sanctuary include the mangrove forest associated with the manmade lake and two waterlily ponds. The wetlands on the government land include mangrove forest, spikerush marsh and the "bisecting" canal.

Mangrove forest – Sanctuary: This wetland is dominated by red mangroves (*Rhizophora mangle*) and sub-dominated by white mangroves (*Laguncularia racemosa*). Black mangrove (*Avicennia germinans*) was not found and has never been reported to be found in Graeme Hall. The red and white mangroves were found in textbook zonation patterns with the red mangroves positioned at the lower, wetter elevations and the white mangroves located in the high drier locations above the red mangroves. In terms of heights, the white mangroves tended to dominate at 20-30 meters in height. However, mangrove roots appeared to be hanging behind and well above the red mangroves that lined the lake: if so, then some these may have been as much as 20 m or more height. Around the edge of the lake, red mangroves appeared to reach about 10 m or more in height.

<u>Classification</u>: Mangrove ecosystems are classified in textbooks on their position in the landscape, which affects salinity and hydroperiod, and tree heights. However, no corollary to the Graeme Hall mangrove forests was found and it may be considered an extreme outlier, statistically, with no comparisons. Research indicates that it formed as a fringing wetland but as its connection to the sea gradually diminished it acquired some "basin" characteristics in which the sea connection narrower than in an estuary.

<u>Hydroperiod</u>: The hydroperiod is no longer self-sustaining due to the elimination of the daily tidal cycles. Therefore, the hydroperiod is identical to an isolated freshwater wetland. That is, the changes in water levels occur very slowly and irregularly compared to daily tides and they can fall well below what would be the intertidal zone or low tide or mean low tide. In some areas, white mangrove pneumataphores were found indicating some degree of regular inundation historically.

Due to the drought that was and had been in effect for a prolonged period, the water levels were lower in the main lake than the recent normal water level marked by the stain line. Water levels had dropped below ground in the freshwater tray in the southwest corner; and almost completely below ground in the so called "brackish" tray on the west side. These shallow ponds for the most part have bottom elevations significantly if not substantially higher than bottom of the main lake.

<u>Plant associates</u>: Buttonwood (*Conocarpus erecta*) was located in the more elevated parts of the white mangrove forest but provided less than 5% coverage overall. Bearded fig (*Ficus citrifolia*) trees were found associating with white mangroves in areas that were dry or moist and seedling were found in some moist soils as well which is consistent with their wetness rating as a transitional species. Clammy cherry (Cordia obliqua) was scattered around the edges of the white mangrove part of the forest and is cases within it.

Mangrove islands – Sanctuary: There are two small red mangrove islands in the 12 acre lake that are and have been in constant use by egrets. There are also two "overwash" like mangrove islands in the so called "brackish" water tray.

Wetland ponds – Sanctuary: These wetlands were dominated by waterlily (*Nymphaea* spp.) and will be referred to as "lily ponds." By definition, marshes are less than 3-meters in depth since this is the maximum depth that plants can root, i.e. waterlily.

"Bisesting" canal – Sanctuary: This canal has a relatively small cross-sectional dimension. The Government's mangrove forest would join the Sanctuary's mangrove forest if not for the canal that separates the two on the north side. The canal crosses under Highway-7 and stopped a few meters short of reaching the sluice-gate.

<u>Vegetation</u>: The "bisecting" canal north of Highway-7 had a significant population of arrowhead (*Sagittaria lancifolia*) and waterlily (*Nymphaea*) freshwater herbs. The canal south of Highway-7 was devoid of vegetation.

Mangrove forest – Government-owned: This is a mangrove forest surrounded by a freshwater marsh that is dominated by freshwater herbs. Also there were scattered patches of red mangrove that were surrounded and in some case interspersed with marsh herbs.

Marsh – Government-owned: This freshwater marsh was essentially a monoculture of herbal spikerush (*Eleocharis mutata*) which is in the sedge family (Cyperaceae) during this field study provided complete ground coverage outside the mangroves.

Intertidal zone: In a healthy intertidal mangrove forest, algal collars grow on the mangrove roots between high and low tides, i.e. the intertidal zone. These algal collars are composed of fungus and chlorophyte filaments. Small algal collars were found but only on a few red mangrove roots in the Sanctuary and bisecting canal. These appeared to be surviving by wicking water instead of by daily tidal inundation. The fungus and chlorophyte components of the algal collars were not identified. A variety of fauna associate with these

In a healthy mangrove forest these algal collars may be expected to develop and for a small number of fauna to associate with them. These fauna can include the spotted mangrove tree crabs (*Goniopsis cruentata*) and mangrove periwinkle (*Littorina angulifera*) which is a snail. They can become an important part of the food chain. Neither species was found during the monitoring event. Chenery reported that he had never seen them in the Sanctuary. If daily tidal fluctuations were re-established then (re)introducing this species and its associates should be investigated in order to increase diversity and enhance the food chain.

The spotted mangrove tree crab is a macrodetrivore and feeds on fallen mangrove leaves (Raulerson, 2004). It is commonly found associating with algal collars that grow on mangrove roots within the intertidal zone. *Goniopsis cruentata* has been found in Barbados but none were located in the Sanctuary during the current monitoring report. This species of crab is a favorite in the Ibis diet.

Invertebrate identification: Several termite (*Isoptera*) nests were found both on the ground and in tree crotches. The number of blue land crabs (*Cardisoma guanhumi*) and fiddler crabs (*Uca bergersi*) appeared to be low.

Blue land crabs (*Cardisoma guanhumi*) inhabit the upper parts of the mangrove forest in the white mangrove zone as well as the upper red mangrove zone. A substantial number of blue land crab burrows were either abandoned or plugged but an equal or greater number of active burrows was located and their density or number of holes per area appeared to be high.

A small number of fiddler crabs (*Uca bergersi*) and their burrows were found during the monitoring period. A comment in a historic newletter mentioned that fiddler crab were so abundant (at that time) that they were swarming over the Sanctuary sidewalks. Reports, including by Ryan Chenery, indicate that fiddler crabs and blue land crabs were far fewer in number during the current monitoring event than historically. Fiddler crabs are reportedly are susceptible to insecticides and massive malathion fogging has been reported within the government's wetlands. Malathion is an organophosphate and has

been claimed to be toxic to fish species as well. The potentially toxic effects of malathion merit additional research if not testing.

Vertebrate identification: During the week of February 8-13, 2010, Ryan Chenery, the Chief Naturalist for Graeme Hall Nature Sanctuary before it closed, identified 37 bird species (Attachment 12). Chenery also identified two mongoose (*Herpestidae*). Also spotted were several green monkeys (*Chlorocebus*) individually and in groups as well as dozens of tilapia (*Oreochromis mossambicus*) and Atlantic tarpon (*Megalops atlanticus*).

Glossy ibis (*Plegadis falcinellus*) is a wading bird that was identified in the Sanctuary during the current monitoring period. One study of Ibis spp. in a Brazilian mangrove forests found that this ibis fed mostly on fiddler crabs (*Uca* spp.) taken directly from their burrows (Olmos, et. al., 2001). *Plegadis* is a tactile forager with a long curved beak adapted to probing inside fiddler crab burrows.

Summary: The mangrove wetland appears to have become a freshwater wetland based on freshwater benthic community that was discovered in the Sanctuary's lake via sampling and species indemnification. As such, the mangrove forest is in definite danger of being replaced by a freshwater ecology that is less complex and of less value than in terms of ecosystem functions and services, possibly more so to the avian community.

Other indicators of freshwater transformation were found. The "bisecting" or bifurcating canal that cuts through the major portion of the mangroves is supporting freshwater plant species. The salinity of the soil sediments there and in the 12-acre lake that was carved from the mangrove forest, were nearly the same which may mean that the soils in the mangrove forest may support freshwater species. (Sodium ion concentration in the sediments was used as a substitute for salinity that inadvertently was not analyzed – sodium is just one of the ions that form salinity.) Additionally, on

government owned land, mangroves are surrounded and in some cases interspersed with freshwater herbs. Lake water freshening was found as well.

Mangroves show excellent growth in freshwater but lose the competitive advantage that they enjoy in saltwater and brackish water; and this is their vulnerability. If they lose that, then any perturbation to the mangrove canopy, such as lightning or hurricane, may kill mangroves and may create an opening or openings in the mangrove canopy for opportunistic plant species to invade.

One such species may be clammy cherry (*Cordia obliqua*) which was found in and around parts of the mangrove forest. Literature on clammy cherry appears to be extremely sparse and no information was found as to whether it is a transitional species or a wetland species. If it were salt tolerant then it should be commonly referenced as an associate of white mangroves (*Laguncularia racemosa*) as is buttonwood (*Conocarpus erecta*) but no such reference was found. Its presence in the mangrove forest may indicate that at the very least it is a transitional species. What information was found indicates that clammy cherry is a shrub capable of reaching heights of 7-8 meters and of providing significant canopy coverage. If clammy cherry were to become established in any gaps that might form in the mangrove, then ground beneath may provide recruitment sites for freshwater species including trees that might outcompete and eventually eliminate the mangroves. Bearded fig (*Ficus citrifolia*), which is a tall tree with a wide canopy, was found inhabiting elevations comparable or slightly higher than nearby white mangroves.

The mangroves are relying on freshwater for their survival in the absence since August'06 of daily tidal fluctuations. Consequently, water levels change very slowly in the lake and mangrove forest instead of with daily fluctuations between low tide and high tide. Tidal fluctuations should occur if the mangrove was (re)connected to the sea albeit that the fluctuation would be delayed due to the dimensional restrictions of the bisecting (connecting) canal.

Currently, the mangrove hydroperiod is identical to that of a freshwater wetland in that it depends on freshwater inputs from surface and ground water. During the field investigation in February'10, the water level was low in the lake and almost if not completely absent from the freshwater tray and the so called "brackish" water tray. After the first two to three days of pumping spring water, the freshwater tray was full of water and the water level in the lake was higher by a few centimeters as well. Nonetheless, a significant amount of white mangrove soil was dry at least at the surface where hundreds of blue land crab burrows had been abandoned. Regular soil dehydration may provide more opportunities for transitional plant species to recruit.

Crabs were missing and/or few in number during the field investigation. spotted mangrove tree crabs (*Goniopsis cruentata*) were not located. This crab lives on the trees and associates with the algal collars that grow in the intertidal zone (the area between high and low tide). Such algal collars were found in small sizes and only on a relatively few red mangrove roots, and appeared to be surviving by wicking water instead of by daily tidal inundation. Under normal conditions, a number of fauna associate with these algal collars and their absence eliminates an important part of the mangrove food chain. If daily tidal fluctuations are re-established then (re)introducing this species and its associates should be investigated in order to increase diversity and enhance the food chain.

Fiddler crabs (*Uca bergersi*) and blue land crabs (*Cardisoma guanhumi*) were far fewer in number according to authoritative oral histories. Reportedly, massive numbers of fiddler crabs had swarmed parts of the Sanctuary historically whereas during the current field investigation, very few were seen and only a very small number of burrows were located.

Fewer blue land crabs were present than reported historically according to the Sanctuary's former Chief Naturalist, Ryan Chenery (Attachment 12). Historically,

crabs were reported to be filling the ditch(es) in the Sanctuary yet only three were captured autopsy by an expert trapper even though six were scheduled for autopsy.

It was not determined what was responsible for the decline in numbers fiddlers and blue land crabs whether it be by predation; the low water levels due to drought and dehydration; the freshening of the water supply; some past lethal pesticide event, and or some other factor.

Thirty seven species of birds were identified from February 8-13, 2010 (Attachment 12). No assessment was attempted to estimate the size of the bird population or degree of nesting activity since this was a very sensitive period for such activity. Egrets on the two small mangroves in the lake were still very active. Some of the lower mangrove branches were dead or dying on the two small egret islands in the Sanctuary lake. Reportedly attempts to replant these islands have not been very successful. Mangroves are known for their island build function, which they can do only in the presence of daily tidal fluctuations. It may be that the islands are subsiding. The loss of these two islands would be very detrimental to the egrets since the islands provide a much higher degree of safety from local predators such as mongoose and the green monkey.

References

- Algal collar graphic copied without permission from paper by Christopher E. Tanner, Ilka
 C. Feller, and Aaron M. Ellison Biodiversity in the Mangrove Intertidal and
 Subtidal: Algal and Seagrass Communities. Found in Mangrove Ecology
 Workshop Manual edited by Ilka C. Feller and Marsha Sitnik
- Alongi, D.M., 2002. Present state and future of the world's mangrove forests. Environmental Conservation (2002), **29**:331-349 Cambridge University Press
- Mitsch, W.J. and J.G. Gosselink, 2000. Wetlands. John Wiley & Sons, Inc.
- Olmos, F., Silva, R.S.e, and Prado, A., 2001, Breeding Season Diet of Scarlet Ibises and Little Blue Herons in a Brazilian Mangrove Swamp, <u>Waterbird Society</u> (http://www.waterbirds.org/journal/instructions-for-contributors)

- (Odum, Howard T. "Environmental Accounting: Energy and Environmental Decision Making". New York: John Wiley & Sons, Inc., 1996.)
- Raulerson, G.E., 2004. Leaf Litter Processing by Macrodetritivores in Natural and Restored Neotropical Mangrove Forests, Dissertation, Louisiana State University and Agricultural and Mechanical College

Graphic: Mangrove communities

Note that red mangrove (*Rhizophora*) does not appear until 18-ppt in New Zealand estuaries.

Distrib specie estuar	ution of man s in West Co ies	grove ast	B Estuary				
Salinity (parts per 1000)	Common species	Ecological status	Sea K				
Euhaline (>30)	Mostly no mangroves	·	MHW -				
B Polyhaline (30-18)	Rhizophora mucronata Kandelia rheedii Avicennia spp. Sonneratia alba Acanthus ilicifolius Excoecaria agallocha Derris heterophylia Common grasses: Potersia coarctata Auleropus sp.	Common Common Dominant Dominant Common Common Common Rare	ER STAN AV AV RZ RZ Kr Stan Av				
© Mesohaline 18-5	Avicennia officinalis Kandelia rheedii Sonneratia alba Acanthus ilicifolius Excoecaria agallocha Derris heterophylla Common grasses: Potersia coarctata Auleropus sp.	Dominant Common Common Common Common Common Common	Dh Aa Ai Kr Kr MHW - Mud MLW -				
D Oligohaline 5-0.05	Kandelia rheedii Sonneratia caseolaris Acrostichum aureum Grass: Myriostichya waghitana	Dominant Dominant Common Dominant	Grass Aa MHW - Mud MLW -				
Rz Rhiz Sr Son Aa Acro MHW Mea	zophora mucronata neratia alba ostichum aureum nn high water	Kr Kand Sc Sonn Dh Derrit MLW Mear	lelia sheedii Av Avicennia spp. eratia caseolaris Ex Excoecaria agallocha s heterophylla Ai Acanthus ilicifolius I low water				

 $\begin{array}{l} Graphic used without permission (New Zealand Digital Library, The University of Walkato) \\ \underline{http://nzdl.sadl.uleth.ca/cgi-bin/library?e=d-00000-00---off-0hdl--00-0---0-10-0---0-10-0---0-11--11-en-50---20-about---00-0-1-1-0utfZz-8-00&a=d&c=hdl&cl=CL3.33&d=HASHd10071ff5b9a81a2180c80.4.3 \\ \hline \end{array}$

ATTACHMENT 12

Interview with Ryan Chenery Chief Naturalist Graeme Hall Nature Sanctuary

Interview: Answers by Ryan Chenery, former Chief Naturalist for the Graeme Hall Nature Sanctuary; Questions by Angelo Tulimieri, Environmental Scientist

Common Name	Scientific name	Scientific name		Common Name	M*
Anhinga	Anhinga anhinga	Actitis macularia		Spotted Sandpiper	*
Antillean Crested Hummingbird	Orthorhyncus cristatus	Anas discors		Blue-Winged Teal	*
Bananaquit	Coereba flaveola	Anhinga anhinga		Anhinga	*
Belted Kingfisher	Ceryle alcyon	Ardea alba		Great Egret	*
Black-Crowned Night-Heron	Nycticorax nycticorax	Ardea Herodias		Great Blue Heron	*
Black-faced Grassquit	Tiaris bicolor	Bubulcus ibis		Cattle Egret	
Blue-Winged Teal	Anas discors	Butorides virescens	Butorides virescens		
Carib Grackle	Quiscalus lugubris	Cairina moschata		Muscovy Duck	
Caribbean Coot	Fulica caribaea	Calidris minutilla		Least Sandpiper	*
Carribean Elaenia	Elaenia martinica	Calidris pusilla		Semipalmated Sandpiper	*
Cattle Egret	Bubulcus ibis	Ceryle alcyon		Belted Kingfisher	*
Common Ground-Dove	Columbina passerina	Charadrius semipalmatu	5	Semipalmated Plover	*
Common Moorhen	Gallinula chloropus	Coereba flaveola		Bananaquit	
Common Snipe	Gallinago gallinago	Columba squamosa		Scaly-naped Pigeon	
Glossy Ibis	Plegadis falcinellus	Columbina passerina		Common Ground-Dove	
Golden Warbler Dendre	pica petechia petechia	Dendroica petechia petec	chia	Golden Warbler	
Gray Kingbird	Tyrannus dominicensis	Egretta garzetta		Little Egret	
Great Blue Heron	Ardea Herodias	Egretta thula		Snowy Egret	
Great Egret	Ardea alba	Elaenia martinica		Carribean Elaenia	
Greater Yellowlegs	Tringa melanoleuca	Eulampis holosericeus		Green-throated Carib	
Green Heron	Butorides virescens	Fregata magnificens		Magnificent Frigatebird	
Green-throated Carib	Eulampis holosericeus	Fulica caribaea		Caribbean Coot	
Least Sandpiper	Calidris minutilla	Gallinago gallinago		Common Snipe	*
Lesser Yellowlegs	Tringa flavipes	Gallinula chloropus Cor		Common Moorhen	
Little Egret	Egretta garzetta	Molothrus bonariensis	Shiny Cowbird		
Magnificent Frigatebird	Fregata magnificens	Nycticorax nycticorax	Bla	ck-Crowned Night-Heron	
Muscovy Duck	Cairina moschata	Orthorhyncus cristatus	status Antillean Crested Humming		
Northern Waterthrush	Seiurus noveboracensis	Pandion haliaetus		Osprey	*
Osprey	Pandion haliaetus	Plegadis falcinellus		Glossy Ibis	*
Scaly-naped Pigeon	Columba squamosa	Quiscalus lugubris		Carib Grackle	
Semipalmated Plover	Charadrius semipalmatus	Seiurus noveboracensis		Northern Waterthrush	*
Semipalmated Sandpiper	Calidris pusilla	Tiaris bicolor		Black-faced Grassquit	
Shiny Cowbird	Molothrus bonariensis	Tringa flavipes		Lesser Yellowlegs	*
Snowy Egret	Egretta thula	Tringa melanoleuca		Greater Yellowlegs	*
Solitary Sandpiper	Tringa solitaria	Tringa solitaria		Solitary Sandpiper	*
Spotted Sandpiper	Actitis macularia	Tyrannus dominicensis		Gray Kingbird	
Zenaida Dove	Zenaida aurita	Zenaida aurita		Zenaida Dove	

Q. Can you list the birds you saw outside the aviaries while I was there February 8-13, 2010? A. (Bird identification by Ryan Chenery)

*Migratory

Q. What was your job title while at Graeme Hall Nature Sanctuary (Sanctuary)? A. During my 5 years at the Sanctuary I was everything from Eco-Guide to Head of Eco-Guide Department to Operations Supervisor to Head of Water Management Department to Chief Naturalist to Head of Bird Care Department. I think Chief Naturalist is the most appropriate title.

Q. Are there any threatened or endangered birds on the list of birds that you observed during the week we worked together or that you've seen at the Sanctuary at other times? A. .The subspecies of Golden Warbler (*Dendroica petechia petechia*) found at the Sanctuary is endemic to Barbados. It is classified as endangered... declining population due to habitat loss and brood parasitism by Shiny Cowbird. While there are sightings of Golden Warbler in other areas of Barbados (e.g. Chancery Lane), the largest population of this species is undoubtedly located at the Sanctuary. The area represents ideal habitat for this species.

Birds both on and off our bird list (above) seen at the Sanctuary which are endangered or threatened are the Red Knot (endangered), Caribbean Coot (threatened), and American Golden Plover (declining and threatened) The Red Knot and Plover were seen feeding in and around the fresh water tray a couple of years ago and I have seen Caribbean Coots feeding in the lake and behind the observation blind on many occasions in the five (5) years I was there and also while you were there during February 15-20, 2010.

Q. Can you comment on the rookery at the Sanctuary?

A. Cattle Egrets are the only species nesting in the rookery in the north east corner of the forest. For many years the Cattle Egrets would also roost in the mangroves along the lake. I witnessed the egrets gradually shift roost location from this site to an area deeper in the forest as years passed.

There are three species which nest on the two (2) small shrinking islands (Egret Island) in the lake. These are the Cattle Egret, Snowy Egret and Little Egret. The first record of Little Egret nesting in the western hemisphere was on Egret Island in 1994. They now also nest in Antigua. Therefore to date there are only two (2) places in the western hemisphere where little Egrets nest. Even seeing Little Egrets in the west is big news for birders, so that they are breeding is outstanding. I checked when I was on the kayak and yes all three (3) species are currently nesting on those two (2) Egret Islands. The Egret Islands are made up of both red and white mangrove however the rookery to the north east corner is only white mangroves.

Q. During your time at the Sanctuary what if any changes did you notice regarding the two Egret Islands including changes in island sizes, number of mangroves, types of mangroves, egret usage, etc?

A. In my time at the Sanctuary the Egret Islands have shrunk significantly in size. The islands are now about $2/3^{rd}$ their original size. This shrinking nest area is a concern due to the fact that (as previously stated) it is one of only two (2) places in the western hemisphere where Little Egrets nest. The mangroves which make up the islands appear to be dying. There were previous efforts made to rehabilitate the islands. Young mangroves were planted in the sediment which had accumulated against the existing mangrove tree roots, also crocus bags were filled with soil and young red mangroves were planted in the bags, these were then placed on the existing islands. Dozens of trees were planted on the islands in this manner. However upon investigation

of the islands between Feb 15th and 20th 2010, it does not appear that any of the planted trees had survived.

Q. What is the other large fish species in the Sanctuary lake besides tilapia? A. The large fish are Atlantic Tarpon (*Megalops atlanticus*) – one of the species that needs to get back to the ocean to breed but is locked in by the faulty sluice gate.

Q. Do you think the green monkeys (*Cercopithecus aethiops sabaeus*) and mongooses present a threat the birds in the Sanctuary?

A. Even though the islands are shrinking, they remain the safest location for the 3 species of egret to nest in the entire forest. As deep water permanently surrounds this nesting site it is an extremely effective natural barrier to attacks on nestlings and eggs by terrestrial predators such as Green Vervets and Indian mongoose. Monkeys can easily climb trees and raid nests but deep water is a definite deterrent to even the hungriest monkey. While people may say that any bird in a tree is safe from mongoose I have seen mongoose ascending tree trunks and limbs at 60 degree angles at the Sanctuary., I have even seen mongoose attempt to reach the island by traversing the 6 ft deep waters of the main lake.

Q. Have you seen any changes to the floral or faunal communities, if so then what are/were they? A. Regarding the changes in flora/faunal communities I'd say the biggest change was in the fiddler crab population. I know that these are widely regarded as bio-indicators of ecosystem health. From early 2009 I remember seeing a decrease in fiddler crab numbers. The University of the West Indies used to send students every year to collect about 30-40 fiddlers. They would always return them alive and well after studying them for about two (2) weeks. But when they came in 2009 it was very difficult to locate adequate numbers for their experiment. I know that there used to be at least four (4) areas at the Sanctuary with huge populations of fiddlers, when I left in December there was only one (behind the observation blind on the lakeside). Whether certain populations of fiddlers simply shifted locale en masse to other sites deeper into the forest I don't know, (maybe depleted food stocks of detritus?) but from 2004 to late 2008 there had always been healthy fiddler populations along the "boardwalk", along the banks of the fresh water tray, by the first bridge to start the boardwalk trek, and by the Observation Blind. Last December, only the Observation Blind had its population intact.

Q. Did you notice a change in blue land crab (*Cardisoma guanhumii*) populations since you left in December?

A. The number of crab holes did appear to be less during your visit and perhaps the crabs moved from certain areas due to drought, however I did notice something interesting in terms of blue land crab numbers that was quite disturbing and it was in an area where the water level was lower.

Let me explain: In my previous five (5) yrs at the Sanctuary I referred to the area behind the gully aviary (that's where the water in the canal was yellow during February 15-20, 2010) as "Crab Alley" because of the *huge* number of crabs that were always there. Any time you walked past there you were guaranteed to see dozens of crabs semi-submerged in the water, clinging to mangrove roots while feeding, and generally lounging around on the banks of the canal in or

near holes. Even if land crabs were deep in their holes throughout the rest of Graeme Hall and people could not see a single land crab. One was sure to see land crabs of all ages and sizes in this area...but this was not the case during your time there. During February 15-20, 2010 the canal still had water - therefore I do not believe the drought could have instigated a mass exodus from this region as perhaps it did in other areas. At this time I can't explain why there were no crabs in Crab Alley.

Q. Are there any other comments you can make about the monkeys and mongooses that were and have been seen in the Sanctuary?

A. I have never seen green monkeys feed on any of the species of crabs found at the Sanctuary. However their numbers are increasing and it would not be difficult to envision these clever animals incorporating a new prey species into their diet. If we were to look at predation as a possible cause of crab deaths in crab alley I believe that mongoose may be a more likely culprit. Indian Mongoose is an introduced species to Barbados (as indeed is the Green Vervet) and their numbers at the Sanctuary have at times been extremely high. This has resulted in trapping programs, where the mongoose were caught and destroyed at the sanctuary. Mongooses are voracious little carnivores and can decimate populations of ground nesting birds and other land dwelling creatures quickly and efficiently. I have seen mongoose actively hunting and feeding on fiddler crabs at the Sanctuary. It is possible that they may also prey upon the larger blue land crabs. Add to this the fact that both the mongoose and monkey populations at the Sanctuary appeared to be increasing and one has cause to question their potential impact. I believe that mongoose numbers have once again reached heights where a trapping program may again need to be implemented in order to ensure that this introduced species does not wreak havoc on populations of resident and migratory species of fauna at the sanctuary.

Q. What did you see during your survey diving on the reef off Worthing Beach in front of the sluice gate?

A. There is still life out there. I saw two (2) Hawksbill turtles, two (2) Flounder, two (2) Chain Moray Eels, many species of Wrasse, and a variety of other small fish such as young surgeon fish and damsel fish. That said however, there is very little healthy coral left on that reef. The main portion of the reef stretches parallel to the coast for about 300ft and there is a spit-like portion perpendicular to the coast that tapers to a point which is about 200ft from shore. There are large sand bars in the area surrounding the reef, and at times I could stand in ankle deep water and approach the reef in this manner, which was unique in my experience.

Q. Did you see or do you know of any seagrasses around the reef or anywhere in the St. Lawrence Bay?

A. There are no seagrass beds along any of the areas I checked including around the reef.

Q. Where can clammy cherry shrubs (*Cordia obliqua*) be found in the Sanctuary? A. There are several large clammy cherry shrubs surrounding the lily ponds and if memory serves one growing on a small island in the middle of the larger of the two lily ponds. There are also many clammy cherry shrubs growing on the stretch of land between the lake and the pond located to the north of the observation blind. These two areas sustain the highest concentrations of this species. In both areas they grow side by side with white mangroves and in the area behind the blind there are also several red mangroves in the vicinity. They can be found between the sidewalk and the lake. The primary disperser of the clammy cherry seeds is the Scaly-naped pigeon which are most common north of the observation blind.

Q. Do you remember ever seeing spotted mangrove crabs (*Goniopsis cruentata*) that live on the red mangrove trees and roots and that associates with the algae that are supposed to grow on the roots in the intertidal zone.

A. I've never seen any of those crabs at GHNS.

ATTACHMENT 13

Correlation of Sample Point Designations

ATTACHMENT 13 CORRELATION OF SURFACE WATER/ SEDIMENT SAMPLE POINT DESIGNATIONS

2001/2002	2010	Location	Rationale for Sampling Point
1A	S1A	Fresh Water Pond	Previous sample location
2A	n/a	Fresh Water Pond	Only one of two locations in the eastern fresh water spring was sampled.
2B	S2A	Fresh Water Pond	Only one of two locations in the eastern fresh water spring was sampled.
3A	n/a	Brackish Tray	Brackish tray unsaturated
3B	n/a	Brackish Tray	Brackish tray unsaturated
n/a	S3A	West Side of Lake	Obtained near pump, that pumps water to Brackish tray
n/a	S3B	Southwest corner of Lake	Obtained at southwest corner of lake near inlet for water pumped to Brackish tray
4A	n/a	West Stormwater Ditch	Ditch unsaturated
4B	S4B	West Stormwater Ditch	Previous sample location
4C	S4C	West/ South SW Ditch	Previous sample location
n/a	S4D	South Stormwater Ditch	Obtained in the vicinity of murky, light green water
4D	S4E	South Stormwater Ditch	Fourth sample obtained from south swale/ ditch system
n/a	S4F	South SW Swale - Offsite	Fifth sample obtained from south swale/ ditch system, outside of property
5A	S5A	Freshwater Tray	Previous sample location
5B	n/a	Freshwater Tray	Freshwater tray unsaturated in this area
6A	n/a	South Pond att. to Lake	South pond unsaturated in this area
6B	S6B	South Pond att. to Lake	Previous sample location
7A	S7A	SE Corner of Lake	Previous sample location
7B	S7B	North Side of Lake	Previous sample location
8	S8A*	Bisecting Canal	Previous sample location
9	n/a	Eastern Spring	Northern parts of marsh unsaturated
10	S10	NE Corner of Lake	Previous sample location
11	S11A	Bisecting Canal	Previous sample location adjacent to emergency discharge outfall
12	S9*	East of GHNS	Previous sample location
n/a	S12A	Bisecting Canal	Obtained as intermediate location between 8A and 11A, north of south SW ditch discharge point
n/a	S13	East of GHNS	Obtained in close proximity to SCSTP
n/a	S14	East of GHNS	Obtained downstream of 13, between SCSTP and bisecting canal

* obtained further south than in 2001/2002

ATTACHMENT 14

Laboratory Surface Water and Sediment Analytical Results

Test America, Inc. Tampa, Florida

ANALYTICAL REPORT

Job Number: 660-33863-1 Job Description: GHNS Barbados

For: Environmental Engineering Consultant 5119 N. Florida Avenue Tampa, FL 33603 Attention: Mr. Richard Pryor

Approved for release. Nancy Robertson Project Manager II 4/6/2010 11:43 AM

Nancy Robertson Project Manager II nancy.robertson@testamericainc.com 04/06/2010 Revision: 1

Methods: FDEP, DOH Certification #: TestAmerica Tampa E84282, TestAmerica Tallahassee E81005, TestAmerica Orlando E83012, TestAmerica Savannah E87052, TestAmerica Pensacola E81010

These test results meet all the requirements of NELAC unless specified in the case narrative. All questions regarding this test report should be directed to the TestAmerica Project Manager who signed this test report. The estimated uncertainty associated with these reported results is available upon request. The results contained in this test report relate only to these samples included herein.

TestAmerica Laboratories, Inc. TestAmerica Tampa 6712 Benjamin Road, Suite 100, Tampa, FL 33634 Tel (813) 885-7427 Fax (813) 885-7049 www.testamericainc.com

Comments

No additional comments.

Receipt

All samples were received in good condition within temperature requirements.

8081A

The matrix spike / matrix spike duplicate (MS/MSD) recoveries for batch 660-90841 were outside of control limits. The associated laboratory control sample (LCS) recovery met acceptance criteria. The data are flagged with J3 qualifiers.

8151A

The matrix spike / matrix spike duplicate (MS/MSD) recoveries for batch 660-90805 were outside of control limits. The associated laboratory control sample (LCS) recovery met acceptance criteria. The data are flagged with J3 qualifiers.

The matrix spike / matrix spike duplicate (MS/MSD) precision for batch 660-90805 was outside of control limits. Non-homogeneity of the sample matrix is suspected. The data are flagged with J3 qualifiers.

The surrogate recovery for the following samples was outside the upper control limit due to matrix co-elution: 660-33863-1, -2, -4, -4MS, -4MSD. This sample did not contain any target analytes; therefore, re-extraction and/or re-analysis was not performed. The data are flagged with J1and L qualifiers.

8141A

The laboratory control sample / laboratory control sample duplicate (LCS/LCSD) for batch 640-65758 were outside of control limits for dichlorvos and monochrotophos. The laboratorie's SOP allows for 3/20 analytes to recover outside of limits when a full analyte spike is run. The data are flagged with J3 qualifiers.

The matrix spike / matrix spike duplicate (MS/MSD) recoveries for batch 640-65935 were outside of control limits. The associated laboratory control sample (LCS) recovery met acceptance criteria. The data are flagged with J3 qualifiers.

6010B

The matrix spike / matrix spike duplicate (MS/MSD) recoveries for certain analytes for batch 660-90828 were outside of control limits. RPDs were within control limits The associated laboratory control sample (LCS) recovery met acceptance criteria. The data are flagged with J3 qualifiers.

The matrix spike / matrix spike duplicate (MS/MSD) recoveries for batch 660-91263 were outside of control limits for analytes Mg and Ca. RPDs are within limits. The associated laboratory control sample (LCS) recovery met acceptance criteria. The data are flagged with J3 qualifiers.

7471A

The matrix spike duplicate (MSD) recovery for batch 660-91390 was outside of control limits. The associated laboratory control sample (LCS) recovery met acceptance criteria. The data are flagged with J3 qualifiers.

RSK-175

The method blank (MB) for batch 400-104462 contained an i value for carbon dioxide. The samples contained greater than 10X the amount found in the method blank. The data are flagged with V qualifiers.

SM 4500 H+B

The samples were received outside of holding time for pH. The data are flagged with Q qualifiers.

180.1

Samples were received with greater than 50% of holding time expired. As such, the laboratory had insufficient time remaining to perform the analysis within holding time. The data are flagged with Q qualifiers.

350.1

The matrix spike / matrix spike duplicate (MS/MSD) recoveries for batch 680-161811 were outside of control limits. The associated laboratory control sample (LCS) recovery met acceptance criteria. The data are flagged with J3 qualifiers.

353.2

The samples were received with greater than 50% of holding time expired. As such, the laboratory had insufficient time remaining to perform the analysis within holding time. The data are flagged with Q qualifiers.

SM 5210B

The samples were received with greater than 50% of holding time expired. As such, the laboratory had insufficient time remaining to perform the analysis within holding time. The data are flagged with Q qualifiers.

10200H

The samples were received with greater than 50% of holding time expired. As such, the laboratory had insufficient time remaining to perform the analysis within holding time. The data are flagged with Q qualifiers.

365.4

The matrix spike / matrix spike duplicate (MS/MSD) recoveries for batch 660-91269 were outside of control limits. The associated laboratory control sample (LCS) recovery met acceptance criteria. The data are flagged with J3 qualifiers.

The sample duplicate %RPD for batch 680-161565 were outside of control limits. The associated laboratory control sample (LCS) recovery met acceptance criteria. The data are flagged with J3 qualifiers.

SM 5220D

The matrix spike duplicate (MSD) recovery for batch 660-91132 was outside of control limits. The associated laboratory control sample (LCS) recovery met acceptance criteria. The data are flagged with J3 qualifiers.

SM 4500 S2 F

Insufficient sample volume was provided to perform matrix spike/matrix spike duplicate (MS/MSD) for batch 660-90918.

SM 5550B

The matrix spike / matrix spike duplicate (MS/MSD) recoveries for batch 680-161223 were outside of control limits. The associated laboratory control sample (LCS) recovery met acceptance criteria. The data are flagged with J3 qualifiers.

3510C/8081A

Insufficient sample volume was provided to meet method-mandated requirements for matrix spike/matrix spike duplicate (MS/MSD) analyses for batch 660-90781.

8151A

Insufficient sample volume was provided to meet method-mandated requirements for matrix spike/matrix spike duplicate (MS/MSD) analyses for batch 660-90939.
Client: Environmental Engineering Consultant

Lab Sample ID Analyte	Client Sample ID	Result / C	Qualifier	Reporting Limit	Units	Method	
660-33863-1	11A						
Aluminum		1700		20	ma/Ka	6010B	
Arsenic		0.72		0.49	mg/Kg	6010B	
Boron		8.4		4.9	mg/Kg	6010B	
Barium		6.3		0.98	mg/Kg	6010B	
Calcium		82000		490	mg/Kg	6010B	
Cobalt		0.44	I	0.98	mg/Kg	6010B	
Chromium		2.8		0.98	mg/Kg	6010B	
Copper		9.8		2.0	mg/Kg	6010B	
Iron		1400		4.9	mg/Kg	6010B	
Magnesium		2300		49	mg/Kg	6010B	
Manganese		28		0.98	mg/Kg	6010B	
Sodium		880		49	mg/Kg	6010B	
Lead		18		0.49	mg/Kg	6010B	
Strontium		1100		9.8	mg/Kg	6010B	
Titanium		30		0.98	mg/Kg	6010B	
Vanadium		3.2		0.98	mg/Kg	6010B	
Zinc		29		2.0	mg/Kg	6010B	
Mercury		0.024		0.020	mg/Kg	7471A	
Ammonia (as N)		18		0.60	mg/Kg	350.1	
Phosphorus, Total		360		18	mg/Kg	365.4	
Sulfide		29		25	mg/Kg	9034	
Total Organic Carb	on	38000		3000	mg/Kg	9060	
Percent Solids		34		0.10	%	Moisture	
Soluble							
pH-Soluble		7.62	Q	1.00	SU	9045C	
Orthophosphate-So	bluble	1.4	I	3.0	mg/L	SM 4500 P E	

Client: Environmental Engineering Consultant

Lab Sample ID Analyte	Client Sample ID	Result / C	Qualifier	Reporting Limit	Units	Method
660-33863-2	13					
Dieldrin		1.0	I	1.7	ug/Kg	8081A
Aluminum		4200		19	mg/Kg	6010B
Arsenic		0.57		0.49	mg/Kg	6010B
Boron		4.4	I	4.9	mg/Kg	6010B
Barium		19		0.97	mg/Kg	6010B
Calcium		60000		490	mg/Kg	6010B
Cadmium		0.097	I	0.49	mg/Kg	6010B
Cobalt		0.83	I	0.97	mg/Kg	6010B
Chromium		4.2		0.97	mg/Kg	6010B
Copper		6.0		1.9	mg/Kg	6010B
Iron		2500		4.9	mg/Kg	6010B
Magnesium		2100		49	mg/Kg	6010B
Manganese		53		0.97	mg/Kg	6010B
Sodium		430		49	mg/Kg	6010B
Lead		5.4		0.49	mg/Kg	6010B
Strontium		3100		39	mg/Kg	6010B
Titanium		43		0.97	mg/Kg	6010B
Vanadium		6.4		0.97	mg/Kg	6010B
Zinc		21		1.9	mg/Kg	6010B
Mercury		0.023		0.019	mg/Kg	7471A
Ammonia (as N)		46		3.0	mg/Kg	350.1
Phosphorus, Total		360		21	mg/Kg	365.4
Total Organic Carbo	on	57000		3000	mg/Kg	9060
Percent Solids		26		0.10	%	Moisture
Soluble						
pH-Soluble		7.41	Q	1.00	SU	9045C
Orthophosphate-So	luble	1.3	I	3.0	mg/L	SM 4500 P E

Client: Environmental Engineering Consultant

Lab Sample ID Analyte	Client Sample ID	Result / Q	ualifier	Reporting Limit	Units	Method	
660-33863-3	8A						
Aluminum		410		19	mg/Kg	6010B	
Boron		11		4.8	mg/Kg	6010B	
Barium		2.0		0.96	mg/Kg	6010B	
Calcium		41000		480	mg/Kg	6010B	
Chromium		1.0		0.96	mg/Kg	6010B	
Copper		1.7	I	1.9	mg/Kg	6010B	
Iron		280		4.8	mg/Kg	6010B	
Magnesium		1600		48	mg/Kg	6010B	
Manganese		6.0		0.96	mg/Kg	6010B	
Sodium		620		48	mg/Kg	6010B	
Lead		3.1		0.48	mg/Kg	6010B	
Strontium		630		9.6	mg/Kg	6010B	
Titanium		4.6		0.96	mg/Kg	6010B	
Vanadium		2.1		0.96	mg/Kg	6010B	
Zinc		3.9		1.9	mg/Kg	6010B	
Mercury		0.0093	I	0.019	mg/Kg	7471A	
Ammonia (as N)		6.8		0.30	mg/Kg	350.1	
Phosphorus, Total		160		18	mg/Kg	365.4	
Total Organic Carbo	n	18000		3000	mg/Kg	9060	
Percent Solids		32		0.10	%	Moisture	
Soluble							
pH-Soluble		7.56	Q	1.00	SU	9045C	

Client: Environmental Engineering Consultant

Lab Sample ID Analyte	Client Sample ID	Result / Q	ualifier	Reporting Limit	Units	Method
660-33863-4	6B					
Chlordane (technica	al)	14	I	17	ug/Kg	8081A
Dieldrin		0.29	I	1.7	ug/Kg	8081A
Aluminum		2000		20	mg/Kg	6010B
Arsenic		0.33	I	0.50	mg/Kg	6010B
Boron		10		5.0	mg/Kg	6010B
Barium		9.6		0.99	mg/Kg	6010B
Calcium		110000		500	mg/Kg	6010B
Cobalt		0.37	I	0.99	mg/Kg	6010B
Chromium		1.8		0.99	mg/Kg	6010B
Copper		5.5		2.0	mg/Kg	6010B
Iron		1100		5.0	mg/Kg	6010B
Magnesium		1900		50	mg/Kg	6010B
Manganese		30		0.99	mg/Kg	6010B
Sodium		1400		50	mg/Kg	6010B
Lead		14		0.50	mg/Kg	6010B
Strontium		2500		40	mg/Kg	6010B
Titanium		20		0.99	mg/Kg	6010B
Vanadium		3.1		0.99	mg/Kg	6010B
Zinc		8.9		2.0	mg/Kg	6010B
Mercury		0.014	I	0.020	mg/Kg	7471A
Ammonia (as N)		14		0.60	mg/Kg	350.1
Phosphorus, Total		670		18	mg/Kg	365.4
Total Organic Carbo	on	39000		3000	mg/Kg	9060
Percent Solids		22		0.10	%	Moisture
Soluble						
pH-Soluble		7.56	Q	1.00	SU	9045C
Orthophosphate-So	luble	1.9	I	3.0	mg/L	SM 4500 P E

Client: Environmental Engineering Consultant

Lab Sample ID Analyte	Client Sample ID	Result / Q	ualifier	Reporting Limit	Units	Method	
660-33863-5	11A						
Carbon dioxide (as C Turbidity Nitrate as N Biochemical Oxygen Chlorophyll a Alkalinity Salinity Total Suspended Sol Sulfate Chloride	CO2) Demand lids	97 45 1.7 2.0 21.7 270 2.5 110 150 950 22	V Q Q,U Q	50 0.20 0.50 2.00 2.00 1.0 2.0 2.0 25 50 20	ug/L NTU mg/L ug/L ug/L ppt mg/L mg/L mg/L	RSK-175 180.1 353.2 405.1 SM 10200H SM 2320B SM 2520B SM 2540D SM 426C SM 4500 CI- E SM 5230D	
Tannins and Lignins	emand	33 1.0		20 0.10	mg/L mg/L	SM 5220D SM 5550B	
<i>Total Recoverable</i> Iron Potassium Magnesium Sodium Zinc		0.24 41 80 570 0.014	I	0.20 1.0 0.080 10 0.020	mg/L mg/L mg/L mg/L mg/L	6010B 6010B 6010B 6010B 6010B	
660-33863-6	8A						
Carbon dioxide (as C Turbidity Biochemical Oxygen Chlorophyll a Alkalinity Total Suspended Sol Sulfate Chloride Chemical Oxygen De Tannins and Lignins	CO2) Demand lids emand	140 6.5 2.00 18.3 280 10 82 440 21 1.2	V Q,U Q	50 0.10 2.00 2.00 1.0 1.0 25 50 20 0.10	ug/L NTU mg/L ug/L mg/L mg/L mg/L mg/L mg/L	RSK-175 180.1 405.1 SM 10200H SM 2320B SM 2540D SM 426C SM 4500 CI- E SM 5220D SM 5550B	
<i>Total Recoverable</i> Iron Potassium Magnesium Sodium Zinc		0.052 21 47 280 0.0076	1	0.20 1.0 0.080 10 0.020	mg/L mg/L mg/L mg/L mg/L	6010B 6010B 6010B 6010B 6010B	

Client: Environmental Engineering Consultant

Lab Sample ID Analyte	Client Sample ID	Result / Q	ualifier	Reporting Limit	Units	Method
660-33863-7	13					
Carbon dioxide (as Dieldrin Turbidity Nitrite as N Nitrate as N Biochemical Oxyge Chlorophyll a Alkalinity Total Suspended So Sulfate Chloride Tannins and Lignins	CO2) n Demand olids	110 0.016 17 0.16 5.8 2.16 14.9 280 31 71 160 0.47	V Q Q Q Q Q	50 0.010 0.10 0.50 2.00 2.00 1.0 1.0 1.0 10 20 0.10	ug/L ug/L NTU mg/L mg/L ug/L mg/L mg/L mg/L mg/L mg/L	RSK-175 8081A 180.1 353.2 353.2 405.1 SM 10200H SM 2320B SM 2540D SM 426C SM 4500 CI- E SM 5550B
<i>Total Recoverable</i> Iron Potassium Magnesium Sodium Zinc		0.34 11 42 110 0.018	I	0.20 1.0 0.080 10 0.020	mg/L mg/L mg/L mg/L mg/L	6010B 6010B 6010B 6010B 6010B
660-33863-8	14					
Carbon dioxide (as Dieldrin Turbidity Nitrate as N Biochemical Oxyge Chlorophyll a Alkalinity Total Suspended Sa Sulfate Chloride Chemical Oxygen E Tannins and Ligning	CO2) n Demand olids Demand	170 0.0028 79 0.33 2.73 64.2 310 150 90 290 30 1.0	V I Q Q Q	50 0.0098 0.20 0.50 2.00 2.00 1.0 1.9 25 50 20 0.10	ug/L ug/L NTU mg/L ug/L mg/L mg/L mg/L mg/L mg/L mg/L	RSK-175 8081A 180.1 353.2 405.1 SM 10200H SM 2320B SM 2540D SM 426C SM 4500 CI- E SM 5220D SM 5550B
<i>Total Recoverable</i> Iron Potassium Magnesium Sodium		0.33 20 53 210		0.20 1.0 0.080 10	mg/L mg/L mg/L mg/L	6010B 6010B 6010B 6010B
Zinc		0.030		0.020	mg/L	6010B

Client: Environmental Engineering Consultant

Lab Sample ID Analyte	Client Sample ID	Result / C	Qualifier	Reporting Limit	Units	Method
660-33863-9	12A					
Carbon dioxide (as Turbidity	CO2)	100 3.5	V	50 0.10	ug/L NTU	RSK-175 180.1
Biochemical Oxyger Chlorophyll a Alkalinity Salinity	n Demand	2.00 10.3 280 2.0	,U Q	2.00 2.00 1.0 2.0	mg/L ug/L mg/L ppt	405.1 SM 10200H SM 2320B SM 2520B
Total Suspended So Sulfate Chloride Chemical Oxygen D Tannins and Lignins	plids Pemand	4.4 120 670 33 1.1		1.0 25 50 20 0.10	mg/L mg/L mg/L mg/L mg/L	SM 2540D SM 426C SM 4500 CI- E SM 5220D SM 5550B
<i>Total Recoverable</i> Iron Potassium Magnesium Sodium Zinc		0.053 30 62 410 0.033	I	0.20 1.0 0.080 10 0.020	mg/L mg/L mg/L mg/L mg/L	6010B 6010B 6010B 6010B 6010B
660-33863-10	9A					
Carbon dioxide (as Turbidity Biochemical Oxyger Chlorophyll a Alkalinity Total Suspended So Sulfate Chloride Chemical Oxygen D Tannins and Lignins	CO2) n Demand blids vemand	130 5.7 2.00 29.6 290 16 69 340 20 1.2	V Q Q,U Q	50 0.10 2.00 2.00 1.0 1.0 10 50 20 0.10	ug/L NTU mg/L ug/L mg/L mg/L mg/L mg/L mg/L	RSK-175 180.1 405.1 SM 10200H SM 2320B SM 2540D SM 426C SM 4500 CI- E SM 5220D SM 5550B
<i>Total Recoverable</i> Iron Potassium Magnesium Sodium Zinc		0.12 17 41 210 0.022	I	0.20 1.0 0.080 10 0.020	mg/L mg/L mg/L mg/L mg/L	6010B 6010B 6010B 6010B 6010B

Client: Environmental Engineering Consultant

Lab Sample ID Client Sample ID			Reporting		
Analyte	Result / C	Qualifier	Limit	Units	Method
660-33863-11 6B					
Carbon dioxide (as CO2)	63	V	50	ug/L	RSK-175
Turbidity	15	Q	0.10	NTU	180.1
Biochemical Oxygen Demand	8.72	Q	2.00	mg/L	405.1
Chlorophyll a	30.9	Q	2.00	ug/L	SM 10200H
Alkalinity	470		1.0	mg/L	SM 2320B
Salinity	3.0		2.0	ppt	SM 2520B
Total Suspended Solids	22		1.0	mg/L	SM 2540D
Sulfate	140		25	mg/L	SM 426C
Chloride	960		50	mg/L	SM 4500 CI- E
Chemical Oxygen Demand	63		20	mg/L	SM 5220D
Tannins and Lignins	2.3		0.20	mg/L	SM 5550B
Total Recoverable					
Iron	0.16	I	0.20	mg/L	6010B
Potassium	33		10	mg/L	6010B
Magnesium	98		0.080	mg/L	6010B
Sodium	620		5.0	mg/L	6010B
Zinc	0.015	I	0.020	mg/L	6010B

METHOD SUMMARY

Client: Environmental Engineering Consultant

Job Number: 660-33863-1

Description	Lab Location	Method	Preparation Method
Matrix Solid			
Organochlorine Pesticides (GC) Ultrasonic Extraction	TAL TAM TAL TAM	SW846 8081A	SW846 3550B
Organophosphorous Pesticides (GC) Ultrasonic Extraction	TAL TAL TAL TAL	SW846 8141A	SW846 3550B
Herbicides (GC) Extraction (Herbicides)	TAL TAM TAL TAM	SW846 8151A	SW846 8151A
Metals (ICP) Preparation, Metals	TAL TAM TAL TAM	SW846 6010B	SW846 3050B
Mercury (CVAA) Preparation, Mercury	TAL TAM TAL TAM	SW846 7471A	SW846 7471A
Nitrogen, Ammonia Ammonia (Sediments)	TAL SAV TAL SAV	MCAWW 350.1	EPA 3-154
Nitrogen, Nitrate-Nitrite Deionized Water Leaching Procedure	TAL TAM TAL TAM	MCAWW 353.2	ASTM DI Leach
Phosphorus, Total Phosphorus, Total	TAL SAV TAL SAV	EPA 365.4	MCAWW 365.2/365.3/365
Sulfide, Acid Soluble and Insoluble (Titrimetric) Sulfide, Distillation (Acid Soluble and Insoluble)	TAL SAV TAL SAV	SW846 9034	SW846 9030B
Sulfate, Turbidimetric Deionized Water Leaching Procedure	TAL SAV TAL SAV	SW846 9038	ASTM DI Leach
pH Deionized Water Leaching Procedure	TAL TAM TAL TAM	SW846 9045C	ASTM DI Leach
Organic Carbon, Total (TOC)	TAL SAV	SW846 9060	
Percent Moisture	TAL TAM	EPA Moisture	
Orthophosphate Deionized Water Leaching Procedure	TAL TAM TAL TAM	SM SM 4500 P	E ASTM DI Leach
Matrix Water			
Dissolved Gases (GC)	TAL PEN	RSK RSK-175	
Organochlorine Pesticides (GC) Liquid-Liquid Extraction (Separatory Funnel)	TAL TAM TAL TAM	SW846 8081A	SW846 3510C
Organophosphorous Pesticides (GC) Liquid-Liquid Extraction (Continuous)	TAL TAL TAL TAL	SW846 8141A	SW846 3520C
Herbicides (GC) Extraction (Herbicides)	TAL TAM TAL TAM	SW846 8151A	SW846 8151A
Metals (ICP) Preparation, Total Recoverable or Dissolved Metals	TAL TAM TAL TAM	SW846 6010B	SW846 3005A
Mercury Preparation, Mercury	TAL TAM TAL TAM	SW846 7470A	SW846 7470A
Turbidity, Nephelometric	TAL TAM	MCAWW 180.1	

TestAmerica Tampa

METHOD SUMMARY

Client: Environmental Engineering Consultant

Job Number: 660-33863-1

Description	Lab Location	Method Preparation Method
Matrix Water		
Nitrite	TAL TAM	MCAWW 353.2
Phosphorus, Total Phosphorus, Total	TAL TAM TAL TAM	EPA 365.4 MCAWW 365.2/365.3/365
BOD-5	TAL ORL	EPA 405.1
Chlorophyll-a	TAL ORL	SM SM 10200H
Alkalinity	TAL TAM	SM SM 2320B
Salinity	TAL TAM	SM SM 2520B
Solids, Total Suspended (TSS)	TAL TAM	SM SM 2540D
Sulfate	TAL TAM	SM SM 426C
Chloride, Total	TAL TAM	SM SM 4500 CI- E
Sulfide, Total	TAL TAM	SM SM 4500 S2 F
COD COD	TAL TAM TAL TAM	SM SM 5220D SM SM 5220
Tannin and Lignin	TAL SAV	SM SM 5550B

Lab References:

TAL ORL = TestAmerica Orlando

TAL PEN = TestAmerica Pensacola

TAL SAV = TestAmerica Savannah

TAL TAL = TestAmerica Tallahassee

TAL TAM = TestAmerica Tampa

Method References:

ASTM = ASTM International

EPA = US Environmental Protection Agency

MCAWW = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Subsequent Revisions.

RSK = Sample Prep And Calculations For Dissolved Gas Analysis In Water Samples Using A GC Headspace Equilibration Technique, RSKSOP-175, Rev. 0, 8/11/94, USEPA Research Lab

SM = "Standard Methods For The Examination Of Water And Wastewater",

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

METHOD / ANALYST SUMMARY

Client: Environmental Engineering Consultant

Method	Analyst	Analyst ID
RSK RSK-175	Ayers, Kim	KA
SW846 8081A SW846 8081A	Myers, Randy Ortiz, Raymond	RM RO
SW846 8141A	Thomas, Martin L	MLT
SW846 8151A	Myers, Randy	RM
SW846 6010B	Ramos, Salvador	SR
SW846 7470A	Wieland, Kristen	KW
SW846 7471A	Wieland, Kristen	KW
MCAWW 180.1	Martin, Randolph	RM
MCAWW 350.1	Ross, Jon	JR
MCAWW 353.2	Steward, Tiffany	TS
EPA 365.4 EPA 365.4	Martin, Randolph Ross, Jon	RM JR
EPA 405.1	ANALYST, SUBCONTRACTED	SUB
SW846 9034	Vasquez, Juana	JV
SW846 9038	Ross, Jon	JR
SW846 9045C	Sengsouvanna, Dom	DS
SW846 9060	Blackshear, Kim	KB
EPA Moisture	Volz, Charles	CV
SM SM 10200H	ANALYST, SUBCONTRACTED	SUB
SM SM 2320B	Steward, Tiffany	TS
SM SM 2520B	Mostafavifar, Efe	EM
SM SM 2540D	Oonnoonny, Thomas	ТО
SM SM 426C	Cerome, Saurel	SC
SM SM 4500 CI- E	Mostafavifar, Efe	EM
SM SM 4500 P E	Mostafavifar, Efe	EM
SM SM 4500 S2 F	Mostafavifar, Efe	EM
SM SM 5220D	Cerome, Saurel	SC
SM SM 5550B	Ross, Jon	JR

SAMPLE SUMMARY

Lab Sample ID	Client Sample ID	Client Matrix	Date/Time Sampled	Date/Time Received
660-33863-1	11A	Solid	02/15/2010 1020	02/17/2010 0900
660-33863-2	13	Solid	02/15/2010 1110	02/17/2010 0900
660-33863-3	8A	Solid	02/15/2010 1340	02/17/2010 0900
660-33863-4	6B	Solid	02/15/2010 1400	02/17/2010 0900
660-33863-5	11A	Water	02/15/2010 1010	02/17/2010 0900
660-33863-6	8A	Water	02/15/2010 1330	02/17/2010 0900
660-33863-7	13	Water	02/15/2010 1100	02/17/2010 0900
660-33863-8	14	Water	02/15/2010 1140	02/17/2010 0900
660-33863-9	12A	Water	02/15/2010 1350	02/17/2010 0900
660-33863-10	9A	Water	02/15/2010 1250	02/17/2010 0900
660-33863-11	6B	Water	02/15/2010 1450	02/17/2010 0900

Client Sample ID	: 11 A				
Lab Sample ID: Client Matrix:	660-33863-5 Water			Date Sar Date Rec	npled: 02/15/2010 1010 ceived: 02/17/2010 0900
		RSK-175 Dissolved Gase	s (GC)		
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	RSK-175 N/A 1.0 02/26/2010 0821	Analysis Batch: 400-104462		Instrument ID: Lab File ID: Initial Weight/Volume: Final Weight/Volume: Injection Volume:	NOEQUIP N/A 1.0 mL 1.0 mL
Analyte		Result (ug/L)	Qualifie	r MDL	PQL
Carbon dioxide (as	s CO2)	97	V	7.0	50

Client Sample ID:	8 A				
Lab Sample ID: Client Matrix:	660-33863-6 Water			Date San Date Rec	npled: 02/15/2010 1330 ceived: 02/17/2010 0900
		RSK-175 Dissolved Gases	s (GC)		
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	RSK-175 N/A 1.0 02/26/2010 0845	Analysis Batch: 400-104462		Instrument ID: Lab File ID: Initial Weight/Volume: Final Weight/Volume: Injection Volume:	NOEQUIP N/A 1.0 mL 1.0 mL
Analyte		Result (ug/L)	Qualifie	r MDL	PQL
Carbon dioxide (as	s CO2)	140	V	7.0	50

Client Sample ID:	13				
Lab Sample ID: Client Matrix:	660-33863-7 Water			Date Sar Date Rec	npled: 02/15/2010 1100 ceived: 02/17/2010 0900
		RSK-175 Dissolved Gases	s (GC)		
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	RSK-175 N/A 1.0 02/26/2010 0859	Analysis Batch: 400-104462		Instrument ID: Lab File ID: Initial Weight/Volume: Final Weight/Volume: Injection Volume:	NOEQUIP N/A 1.0 mL 1.0 mL
Analyte		Result (ug/L)	Qualifie	r MDL	PQL
Carbon dioxide (as	s CO2)	110	V	7.0	50

Client Sample ID:	14						
Lab Sample ID: Client Matrix:	660-33863-8 Water	Date Sampled: 02/15/201 Date Received: 02/17/201					
		RSK-175 Dissolved Gase	s (GC)				
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	RSK-175 N/A 1.0 02/26/2010 0911	Analysis Batch: 400-104462		Instrument ID: Lab File ID: Initial Weight/Volume: Final Weight/Volume: Injection Volume:	NOEQUIP N/A 1.0 mL 1.0 mL		
Analyte		Result (ug/L)	Qualifie	r MDL	PQL		
Carbon dioxide (as	s CO2)	170	V	7.0	50		

Client Sample ID	: 12A				
Lab Sample ID: Client Matrix:	660-33863-9 Water			Date Sar Date Rec	npled: 02/15/2010 1350 ceived: 02/17/2010 0900
		RSK-175 Dissolved Gases	s (GC)		
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	RSK-175 N/A 1.0 02/26/2010 0923	Analysis Batch: 400-104462		Instrument ID: Lab File ID: Initial Weight/Volume: Final Weight/Volume: Injection Volume:	NOEQUIP N/A 1.0 mL 1.0 mL
Analyte	s (())	Result (ug/L)	Qualifie	r MDL	PQL 50

Client Sample ID:	9 A				
Lab Sample ID: Client Matrix:	660-33863-10 Water			Date San Date Rec	npled: 02/15/2010 1250 ceived: 02/17/2010 0900
		RSK-175 Dissolved Gases	s (GC)		
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	RSK-175 N/A 1.0 02/26/2010 0937	Analysis Batch: 400-104462		Instrument ID: Lab File ID: Initial Weight/Volume: Final Weight/Volume: Injection Volume:	NOEQUIP N/A 1.0 mL 1.0 mL
Analyte		Result (ug/L)	Qualifie	er MDL	PQL
Carbon dioxide (as	s CO2)	130	V	7.0	50

Client Sample ID:	6B				
Lab Sample ID: Client Matrix:	660-33863-11 Water			Date San Date Rec	npled: 02/15/2010 1450 ceived: 02/17/2010 0900
		RSK-175 Dissolved Gases	s (GC)		
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	RSK-175 N/A 1.0 02/26/2010 1001	Analysis Batch: 400-104462		Instrument ID: Lab File ID: Initial Weight/Volume: Final Weight/Volume: Injection Volume:	NOEQUIP N/A 1.0 mL 1.0 mL
Analyte		Result (ug/L)	Qualifie	r MDL	PQL
Carbon dioxide (as	s CO2)	63	V	7.0	50

Client Sample ID:	11A							
Lab Sample ID: Client Matrix:	660-33863-1 Solid					Date San Date Rec	npled: 02/15/20 eived: 02/17/20	10 1020 10 0900
		8081A	Organochlorine Pes	ticides (G	C)			
Method:	8081A	Anal	ysis Batch: 660-90917	,	Instrument IE	D:	BSGJ	
Preparation:	3550B	Prep	Batch: 660-90841		Initial Weight	/Volume:	30.15 g	
Dilution:	1.0				Final Weight	Volume:	10 mL	
Date Analyzed:	02/19/2010 1601				Injection Volu	ume:	2 uL	
Date Prepared:	02/19/2010 0657				Result Type:		PRIMARY	
Analyte	DryWt Correc	cted: N	Result (ug/Kg)	Qualifi	er MDI	L	PQL	
Endrin aldehyde			0.50	U	0.50)	4.0	

3.3

2.0

1.7

2.0

0.50

0.50

0.14

0.50

Client: Environmental Engineering Consultant

Client Sample ID:	11A						
Lab Sample ID: Client Matrix:	660-33863-1 Solid	Date Sampled: 02/15/2010 10 Date Received: 02/17/2010 09					
		8081A	Organochlorine Pestic	ides (GC)		
Method:	8081A	Ana	lysis Batch: 660-90917		nstrument ID:	BSGJ	
Preparation:	3550B	Prep	Batch: 660-90841		nitial Weight/Volume	30.15 g	
Dilution:	1.0				inal Weight/Volume:	10 mL	
Date Analyzed:	02/23/2010 1733				njection Volume:	2 uL	
Date Prepared:	02/19/2010 0657			I	Result Type:	PRIMARY	
Analyte	DryWt Correc	ted: N	Result (ug/Kg)	Qualifie	MDL	PQL	
4,4'-DDD			0.50	U	0.50	3.3	
4,4'-DDE			0.50	U	0.50	3.3	

DryWt Corrected: N	Result (ug/Kg)	Qualifier
	0.50	U
	0.14	U
	0.50	U
	2.4	U

Chlordane (technical)	2.4	U	2.4	17	
delta-BHC	0.50	U	0.50	2.0	
Dieldrin	0.15	U	0.15	1.7	
Endosulfan I	0.25	U	0.25	2.0	
Endosulfan II	0.25	U	0.25	3.3	
Endosulfan sulfate	0.25	U	0.25	3.3	
Endrin	0.50	U	0.50	4.0	
Endrin ketone	0.50	U	0.50	4.0	
gamma-BHC (Lindane)	0.50	U	0.50	2.0	
Heptachlor	0.50	U	0.50	2.0	
Heptachlor epoxide	0.14	U	0.14	2.0	
Methoxychlor	1.0	U	1.0	17	
Toxaphene	29	U	29	170	
Surrogate	%Rec	Qualifier	Accept	ance Limits	
DCB Decachlorobiphenyl	46		30 - 15	0	
Tetrachloro-m-xylene	64		30 - 15	0	

4,4'-DDT

beta-BHC

Aldrin alpha-BHC

Client Sample ID:	13				
Lab Sample ID: Client Matrix:	660-33863-2 Solid		Date Sampled: 02/15/2010 1110 Date Received: 02/17/2010 0900		
		8081A Organochlorine Pesticide	es (GC)		
Method:	8081A	Analysis Batch: 660-90917	Instrument ID:	BSGJ	
Preparation:	3550B	Prep Batch: 660-90841	Initial Weight/Volume:	30.18 g	
Dilution:	1.0		Final Weight/Volume:	10 mL	
Date Analyzed:	02/19/2010 1614		Injection Volume:	2 uL	
Data Duan ana di	00/40/0040 0057		Description and		

Date Prepared:	02/19/2010 0657		Resu	ult Type:	PRIMARY	
Analyte	DryWt Corrected: N	Result (ug/Kg)	Qualifier	MDL	PQL	
Endrin aldehyde		0.50	U	0.50	4.0	

Client Sample ID:	13					
Lab Sample ID: Client Matrix:	660-33 Solid	863-2			Date Sar Date Rec	npled: 02/15/2010 1110 ceived: 02/17/2010 0900
		80	81A Organochlorine Pe	sticides (G	C)	
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	8081A 3550B 1.0 02/23/201 02/19/201	0 1747 0 0657	Analysis Batch: 660-9091 Prep Batch: 660-90841	7	Instrument ID: Initial Weight/Volume: Final Weight/Volume: Injection Volume: Result Type:	BSGJ 30.18 g 10 mL 2 uL PRIMARY
Analyte	C) ryWt Corrected: N	Result (ug/Kg)	Qualifi	er MDL	PQL
4,4'-DDD			0.50	U	0.50	3.3
4,4'-DDE			0.50	U	0.50	3.3
4,4'-DDT			0.50	U	0.50	3.3
Aldrin			0.50	U	0.50	2.0
alpha-BHC			0.14	U	0.14	1.7
beta-BHC			0.50	U	0.50	2.0
Chlordane (technic	cal)		2.4	U	2.4	17
delta-BHC			0.50	U	0.50	2.0
Dieldrin			1.0	I	0.15	1.7
Endosulfan I			0.25	U	0.25	2.0
Endosulfan II			0.25	U	0.25	3.3
Endosulfan sulfate			0.25	U	0.25	3.3
Endrin			0.50	U	0.50	4.0
Endrin ketone			0.50	U	0.50	4.0
gamma-BHC (Lind	lane)		0.50	U	0.50	2.0
Heptachlor			0.50	U	0.50	2.0
Heptachlor epoxide	e		0.14	U	0.14	2.0
Methoxychlor			0.99	U	0.99	17
Toxaphene			29	U	29	170
Surrogate			%Rec	Qualifi	er Acceptar	nce Limits
DCB Decachlorobi	phenyl		51		30 - 150	
Tetrachloro-m-xyle	ene		68		30 - 150	

360-33863-1

Client Sample ID:	8A							
Lab Sample ID: Client Matrix:	660-33 Solid	3863-3					Date San Date Rec	npled: 02/15/2010 1340 eived: 02/17/2010 0900
		8	081A Or	ganochlorine Pestic	ides (G	C)		
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	8081A 3550B 1.0 02/19/201 02/19/201	10 1628 10 0657	Analysi Prep B	is Batch: 660-90917 atch: 660-90841		Instrument Initial Weig Final Weig Injection V Result Typ	t ID: ght/Volume: ht/Volume: olume: pe:	BSGJ 30.05 g 10 mL 2 uL PRIMARY
Analyte	[DryWt Corrected:	N	Result (ug/Kg)	Qualifi	er M	1DL	PQL
4,4'-DDD		, ,		0.50	U	0	.50	3.3
4,4-DDE 4 4'-DDT				0.50	U.13	0	.50	3.3
Aldrin				0.50	U J3	0	.50	2.0
alpha-BHC				0.14	U	0.	.14	1.7
beta-BHC				0.50	U	0.	.50	2.0
Chlordane (technic	cal)			2.4	U	2	.4	17
delta-BHC				0.50	U	0.	.50	2.0
Dieldrin				0.15	U	0.	.15	1.7
Endosulfan I				0.25	U	0.	.25	2.0
Endosulfan II				0.25	U	0.	.25	3.3
Endosulfan sulfate				0.25	U	0.	.25	3.3
Endrin				0.50	U J3	0.	.50	4.0
Endrin aldehyde				0.50	U J3	0.	.50	4.0
Endrin ketone				0.50	U	0.	.50	4.0
gamma-BHC (Lind	lane)			0.50	U	0.	.50	2.0
Heptachlor				0.50	U	0.	.50	2.0
Heptachlor epoxide	е			0.14	U	0.	.14	2.0
Methoxychlor				1.0	U	1.	.0	17
Toxaphene				29	U	2	9	170
Surrogate				%Rec	Qualifi	er	Acceptan	ce Limits
DCB Decachlorobi	phenyl			30			30 - 150	
Tetrachloro-m-xyle	ene			57			30 - 150	

Client Sample ID:	6B							
Lab Sample ID: Client Matrix:	660-33863-4 Solid					Date Sam Date Rec	npled: 02/15/20 eived: 02/17/20	10 1400 10 0900
		8081A	Organochlorine Pes	ticides (G	C)			
Method:	8081A	Anal	ysis Batch: 660-90917	7	Instrument ID	:	BSGJ	
Preparation:	3550B	Prep	Batch: 660-90841		Initial Weight	Volume:	29.85 g	
Dilution:	1.0				Final Weight/	Volume:	10 mL	
Date Analyzed:	02/19/2010 1641				Injection Volu	ime:	2 uL	
Date Prepared:	02/19/2010 0657				Result Type:		PRIMARY	
Analyte	DryWt Correc	ted: N	Result (ug/Kg)	Qualifie	er MDL	-	PQL	
Endrin aldehyde			0.50	U	0.50		4.0	

Analytical Data

Job Number: 660-33863-1

Client: Environmental Engineering Consultant

6B

Client Sample ID:

Lab Sample ID:660-33863-4Date Sampled:02/15/20101400Client Matrix:SolidDate Received:02/17/20100900

		808	1A Organochlorine Pes	ticides (GC)		
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	8081A 3550B 1.0 02/23/201 02/19/201	A F 0 1800 0 0657	nalysis Batch: 660-90917 Prep Batch: 660-90841	7 In In Fi In Re	strument ID: itial Weight/Volume: nal Weight/Volume: jection Volume: esult Type:	BSGJ 29.85 g 10 mL 2 uL PRIMARY
Analyte	[DryWt Corrected: N	Result (ug/Kg)	Qualifier	MDL	PQL
4,4'-DDD		5	0.50	U	0.50	3.3
4,4'-DDE			0.50	U	0.50	3.3
4,4'-DDT			0.50	U	0.50	3.3
Aldrin			0.50	U	0.50	2.0
alpha-BHC			0.14	U	0.14	1.7
beta-BHC			0.50	U	0.50	2.0
delta-BHC			0.50	U	0.50	2.0
Dieldrin			0.29	I	0.15	1.7
Endosulfan I			0.25	U	0.25	2.0
Endosulfan II			0.25	U	0.25	3.3
Endosulfan sulfate			0.25	U	0.25	3.3
Endrin			0.50	U	0.50	4.0
Endrin ketone			0.50	U	0.50	4.0
gamma-BHC (Lind	lane)		0.50	U	0.50	2.0
Heptachlor			0.50	U	0.50	2.0
Heptachlor epoxid	е		0.14	U	0.14	2.0
Methoxychlor			1.0	U	1.0	17
Toxaphene			29	U	29	170
Surrogate			%Rec	Qualifier	Acceptan	ice Limits
DCB Decachlorobi	phenyl		56		30 - 150	
Tetrachloro-m-xyle	ene		80		30 - 150	

Client Sample ID:	6B							
Lab Sample ID: Client Matrix:	660-33863-4 Solid					Date San Date Rec	npled: 02/15/20 eived: 02/17/20	10 1400 10 0900
		8081A	Organochlorine Pest	icides (GC	;)			
Method:	8081A	Anal	ysis Batch: 660-90917		Instrument II	D:	BSGJ	
Preparation:	3550B	Prep	Batch: 660-90841		Initial Weight	/Volume:	29.85 g	
Dilution:	1.0				Final Weight	/Volume:	10 mL	
Date Analyzed:	02/25/2010 2242				Injection Vol	ume:	2 uL	
Date Prepared:	02/19/2010 0657				Result Type:		PRIMARY	
Analyte	DryWt Correc	ted: N	Result (ug/Kg)	Qualifie	er MD	L	PQL	
Chlordane (technical)		14	I	2.4		17		

Client Sample ID	D: 11A				
Lab Sample ID: Client Matrix:	660-33863-5 Water			Date San Date Rec	npled: 02/15/2010 1010 ceived: 02/17/2010 0900
		8081A Organochlorine Pesti	cides (GC	;)	
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	8081A 3510C 1.0 02/19/2010 2146 02/18/2010 0642	Analysis Batch: 660-91002 Prep Batch: 660-90781		Instrument ID: Initial Weight/Volume: Final Weight/Volume: Injection Volume: Result Type:	BSGJ 1050 mL 10 mL 2 uL PRIMARY
Analyte		Result (ug/L)	Qualifie	r MDL	PQL
4,4'-DDD		0.0039	U	0.0039	0.0095
4,4'-DDE		0.0052	U	0.0052	0.0095
4,4'-DDT		0.0030	U	0.0030	0.0095
Aldrin		0.0017	U	0.0017	0.0095
alpha-BHC		0.0027	U	0.0027	0.0095
beta-BHC		0.0025	U	0.0025	0.0095
Chlordane (techn	nical)	0.054	U	0.054	0.48
delta-BHC		0.0026	U	0.0026	0.0095
Dieldrin		0.0013	U	0.0013	0.0095
Endosulfan I		0.0033	U	0.0033	0.0095
Endosulfan II		0.0031	U	0.0031	0.0095
Endosulfan sulfat	te	0.0028	U	0.0028	0.0095
Endrin		0.0030	U	0.0030	0.0095
Endrin aldehyde		0.0030	U	0.0030	0.0095
Endrin ketone		0.0051	U	0.0051	0.095
gamma-BHC (Lin	ndane)	0.0025	U	0.0025	0.0095
Heptachlor		0.0029	U	0.0029	0.0095
Heptachlor epoxi	de	0.0030	U	0.0030	0.0095
Methoxychlor		0.0048	U	0.0048	0.0095

Toxaphene	0.69	U	0.69	2.9
Surrogate	%Rec	Qualifier	Acceptance L	imits
DCB Decachlorobiphenyl	54		30 - 150	
Tetrachloro-m-xylene	83		30 - 150	

Analytical Data

Client: Environmental Engineering Consultant

Client Sample ID	: 8A				
Lab Sample ID: Client Matrix:	660-33863-6 Water			Date San Date Rec	npled: 02/15/2010 1330 eived: 02/17/2010 0900
		8081A Organochlorine Pestic	cides (GC	C)	
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	8081A 3510C 1.0 02/19/2010 2200 02/18/2010 0642	Analysis Batch: 660-91002 Prep Batch: 660-90781		Instrument ID: Initial Weight/Volume: Final Weight/Volume: Injection Volume: Result Type:	BSGJ 1050 mL 10 mL 2 uL PRIMARY
Analyte		Result (ug/L)	Qualifie	er MDL	PQL
4,4'-DDD		0.0039	U	0.0039	0.0095
4,4'-DDE		0.0052	U	0.0052	0.0095
4,4'-DDT		0.0030	U	0.0030	0.0095
Aldrin		0.0017	U	0.0017	0.0095
alpha-BHC		0.0027	U	0.0027	0.0095
beta-BHC		0.0025	U	0.0025	0.0095
Chlordane (techni	cal)	0.054	U	0.054	0.48
delta-BHC		0.0026	U	0.0026	0.0095
Dieldrin		0.0013	U	0.0013	0.0095
Endosulfan I		0.0033	U	0.0033	0.0095
Endosultan II		0.0031	U	0.0031	0.0095
Endosultan sultate	9	0.0028	U	0.0028	0.0095
Endrin		0.0030	U	0.0030	0.0095
Endrin aldehyde		0.0030	U	0.0030	0.0095
Endrin ketone		0.0051	U	0.0051	0.095
gamma-BHC (Lind	dane)	0.0025	U	0.0025	0.0095
Heptachlor		0.0029	U	0.0029	0.0095
Heptachlor epoxid	le	0.0030	U	0.0030	0.0095
Methoxychlor		0.0048	U	0.0048	0.0095
Toxaphene		0.69	U	0.69	2.9
Surrogate		%Rec	Qualifie	er Acceptan	ice Limits
DCB Decachlorob	iphenyl	55		30 - 150	

80

Tetrachloro-m-xylene

Job Number: 660-33863-1

30 - 150

660-33863-1
6

Client Sample ID): 13				
Lab Sample ID: Client Matrix:	660-33863-7 Water			Date San Date Rec	npled: 02/15/2010 1100 eived: 02/17/2010 0900
		8081A Organochlorine Pestic	cides (GC	;)	
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	8081A 3510C 1.0 02/19/2010 2213 02/18/2010 0642	Analysis Batch: 660-91002 Prep Batch: 660-90781		Instrument ID: Initial Weight/Volume: Final Weight/Volume: Injection Volume: Result Type:	BSGJ 1000 mL 10 mL 2 uL PRIMARY
Analyte		Result (ug/L)	Qualifie	er MDL	PQL
4,4'-DDD 4,4'-DDE		0.0041 0.0055	U U	0.0041 0.0055	0.010 0.010
4,4'-DDT Aldrin		0.0032 0.0018	U U	0.0032 0.0018	0.010 0.010
alpha-BHC		0.0028	U	0.0028	0.010
Chlordane (techn	ical)	0.057	U	0.057	0.50
Dieldrin		0.0028	U	0.0028	0.010
Endosulfan I Endosulfan II		0.0034 0.0033	U U	0.0034 0.0033	0.010 0.010
Endosulfan sulfat Endrin	e	0.0030 0.0031	U U	0.0030 0.0031	0.010 0.010
Endrin aldehyde Endrin ketone		0.0032 0.0054	U U	0.0032 0.0054	0.010 0.10
gamma-BHC (Lin	idane)	0.0026	Ŭ	0.0026	0.010
Heptachlor epoxic	de	0.0031	U	0.0031	0.010
Toxaphene		0.0051	U U	0.0051 0.72	0.010 3.0
Surrogate		%Rec	Qualifie	er Acceptan	ce Limits
DCB Decachlorol	biphenyl	60		30 - 150	
I etrachloro-m-xy	lene	83		30 - 150	

0.098

0.0098

0.0098

0.0098

0.0098

2.9

Acceptance Limits

30 - 150

30 - 150

0.0053

0.0026

0.0030

0.0031

0.0050

0.71

U

U

U

U

U

U

Qualifier

Client: Environmental Engineering Consultant

Client Sample ID): 14					
Lab Sample ID: Client Matrix:	660-33863-8 Water			Date Sar Date Rec	npled: 02/15/2010 ceived: 02/17/2010	1140 0900
		8081A Organochlorine Pestic	cides (GC)			
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	8081A 3510C 1.0 02/19/2010 2226 02/18/2010 0642	Analysis Batch: 660-91002 Prep Batch: 660-90781	Ins Init Fin Inje Res	trument ID: ial Weight/Volume: al Weight/Volume: ection Volume: sult Type:	BSGJ 1020 mL 10 mL 2 uL PRIMARY	
Analyte		Result (ug/L)	Qualifier	MDL	PQL	
4,4'-DDD		0.0040	U	0.0040	0.0098	
4,4'-DDE		0.0054	U	0.0054	0.0098	
4,4'-DDT		0.0031	U	0.0031	0.0098	
Aldrin		0.0018	U	0.0018	0.0098	
alpha-BHC		0.0027	U	0.0027	0.0098	
beta-BHC		0.0026	U	0.0026	0.0098	
Chlordane (techni	ical)	0.056	U	0.056	0.49	
delta-BHC		0.0027	U	0.0027	0.0098	
Dieldrin		0.0028	I	0.0014	0.0098	
Endosulfan I		0.0034	U	0.0034	0.0098	
Endosulfan II		0.0032	U	0.0032	0.0098	
Endosulfan sulfat	e	0.0029	U	0.0029	0.0098	
Endrin		0.0031	U	0.0031	0.0098	
Endrin aldehyde		0.0031	U	0.0031	0.0098	

0.0053

0.0026

0.0030

0.0031

0.0050

0.71

%Rec

54

83

gamma-BHC (Lindane)

DCB Decachlorobiphenyl

Tetrachloro-m-xylene

Heptachlor epoxide

Endrin ketone

Methoxychlor

Toxaphene

Surrogate

Heptachlor

Analytical Data

Client: Environmental Engineering Consultant

Client Sample ID	: 12A				
Lab Sample ID: Client Matrix:	660-33863-9 Water			Date Sar Date Rec	npled: 02/15/2010 1350 ceived: 02/17/2010 0900
		8081A Organochlorine Pestic	ides (GC	C)	
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	8081A 3510C 1.0 02/19/2010 2240 02/18/2010 0642	Analysis Batch: 660-91002 Prep Batch: 660-90781		Instrument ID: Initial Weight/Volume: Final Weight/Volume: Injection Volume: Result Type:	BSGJ 1050 mL 10 mL 2 uL PRIMARY
Analyte		Result (ug/L)	Qualifie	er MDL	PQL
4,4'-DDD 4,4'-DDE 4,4'-DDT Aldrin alpha-BHC beta-BHC Chlordane (techni	cal)	0.0039 0.0052 0.0030 0.0017 0.0027 0.0025 0.054		0.0039 0.0052 0.0030 0.0017 0.0027 0.0025 0.054	0.0095 0.0095 0.0095 0.0095 0.0095 0.0095 0.0095 0.48
delta-BHC Dieldrin Endosulfan I Endosulfan II		0.0026 0.0013 0.0033 0.0031	U U U U	0.0026 0.0013 0.0033 0.0031	0.0095 0.0095 0.0095 0.0095
Endosulian suliate Endrin Endrin aldehyde Endrin ketone gamma-BHC (Lind	e dane)	0.0028 0.0030 0.0030 0.0051 0.0025		0.0028 0.0030 0.0030 0.0051 0.0025	0.0095 0.0095 0.0095 0.095 0.0095
Heptachlor Heptachlor epoxid Methoxychlor Toxaphene	le	0.0029 0.0030 0.0048 0.69	U U U U	0.0029 0.0030 0.0048 0.69	0.0095 0.0095 0.0095 2.9
Surrogate		%Rec	Qualifie	er Acceptar	nce Limits
DCB Decachlorob Tetrachloro-m-xyle	iphenyl ene	55 81		30 - 150 30 - 150	

Client Sample ID): 9A				
Lab Sample ID: Client Matrix:	660-33863-10 Water			Date Sar Date Rec	npled: 02/15/2010 1250 ceived: 02/17/2010 0900
		8081A Organochlorine Pestic	cides (GC	2)	
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	8081A 3510C 1.0 02/19/2010 2253 02/18/2010 0642	Analysis Batch: 660-91002 Prep Batch: 660-90781		Instrument ID: Initial Weight/Volume: Final Weight/Volume: Injection Volume: Result Type:	BSGJ 1050 mL 10 mL 2 uL PRIMARY
Analyte		Result (ug/L)	Qualifie	er MDL	PQL
4,4'-DDD 4,4'-DDE 4,4'-DDT Aldrin alpha-BHC beta-BHC Chlordane (techn delta-BHC Dieldrin Endosulfan I	ical)	0.0039 0.0052 0.0030 0.0017 0.0027 0.0025 0.054 0.0026 0.0013 0.0033 0.0031		0.0039 0.0052 0.0030 0.0017 0.0027 0.0025 0.054 0.0026 0.0013 0.0033 0.0031	0.0095 0.0095 0.0095 0.0095 0.0095 0.0095 0.48 0.0095 0.0095 0.0095 0.0095
Endosulfan sulfat Endrin Endrin aldehyde Endrin ketone	e	0.0028 0.0030 0.0030 0.0051		0.0028 0.0030 0.0030 0.0051	0.0095 0.0095 0.0095 0.095
gamma-BHC (Lin Heptachlor Heptachlor epoxic Methoxychlor Toxaphene	dane) de	0.0025 0.0029 0.0030 0.0048 0.69		0.0025 0.0029 0.0030 0.0048 0.69	0.0095 0.0095 0.0095 0.0095 2.9
Surrogate		%Rec	Qualifie	er Acceptar	nce Limits
DCB Decachlorot Tetrachloro-m-xyl	piphenyl lene	50 80		30 - 150 30 - 150	

Client Sample ID): 6B				
Lab Sample ID: Client Matrix:	660-33863-11 Water			Date Sar Date Rec	npled: 02/15/2010 1450 ceived: 02/17/2010 0900
		8081A Organochlorine Pestic	cides (GC	C)	
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	8081A 3510C 1.0 02/19/2010 2307 02/18/2010 0642	Analysis Batch: 660-91002 Prep Batch: 660-90781		Instrument ID: Initial Weight/Volume: Final Weight/Volume: Injection Volume: Result Type:	BSGJ 1050 mL 10 mL 2 uL PRIMARY
Analyte		Result (ug/L)	Qualifie	er MDL	PQL
4,4'-DDD 4,4'-DDE 4,4'-DDT Aldrin alpha-BHC beta-BHC Chlordane (techn delta-BHC Dieldrin Endosulfan I Endosulfan I	ical)	0.0039 0.0052 0.0030 0.0017 0.0027 0.0025 0.054 0.0026 0.0013 0.0033 0.0031		0.0039 0.0052 0.0030 0.0017 0.0027 0.0025 0.054 0.0026 0.0013 0.0033 0.0031	0.0095 0.0095 0.0095 0.0095 0.0095 0.0095 0.48 0.0095 0.0095 0.0095 0.0095 0.0095
Endosulfan sulfat Endrin Endrin aldehyde Endrin ketone gamma-BHC (Lin Heptachlor	e dane)	0.0028 0.0030 0.0030 0.0051 0.0025 0.0029		0.0028 0.0030 0.0030 0.0051 0.0025 0.0029	0.0095 0.0095 0.0095 0.095 0.095 0.0095 0.0095
Heptachlor epoxic Methoxychlor Toxaphene	de	0.0030 0.0048 0.69	U U U	0.0030 0.0048 0.69	0.0095 0.0095 2.9
Surrogate		%Rec	Qualifie	er Acceptar	nce Limits
DCB Decachlorot Tetrachloro-m-xyl	oiphenyl Iene	45 78		30 - 150 30 - 150	

Client Sample ID:	11A					
Lab Sample ID: Client Matrix:	660-33863-1 Solid				Date Sa Date Re	mpled: 02/15/2010 1020 ceived: 02/17/2010 0900
		8141A O	rganophosphorous P	esticides	(GC)	
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	8141A 3550B 1.0 02/24/2010 1532 02/22/2010 1006	Ana Pre	alysis Batch: 640-65935 p Batch: 640-65855	i	Instrument ID: Initial Weight/Volume: Final Weight/Volume: Injection Volume: Result Type:	SGF 00030.36 g 10.0 mL 1 uL PRIMARY
Analyte	DryWt Cor	rected: N	Result (ug/Kg)	Qualifi	er MDL	PQL
Azinphos-methyl			4.3	U	4.3	65
Bolstar			8.4	U	8.4	33
Chlorpyrifos			8.3	U	8.3	33
Coumaphos			8.5	U	8.5	330
Demeton, Total			13	U	13	82
Diazinon			8.7	U	8.7	33
Dichlorvos			17	U	17	65
Dimethoate			9.9	U	9.9	65
Disulfoton			11	U	11	65
EPN			9.0	U	9.0	33
Ethoprop			15	U	15	17
Ethyl Parathion			8.7	U	8.7	33
Fensulfothion			9.9	U	9.9	330
Hexazinone			7.6	U	7.6	33
Malathion			8.9	U	8.9	33
Merphos			8.2	U	8.2	33
Methyl parathion			5.3	U	5.3	17
Mevinphos			11	U	11	65
Monochrotophos			84	U	84	330
Naled			5.1	U	5.1	330
Phorate			11	U	11	33
Ronnel			7.9	U	7.9	33
Stirophos			8.8	U	8.8	33
Sulfotepp			5.2	U	5.2	17
Tokuthion			7.6	U	7.6	33
Trichloronate			8.1	U	8.1	330
Surrogate			%Rec	Qualifi	er Accepta	nce Limits
Triphenylphosphat	te		71		35 - 134	

Client Sample ID	: 13						
Lab Sample ID: Client Matrix:	660-338 Solid	63-2			Date Sa Date Re	mpled: 02/15/2010 1 ceived: 02/17/2010 0	110 900
		8141	A Organophosphorous P	esticides (GC)		
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	8141A 3550B 1.0 02/24/2010 02/22/2010	1546 1006	Analysis Batch: 640-65935 Prep Batch: 640-65855	5	Instrument ID: Initial Weight/Volume: Final Weight/Volume: Injection Volume: Result Type:	SGF 00030.04 g 10.0 mL 1 uL PRIMARY	
Analyte	Dr	yWt Corrected: N	Result (ug/Kg)	Qualifie	er MDL	PQL	
Azinphos-methvl		-	4.4	U	4.4	66	
Bolstar			8.5	Ŭ	8.5	33	
Chlorpyrifos			8.4	Ŭ	8.4	33	
Coumaphos			8.6	Ū	8.6	330	
Demeton. Total			13	Ū	13	83	
Diazinon			8.8	Ū	8.8	33	
Dichlorvos			17	Ū	17	66	
Dimethoate			10	Ŭ	10	66	
Disulfoton			11	Ū	11	66	
EPN			9.1	Ŭ	9.1	33	
Ethoprop			15	Ū	15	17	
Ethvl Parathion			8.8	Ŭ	8.8	33	
Fensulfothion			10	Ū	10	330	
Hexazinone			7.7	Ū	7.7	33	
Malathion			9.0	U	9.0	33	
Merphos			8.3	Ū	8.3	33	
Methyl parathion			5.4	U	5.4	17	
Mevinphos			11	U	11	66	
Monochrotophos			85	U	85	330	
Naled			5.2	U	5.2	330	
Phorate			11	U	11	33	
Ronnel			8.0	U	8.0	33	
Stirophos			8.9	U	8.9	33	
Sulfotepp			5.3	U	5.3	17	
Tokuthion			7.7	U	7.7	33	
Trichloronate			8.2	U	8.2	330	
Surrogate			%Rec	Qualifie	er Accepta	nce Limits	
Triphenylphospha	te		71		35 - 134		
Client Sample ID	8A						
--	---	-----------------	---	--------------	---	---	------------
Lab Sample ID: Client Matrix:	660-3386 Solid	53-3			Date Sa Date Re	mpled: 02/15/2010 1 ceived: 02/17/2010 0	340 900
		8141	A Organophosphorous F	Pesticides (GC)		
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	8141A 3550B 1.0 02/24/2010 02/22/2010	1614 1006	Analysis Batch: 640-6593 Prep Batch: 640-65855	5	Instrument ID: Initial Weight/Volume: Final Weight/Volume: Injection Volume: Result Type:	SGF 00030.38 g 10.0 mL 1 uL PRIMARY	
Analyte	Dry	Wt Corrected: N	N Result (ug/Kg)	Qualifie	er MDL	PQL	
Azinphos-methyl	-	•	4.3	U	4.3	65	
Bolstar			8.4	Ū	8.4	33	
Chlorpyrifos			8.3	Ū	8.3	33	
Coumaphos			8.5	Ū	8.5	330	
Demeton. Total			13	U	13	82	
Diazinon			8.7	Ū	8.7	33	
Dichlorvos			17	U	17	65	
Dimethoate			9.9	U	9.9	65	
Disulfoton			11	U	11	65	
EPN			9.0	U	9.0	33	
Ethoprop			15	U	15	17	
Ethyl Parathion			8.7	U	8.7	33	
Fensulfothion			9.9	U	9.9	330	
Hexazinone			7.6	U	7.6	33	
Malathion			8.9	U	8.9	33	
Merphos			8.2	U	8.2	33	
Methyl parathion			5.3	U	5.3	17	
Mevinphos			11	U	11	65	
Monochrotophos			84	U	84	330	
Naled			5.1	U	5.1	330	
Phorate			11	U	11	33	
Ronnel			7.9	U	7.9	33	
Stirophos			8.8	U	8.8	33	
Sulfotepp			5.2	U	5.2	17	
Tokuthion			7.6	U	7.6	33	
Trichloronate			8.1	U	8.1	330	
Surrogate			%Rec	Qualifie	er Accepta	nce Limits	
Triphenylphospha	te		69		35 - 134		

Client Sample ID:	6B					
Lab Sample ID: Client Matrix:	660-33863-4 Solid				Date Sa Date Re	mpled: 02/15/2010 1400 ceived: 02/17/2010 0900
		8141A Org	ganophosphorous Pe	sticides	(GC)	
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	8141A 3550B 1.0 02/24/2010 1629 02/22/2010 1006	Analy Prep	vsis Batch: 640-65935 Batch: 640-65855		Instrument ID: Initial Weight/Volume: Final Weight/Volume: Injection Volume: Result Type:	SGF 00030.04 g 10.0 mL 1 uL PRIMARY
Analyte	DryWt Corre	cted: N	Result (ug/Kg)	Qualifi	er MDL	PQL
Azinphos-methyl	-		4.4	U	4.4	66
Bolstar			8.5	U	8.5	33
Chlorpyrifos			8.4	U	8.4	33
Coumaphos			8.6	U	8.6	330
Demeton, Total			13	U	13	83
Diazinon			8.8	U	8.8	33
Dichlorvos			17	U	17	66
Dimethoate			10	U	10	66
Disulfoton			11	U	11	66
EPN			9.1	U	9.1	33
Ethoprop			15	U	15	17
Ethyl Parathion			8.8	U	8.8	33
Fensulfothion			10	U	10	330
Hexazinone			7.7	U	7.7	33
Malathion			9.0	U	9.0	33
Merphos			8.3	U	8.3	33
Methyl parathion			5.4	U	5.4	17
Mevinphos			11	U	11	66
Monochrotophos			85	U	85	330
Naled			5.2	U	5.2	330
Phorate			11	U	11	33
Ronnel			8.0	U	8.0	33
Stirophos			8.9	U	8.9	33
Sulfotepp			5.3	U	5.3	17
Tokuthion			7.7	U	7.7	33
Trichloronate			8.2	U	8.2	330
Surrogate			%Rec	Qualifi	er Accepta	nce Limits
Triphenylphosphat	е		68		35 - 134	

Client Sample ID:	11A				
Lab Sample ID: Client Matrix:	660-33863-5 Water			Date Sar Date Rec	npled: 02/15/2010 1010 ceived: 02/17/2010 0900
		8141A Organophosphorous Pe	sticides (GC)	
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	8141A 3520C 1.0 02/23/2010 1729 02/18/2010 1430	Analysis Batch: 640-65935 Prep Batch: 640-65758		Instrument ID: Initial Weight/Volume: Final Weight/Volume: Injection Volume: Result Type:	SGF 1040 mL 5.0 mL 1 uL PRIMARY
Analyte		Result (ug/L)	Qualifie	er MDL	PQL
Azinphos-methyl Bolstar Chlorpyrifos Coumaphos		0.32 0.091 0.11 0.078	U U U U	0.32 0.091 0.11 0.078	0.96 0.96 0.96 0.96
Demeton, Total Diazinon Dichlorvos		0.14 0.11 0.25	U U U J3	0.14 0.11 0.25	2.4 0.96 1.9
Hexazinone Dimethoate Disulfoton		0.15 0.31 0.12	U U U	0.15 0.31 0.12	1.9 1.9 1.9
EPN Ethoprop Fensulfothion		0.068 0.39 0.16	U U U	0.068 0.39 0.16	0.96 0.48 4.8
Malathion Merphos Mevinphos		0.088 0.12 0.14	U U U	0.088 0.12 0.14	0.96 0.96 1.9
Monochrotophos Naled Ethyl Parathion		2.5 0.35 0.077 0.12	U J3 U U	2.5 0.35 0.077 0.12	9.6 4.8 0.96 0.48
Phorate Ronnel		0.12 0.15 0.12 0.053		0.12 0.15 0.12 0.053	0.96 0.96 0.48
Stirophos Tokuthion Trichloronate		0.081 0.084 0.11	U U U	0.081 0.084 0.11	0.96 0.96 0.96
Surrogate Triphenylphosphat	e	%Rec	Qualifie	er Acceptar 37 - 139	ice Limits

Client Sample ID:	8A				
Lab Sample ID: Client Matrix:	660-33863-6 Water			Date Sar Date Rec	npled: 02/15/2010 1330 ceived: 02/17/2010 0900
		8141A Organophosphorous Pe	sticides (GC)	
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	8141A 3520C 1.0 02/23/2010 1743 02/18/2010 1430	Analysis Batch: 640-65935 Prep Batch: 640-65758		Instrument ID: Initial Weight/Volume: Final Weight/Volume: Injection Volume: Result Type:	SGF 1040 mL 5.0 mL 1 uL PRIMARY
Analyte		Result (ug/L)	Qualifie	er MDL	PQL
Azinphos-methyl		0.32	U	0.32	0.96
Bolstar		0.091	U	0.091	0.96
Chlorpyrifos		0.11	U	0.11	0.96
Coumaphos		0.078	U	0.078	0.96
Demeton, Total		0.14	U	0.14	2.4
Diazinon		0.11	U	0.11	0.96
Dichlorvos		0.25	U J3	0.25	1.9
Hexazinone		0.15	U	0.15	1.9
Dimethoate		0.31	U	0.31	1.9
Disulfoton		0.12	U	0.12	1.9
EPN		0.068	U	0.068	0.96
Ethoprop		0.39	U	0.39	0.48
Fensulfothion		0.16	U	0.16	4.8
Malathion		0.088	U	0.088	0.96
Merphos		0.12	U	0.12	0.96
Mevinphos		0.14	U	0.14	1.9
Monochrotophos		2.5	U J3	2.5	9.6
Naled		0.35	U	0.35	4.8
Ethyl Parathion		0.077	U	0.077	0.96
Methyl parathion		0.12	U	0.12	0.48
Phorate		0.15	U	0.15	0.96
Ronnel		0.12	U	0.12	0.96
Sulfotepp		0.053	U	0.053	0.48
Stirophos		0.081	U	0.081	0.96
Tokuthion		0.084	U	0.084	0.96
Trichloronate		0.11	U	0.11	0.96
Surrogate		%Rec	Qualifie	er Acceptar	ice Limits
Triphenylphosphat	te	96		37 - 139	

Client Sample ID:	13				
Lab Sample ID: Client Matrix:	660-33863-7 Water			Date Sar Date Rec	npled: 02/15/2010 1100 ceived: 02/17/2010 0900
		8141A Organophosphorous Pe	sticides ((GC)	
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	8141A 3520C 1.0 02/23/2010 1757 02/18/2010 1430	Analysis Batch: 640-65935 Prep Batch: 640-65758		Instrument ID: Initial Weight/Volume: Final Weight/Volume: Injection Volume: Result Type:	SGF 1000 mL 5.0 mL 1 uL PRIMARY
Analyte		Result (ug/L)	Qualifie	er MDL	PQL
Azinphos-methyl Bolstar Chlorpyrifos		0.33 0.095 0.11	U U	0.33 0.095 0.11	1.0 1.0 1.0
Coumaphos Demeton, Total		0.081 0.15	U U	0.081 0.15	1.0 2.5
Diazinon Dichlorvos		0.11 0.26	U U J3	0.11 0.26	1.0 2.0
Hexazinone Dimethoate		0.16 0.32	U U	0.16 0.32	2.0 2.0
EPN Fthoprop		0.12 0.071 0.41	U	0.12 0.071 0.41	2.0 1.0 0.50
Fensulfothion Malathion		0.17 0.092	U U	0.17 0.092	5.0 1.0
Merphos Mevinphos		0.13 0.15	U U	0.13 0.15	1.0 2.0
Nonochrotophos Naled Ethyl Parathion		2.6 0.36 0.080	U J3 U	2.6 0.36 0.080	10 5.0 1.0
Methyl parathion Phorate		0.12 0.16	U U	0.12 0.16	0.50 1.0
Ronnel Sulfotepp		0.13 0.055	U U	0.13 0.055	1.0 0.50
Stirophos Tokuthion Trichloronate		0.084 0.087 0.11	U U U	0.084 0.087 0.11	1.0 1.0 1.0
Surrogate Triphenylphosphat	e	%Rec 103	Qualifie	er Acceptar 37 - 139	ice Limits

Client Sample ID:	14				
Lab Sample ID: Client Matrix:	660-33863-8 Water			Date San Date Rec	npled: 02/15/2010 1140 ceived: 02/17/2010 0900
		8141A Organophosphorous Pe	sticides (GC)	
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	8141A 3520C 1.0 02/23/2010 1812 02/18/2010 1430	Analysis Batch: 640-65935 Prep Batch: 640-65758		Instrument ID: Initial Weight/Volume: Final Weight/Volume: Injection Volume: Result Type:	SGF 1060 mL 5.0 mL 1 uL PRIMARY
Analyte		Result (ug/L)	Qualifie	er MDL	PQL
Azinphos-methyl		0.31	U	0.31	0.94
Bolstar		0.090	U	0.090	0.94
Chlorpyrifos		0.10	U	0.10	0.94
Coumaphos		0.076	U	0.076	0.94
Demeton, Total		0.14	U	0.14	2.4
Diazinon		0.10	U	0.10	0.94
Dichlorvos		0.25	U J3	0.25	1.9
Hexazinone		0.15	U	0.15	1.9
Dimethoate		0.30	U	0.30	1.9
Disulfoton		0.11	U	0.11	1.9
EPN		0.067	U	0.067	0.94
Ethoprop		0.39	U	0.39	0.47
Fensulfothion		0.16	U	0.16	4.7
Malathion		0.087	U	0.087	0.94
Merphos		0.12	U	0.12	0.94
Mevinphos		0.14	U	0.14	1.9
Monochrotophos		2.5	U J3	2.5	9.4
Naled		0.34	U	0.34	4.7
Ethyl Parathion		0.075	U	0.075	0.94
Methyl parathion		0.11	U	0.11	0.47
Phorate		0.15	U	0.15	0.94
Ronnel		0.12	U	0.12	0.94
Sulfotepp		0.052	U	0.052	0.47
Stirophos		0.079	U	0.079	0.94
Tokuthion		0.082	U	0.082	0.94
Trichloronate		0.10	U	0.10	0.94
Surrogate		%Rec	Qualifie	er Acceptan	ce Limits
Triphenylphosphat	e	81		37 - 139	

Job Number:	660-33863-1
-------------	-------------

Client Sample ID:	12A				
Lab Sample ID: Client Matrix:	660-33863-9 Water			Date Sar Date Rec	npled: 02/15/2010 1350 ceived: 02/17/2010 0900
		8141A Organophosphorous Pe	sticides (GC)	
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	8141A 3520C 1.0 02/23/2010 1826 02/18/2010 1430	Analysis Batch: 640-65935 Prep Batch: 640-65758		Instrument ID: Initial Weight/Volume: Final Weight/Volume: Injection Volume: Result Type:	SGF 1060 mL 5.0 mL 1 uL PRIMARY
Analyte		Result (ug/L)	Qualifie	er MDL	PQL
Azinphos-methyl		0.31	U	0.31	0.94
Bolstar		0.090	U	0.090	0.94
Chlorpyrifos		0.10	U	0.10	0.94
Coumaphos		0.076	U	0.076	0.94
Demeton, Total		0.14	U	0.14	2.4
Diazinon		0.10	U	0.10	0.94
Dichlorvos		0.25	U J3	0.25	1.9
Hexazinone		0.15	U	0.15	1.9
Dimethoate		0.30	U	0.30	1.9
Disulfoton		0.11	U	0.11	1.9
EPN		0.067	U	0.067	0.94
Ethoprop		0.39	U	0.39	0.47
Fensulfothion		0.16	U	0.16	4.7
Malathion		0.087	U	0.087	0.94
Merphos		0.12	U	0.12	0.94
Mevinphos		0.14	U	0.14	1.9
Monochrotophos		2.5	U J3	2.5	9.4
Naled		0.34	U	0.34	4.7
Ethyl Parathion		0.075	U	0.075	0.94
Methyl parathion		0.11	U	0.11	0.47
Phorate		0.15	U	0.15	0.94
Ronnel		0.12	U	0.12	0.94
Sulfotepp		0.052	U	0.052	0.47
Stirophos		0.079	U	0.079	0.94
Tokuthion		0.082	U	0.082	0.94
Trichloronate		0.10	U	0.10	0.94
Surrogate		%Rec	Qualifie	er Acceptar	ice Limits
Triphenylphosphat	e	92		37 - 139	

Client Sample ID	: 9A				
Lab Sample ID: Client Matrix:	660-33863-10 Water			Date Sar Date Rec	npled: 02/15/2010 1250 ceived: 02/17/2010 0900
		8141A Organophosphorous Pe	sticides	(GC)	
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	8141A 3520C 1.0 02/23/2010 1840 02/18/2010 1430	Analysis Batch: 640-65935 Prep Batch: 640-65758 Initial Weight/Volume: Final Weight/Volume: Injection Volume: Result Type:		SGF 1060 mL 5.0 mL 1 uL PRIMARY	
Analyte		Result (ug/L)	Qualifi	er MDL	PQL
Azinphos-methyl		0.31	U	0.31	0.94
Bolstar		0.090	U	0.090	0.94
Chlorpyrifos		0.10	U	0.10	0.94
Coumaphos		0.076	U	0.076	0.94
Demeton, Total		0.14	U	0.14	2.4
Diazinon		0.10	U	0.10	0.94
Dichlorvos		0.25	U J3	0.25	1.9
Hexazinone		0.15	U	0.15	1.9
Dimethoate		0.30	U	0.30	1.9
Disulfoton		0.11	U	0.11	1.9
EPN		0.067	U	0.067	0.94
Ethoprop		0.39	U	0.39	0.47
Fensulfothion		0.16	U	0.16	4.7
Malathion		0.087	U	0.087	0.94
Merphos		0.12	U	0.12	0.94
Mevinphos		0.14	U	0.14	1.9
Monochrotophos		2.5	U J3	2.5	9.4
Naled		0.34	U	0.34	4.7
Ethyl Parathion		0.075	U	0.075	0.94
Methyl parathion		0.11	U	0.11	0.47
Phorate		0.15	U	0.15	0.94
Ronnel		0.12	U	0.12	0.94

0.052

0.079

0.082

0.10

%Rec

79

0.052

0.079

0.082

0.10

U

U

U

U

Qualifier

0.47

0.94

0.94

0.94

Acceptance Limits

37 - 139

Sulfotepp

Stirophos

Tokuthion

Surrogate

Trichloronate

Triphenylphosphate

1.9

0.96

0.48

4.8

0.96

0.96

1.9

9.6

4.8

0.96

0.48

0.96

0.96

0.48

0.96

0.96

0.96

Acceptance Limits

37 - 139

Client: Environmental Engineering Consultant

Disulfoton

Ethoprop

Malathion

Merphos

Naled

Phorate

Ronnel

Sulfotepp

Stirophos

Tokuthion

Surrogate

Trichloronate

Triphenylphosphate

Mevinphos

Monochrotophos

Ethyl Parathion

Methyl parathion

Fensulfothion

EPN

Client Sample ID:	6B				
Lab Sample ID: Client Matrix:	660-33863-11 Water			Date San Date Rec	npled: 02/15/2010 1450 ceived: 02/17/2010 0900
		8141A Organophosphorous Pe	sticides (GC)	
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	8141A 3520C 1.0 02/23/2010 1854 02/18/2010 1430	Analysis Batch: 640-65935 Prep Batch: 640-65758	Ins Init Fin Inje Res	trument ID: ial Weight/Volume: al Weight/Volume: ection Volume: sult Type:	SGF 1040 mL 5.0 mL 1 uL PRIMARY
Analyte		Result (ug/L)	Qualifier	MDL	PQL
Azinphos-methyl		0.32	U	0.32	0.96
Bolstar		0.091	U	0.091	0.96
Chlorpyrifos		0.11	U	0.11	0.96
Coumaphos		0.078	U	0.078	0.96
Demeton, Total		0.14	U	0.14	2.4
Diazinon		0.11	U	0.11	0.96
Dichlorvos		0.25	U J3	0.25	1.9
Hexazinone		0.15	U	0.15	1.9
Dimethoate		0.31	U	0.31	1.9

0.12

0.068

0.39

0.16

0.088

0.12

0.14

2.5

0.35

0.077

0.12

0.15

0.12

0.053

0.081

0.084

0.11

%Rec

78

U

υ

U

U

U

υ

U

U

U

U

U

U

U

U

U

U

Qualifier

U J3

0.12

0.39

0.16

0.088

0.12

0.14

2.5

0.35

0.077

0.12

0.15

0.12

0.053

0.081

0.084

0.11

0.068

Client: Environmental Engineering Consultant

Client Sample ID:	11A						
Lab Sample ID: Client Matrix:	660-3386 Solid	63-1			Date Sar Date Rec	npled: 02/15/2010 eived: 02/17/2010	1020 0900
			8151A Herbicides (G	iC)			
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	8151A 8151A 1.0 02/26/2010 02/18/2010	0945 1200	Analysis Batch: 660-91251 Prep Batch: 660-90805		Instrument ID: Initial Weight/Volume: Final Weight/Volume: Injection Volume: Result Type:	BSGJ 30.23 g 10 mL 2 uL PRIMARY	
Analyte	Dr	yWt Corrected: I	N Result (ug/Kg)	Qualifi	er MDL	PQL	
2,4,5-T			9.9	U	9.9	50	
2,4-D			1.6	U	1.6	8.2	
2,4-DB			6.4	U	6.4	8.2	
Dalapon			23	U	23	2000	
Dicamba			12	U	12	50	
Dichlorprop			25	U	25	99	
Dinoseb			8.2	U	8.2	30	
MCPA			730	U	730	2000	
MCPP			400	U	400	2000	
Pentachlorophenol			5.0	U	5.0	17	
Picloram			1.2	U	1.2	3.3	
Silvex (2,4,5-TP)			9.9	U	9.9	50	

Surrogate	%Rec	Qualifier	Acceptance Limits
2,4-Dichlorophenylacetic acid	1980	L J1	10 - 135

Client: Environmental Engineering Consultant

Client Sample ID:	: 13						
Lab Sample ID: Client Matrix:	660-33863-2 Solid		Date Sampled: 02/15/2010 1110 Date Received: 02/17/2010 0900				
8151A Herbicides (GC)							
Method: Preparation: Dilution: Date Analyzed:	8151A 8151A 1.0 02/26/2010 1002	Analysis Batch: 660-91251 Prep Batch: 660-90805	Instrument ID: Initial Weight/Volume: Final Weight/Volume: Injection Volume:	BSGJ 29.80 g 10 mL 2 uL			
Date Prepared:	02/18/2010 1200		Result Type:	PRIMARY			

Analyte	DryWt Corrected: N	Result (ug/Kg)	Qualifier	MDL	PQL
2,4,5-T		10	U	10	50
2,4-D		1.6	U	1.6	8.4
2,4-DB		6.4	U	6.4	8.4
Dalapon		23	U	23	2000
Dicamba		12	U	12	50
Dichlorprop		25	U	25	100
Dinoseb		8.4	U	8.4	30
MCPA		740	U	740	2000
MCPP		400	U	400	2000
Pentachlorophenol		5.0	U	5.0	17
Picloram		1.2	U	1.2	3.3
Silvex (2,4,5-TP)		10	U	10	50
Surrogate		%Rec	Qualifier	Accepta	ance Limits
2,4-Dichlorophenylacetic aci	d	167	J1	10 - 13	5

Job Number: 660-33863-1

Client: Environmental Engineering Consultant

Client Sample ID:	8 A					
Lab Sample ID: Client Matrix:	660-33863 Solid	3-3			Date Sar Date Rec	npled: 02/15/2010 1340 ceived: 02/17/2010 0900
			8151A Herbicides (G	C)		
Method:	8151A	А	nalysis Batch: 660-91251		Instrument ID:	BSGJ
Preparation:	8151A	P	rep Batch: 660-90805		Initial Weight/Volume:	29.91 g
Dilution:	1.0				Final Weight/Volume:	10 mL
Date Analyzed:	02/26/2010	1020			Injection Volume:	2 uL
Date Prepared:	02/18/2010	1200			Result Type:	PRIMARY
Analyte	Dry\	Wt Corrected: N	Result (ug/Kg)	Qualifie	er MDL	PQL
2,4,5-T			10	U	10	50
2,4-D			1.6	U	1.6	8.3
2,4-DB			6.4	U	6.4	8.3
Dalapon			23	U	23	2000
Dicamba			12	U	12	50
Dichlorprop			25	U	25	100
Dinoseb			8.3	U	8.3	30
MCPA			740	U	740	2000
MCPP			400	U	400	2000
Pentachlorophenol			5.0	U	5.0	17
Picloram			1.2	U	1.2	3.3
Silvex (2,4,5-TP)			10	U	10	50
Surrogate			%Rec	Qualifie	er Acceptar	nce Limits
2,4-Dichloropheny	lacetic acid		95		10 - 135	

Client: Environmental Engineering Consultant

Client Sample ID:	6B						
Lab Sample ID: Client Matrix:	660-33863-4 Solid				Date San Date Rec	npled: 02/15/20 eived: 02/17/20	10 1400 10 0900
			8151A Herbicides (G	C)			
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	8151A 8151A 1.0 02/26/2010 1037 02/18/2010 1200	Ana Pre	ilysis Batch: 660-91251 p Batch: 660-90805	lr Ir F Ir R	nstrument ID: nitial Weight/Volume: inal Weight/Volume: njection Volume: tesult Type:	BSGJ 29.57 g 10 mL 2 uL PRIMARY	
Analyte	DryWt Corr	ected: N	Result (ug/Kg)	Qualifier	MDL	PQL	
2,4,5-T			10	U	10	51	
2,4-D			1.6	U J3	1.6	8.4	
2,4-DB			6.5	U	6.5	8.4	
Dalapon			23	U	23	2000	
Dicamba			12	U	12	51	
Dichlorprop			25	U	25	100	
Dinoseb			8.4	U	8.4	30	
MCPA			750	U	750	2000	
MCPP			410	U	410	2000	
Pentachlorophenol			5.1	U	5.1	17	
Picloram			1.2	U J3	1.2	3.3	

Silvex (2,4,5-TP)	10	U	10	51
Surrogate	%Rec	Qualifier	Accep	tance Limits
2,4-Dichlorophenylacetic acid	510	L J1	10 - 1	35

Client: Environmental Engineering Consultant

Client Sample ID:	: 11A				
Lab Sample ID: Client Matrix:	660-33863-5 Water			Date Sar Date Rec	npled: 02/15/2010 1010 ceived: 02/17/2010 0900
		8151A Herbicides (G	C)		
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	8151A 8151A 1.0 02/26/2010 0541 02/22/2010 1412	Analysis Batch: 660-91375 Prep Batch: 660-90939		Instrument ID: Initial Weight/Volume: Final Weight/Volume: Injection Volume: Result Type:	BSGJ 1040 mL 10 mL 2 uL PRIMARY
Analyte		Result (ug/L)	Qualifie	er MDL	PQL
2,4,5-T		0.96	U	0.96	4.8
2,4-D		0.96	U	0.96	4.8
2,4-DB		0.96	U	0.96	4.8
Dalapon		24	U	24	120
Dicamba		0.24	U	0.24	1.2
Dichlorprop		0.96	U	0.96	5.8
Dinoseb		0.96	U	0.96	5.8
MCPA		33	U	33	120
MCPP		34	U	34	120
Pentachloropheno	l	0.082	U	0.082	0.96
Picloram		0.96	U	0.96	4.8
Silvex (2,4,5-TP)		0.96	U	0.96	4.8
Surrogate		%Rec	Qualifie	er Acceptar	nce Limits
2,4-Dichloropheny	lacetic acid	85		33 - 120	

Client: Environmental Engineering Consultant

Client Sample ID	: 8A				
Lab Sample ID: Client Matrix:	660-33863-6 Water			Date Sar Date Rec	npled: 02/15/2010 1330 ceived: 02/17/2010 0900
		8151A Herbicides (G	C)		
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	8151A 8151A 1.0 02/26/2010 0558 02/22/2010 1412	Analysis Batch: 660-91375 Prep Batch: 660-90939		Instrument ID: Initial Weight/Volume: Final Weight/Volume: Injection Volume: Result Type:	BSGJ 1055 mL 10 mL 2 uL PRIMARY
Analyte		Result (ug/L)	Qualifie	er MDL	PQL
2,4,5-T		0.95	U	0.95	4.7
2,4-D		0.95	U	0.95	4.7
2,4-DB		0.95	U	0.95	4.7
Dalapon		24	U	24	110
Dicamba		0.24	U	0.24	1.1
Dichlorprop		0.95	U	0.95	5.7
Dinoseb		0.95	U	0.95	5.7
MCPA		32	U	32	110
MCPP		33	U	33	110
Pentachloropheno	bl	0.081	U	0.081	0.95
Picloram		0.95	U	0.95	4.7
Silvex (2,4,5-TP)		0.95	U	0.95	4.7
Surrogate		%Rec	Qualifie	er Acceptar	ice Limits
2,4-Dichloropheny	/lacetic acid	94		33 - 120	

Client: Environmental Engineering Consultant

Client Sample ID:	13	
Lab Sample ID:	660-33863-7	Date Sampled: 02/15/2010 1100
Client Matrix:	Water	Date Received: 02/17/2010 0900

		8151A Herbicides (G	C)		
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	8151A 8151A 1.0 02/26/2010 0616 02/22/2010 1412	Analysis Batch: 660-91375 Prep Batch: 660-90939		Instrument ID: Initial Weight/Volume: Final Weight/Volume: Injection Volume: Result Type:	BSGJ 990 mL 10 mL 2 uL PRIMARY
Analyte		Result (ug/L)	Qualifie	r MDL	PQL
2,4,5-T		1.0	U	1.0	5.1
2,4-D		1.0	U	1.0	5.1
2,4-DB		1.0	U	1.0	5.1
Dalapon		25	U	25	120
Dicamba		0.25	U	0.25	1.2
Dichlorprop		1.0	U	1.0	6.1
Dinoseb		1.0	U	1.0	6.1
MCPA		34	U	34	120
MCPP		35	U	35	120
Pentachloropheno	I	0.086	U	0.086	1.0
Picloram		1.0	U	1.0	5.1
Silvex (2,4,5-TP)		1.0	U	1.0	5.1
Surrogate		%Rec	Qualifie	r Acceptan	ce Limits
2,4-Dichloropheny	lacetic acid	84		33 - 120	

Client: Environmental Engineering Consultant

Client Sample ID:	14				
Lab Sample ID: Client Matrix:	660-33863-8 Water			Date Sar Date Rec	npled: 02/15/2010 1140 ceived: 02/17/2010 0900
		8151A Herbicides (G	C)		
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	8151A 8151A 1.0 02/26/2010 0633 02/22/2010 1412	Analysis Batch: 660-91375 Prep Batch: 660-90939		Instrument ID: Initial Weight/Volume: Final Weight/Volume: Injection Volume: Result Type:	BSGJ 1050 mL 10 mL 2 uL PRIMARY
Analyte		Result (ug/L)	Qualifie	er MDL	PQL
2,4,5-T		0.95	U	0.95	4.8
2,4-D		0.95	U	0.95	4.8
2,4-DB		0.95	U	0.95	4.8
Dalapon		24	U	24	110
Dicamba		0.24	U	0.24	1.1
Dichlorprop		0.95	U	0.95	5.7
Dinoseb		0.95	U	0.95	5.7
MCPA		32	U	32	110
MCPP		33	U	33	110
Pentachloropheno	I	0.081	U	0.081	0.95
Picloram		0.95	U	0.95	4.8
Silvex (2,4,5-TP)		0.95	U	0.95	4.8
Surrogate		%Rec	Qualifie	er Acceptar	nce Limits
2,4-Dichloropheny	lacetic acid	95		33 - 120	

Job Number: 660-33863-1

Client: Environmental Engineering Consultant

Client Sample ID:	12A				
Lab Sample ID: Client Matrix:	660-33863-9 Water			Date Sar Date Rec	npled: 02/15/2010 1350 ceived: 02/17/2010 0900
		8151A Herbicides (G	C)		
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	8151A 8151A 1.0 02/26/2010 0650 02/22/2010 1412	Analysis Batch: 660-91375 Prep Batch: 660-90939		Instrument ID: Initial Weight/Volume: Final Weight/Volume: Injection Volume: Result Type:	BSGJ 1050 mL 10 mL 2 uL PRIMARY
Analyte		Result (ug/L)	Qualifie	er MDL	PQL
2,4,5-T		0.95	U	0.95	4.8
2,4-D		0.95	U	0.95	4.8
2,4-DB		0.95	U	0.95	4.8
Dalapon		24	U	24	110
Dicamba		0.24	U	0.24	1.1
Dichlorprop		0.95	U	0.95	5.7
Dinoseb		0.95	U	0.95	5.7
MCPA		32	U	32	110
MCPP		33	U	33	110
Pentachloropheno		0.081	U	0.081	0.95
Picloram		0.95	U	0.95	4.8
Silvex (2,4,5-TP)		0.95	U	0.95	4.8
Surrogate		%Rec	Qualifie	er Acceptar	ice Limits
2,4-Dichloropheny	lacetic acid	86		33 - 120	

Job Number: 660-33863-1

Client: Environmental Engineering Consultant

Client Sample ID:	9A				
Lab Sample ID: Client Matrix:	660-33863-10 Water			Date Sar Date Rec	npled: 02/15/2010 1250 ceived: 02/17/2010 0900
		8151A Herbicides (G	C)		
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	8151A 8151A 1.0 02/26/2010 0707 02/22/2010 1412	Analysis Batch: 660-91375 Prep Batch: 660-90939		Instrument ID: Initial Weight/Volume: Final Weight/Volume: Injection Volume: Result Type:	BSGJ 1030 mL 10 mL 2 uL PRIMARY
Analyte		Result (ug/L)	Qualifie	er MDL	PQL
2,4,5-T		0.97	U	0.97	4.9
2,4-D		0.97	U	0.97	4.9
2,4-DB		0.97	U	0.97	4.9
Dalapon		24	U	24	120
Dicamba		0.24	U	0.24	1.2
Dichlorprop		0.97	U	0.97	5.8
Dinoseb		0.97	U	0.97	5.8
MCPA		33	U	33	120
MCPP		34	U	34	120
Pentachlorophenol		0.083	U	0.083	0.97
Picloram		0.97	U	0.97	4.9
Silvex (2,4,5-TP)		0.97	U	0.97	4.9
Surrogate		%Rec	Qualifie	er Acceptar	ice Limits
2,4-Dichlorophenyl	lacetic acid	100		33 - 120	

Client: Environmental Engineering Consultant

Client Sample ID:	6B				
Lab Sample ID: Client Matrix:	660-33863-11 Water			Date Sar Date Rec	npled: 02/15/2010 1450 ceived: 02/17/2010 0900
		8151A Herbicides (G	C)		
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	8151A 8151A 1.0 02/26/2010 0724 02/22/2010 1412	Analysis Batch: 660-91375 Prep Batch: 660-90939		Instrument ID: Initial Weight/Volume: Final Weight/Volume: Injection Volume: Result Type:	BSGJ 1050 mL 10 mL 2 uL PRIMARY
Analyte		Result (ug/L)	Qualifie	er MDL	PQL
2,4,5-T		0.95	U	0.95	4.8
2,4-D		0.95	U	0.95	4.8
2,4-DB		0.95	U	0.95	4.8
Dalapon		24	U	24	110
Dicamba		0.24	U	0.24	1.1
Dichlorprop		0.95	U	0.95	5.7
Dinoseb		0.95	U	0.95	5.7
MCPA		32	U	32	110
MCPP		33	U	33	110
Pentachloropheno	l	0.081	U	0.081	0.95
Picloram		0.95	U	0.95	4.8
Silvex (2,4,5-TP)		0.95	U	0.95	4.8
Surrogate		%Rec	Qualifie	er Acceptar	ice Limits
2,4-Dichloropheny	lacetic acid	98		33 - 120	

Client Sample I	D: 11A					
Lab Sample ID: Client Matrix:	660-33863-1 Solid				Date Sar Date Rec	npled: 02/15/2010 1020 ceived: 02/17/2010 0900
			6010B Metals (ICP)		
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	6010B 3050B 1.0 02/19/2010 1602 02/18/2010 1533	Analy Prep	sis Batch: 660-90852 Batch: 660-90828	Ir L Ir F	nstrument ID: ab File ID: nitial Weight/Volume: inal Weight/Volume:	ICPA 10B19A 1.02 g 50 mL
Analyte	DryWt Correc	ted: N	Result (mg/Kg)	Qualifier	MDL	PQL
Aluminum Arsenic Boron Barium Cadmium Cobalt Chromium Copper Iron Magnesium Manganese Sodium Lead Titanium Vanadium Zinc			1700 0.72 8.4 6.3 0.085 0.44 2.8 9.8 1400 2300 28 880 18 30 3.2 29	U I	5.7 0.23 0.58 0.16 0.085 0.19 0.17 0.49 2.9 6.7 0.21 18 0.15 0.29 0.11 0.49	20 0.49 4.9 0.98 0.49 0.98 0.98 2.0 4.9 49 0.98 49 0.49 0.49 0.98 0.98 2.0
Method: Preparation: Dilution: Date Analyzed: Date Prepared: Analyte	6010B 3050B 10 02/19/2010 1717 02/18/2010 1533	Analy Prep	sis Batch: 660-90852 Batch: 660-90828 Result (mg/Kg)	lr Li F Qualifier	nstrument ID: ab File ID: nitial Weight/Volume: inal Weight/Volume: MDI	ICPA 10B19A 1.02 g 50 mL POI
Calcium Strontium	Biywr conce		82000 1100	Quanter	150 0.96	490 9.8
			7471A Mercury (CVA	(A)		
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	7471A 7471A 1.0 03/04/2010 1455 03/04/2010 1100	Analy Prep	sis Batch: 660-91412 Batch: 660-91390	, Li Ir F	nstrument ID: ab File ID: nitial Weight/Volume: inal Weight/Volume:	PS200II N/A 0.30 g 50 mL
Analyte	DryWt Correc	ted: N	Result (mg/Kg)	Qualifier	MDL	PQL
Mercury			0.024		0.0075	0.020

Client Sample I	D: 13								
Lab Sample ID: Client Matrix:	660-3 Solid	3863-2					Date Sar Date Rec	npled: 02/15/20 eived: 02/17/20)10 1110)10 0900
				6010B Metals (ICI	P)				
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	6010B 3050B 1.0 02/19/2010 02/18/2010	0 1608 0 1533	Analysis Prep Ba	Batch: 660-90852 ttch: 660-90828		Instrument I Lab File ID: Initial Weigh Final Weigh	D: nt/Volume: t/Volume:	ICPA 10B19A 1.03 g 50 mL	
Analyte		DryWt Corrected	: N	Result (mg/Kg)	Qualif	ier ME	DL	PQL	
Aluminum		, ,		4200		5.6	3	19	
Arsenic				0.57		0.2	22	0.49	
Boron				4.4	1	0.5	57	4.9	
Barium				19	-	0.1	6	0.97	
Cadmium				0.097	1	0.0)84	0.49	
Cobalt				0.83	i	0.1	8	0.97	
Chromium				42	•	0 1	7	0.97	
Copper				6.0		0.4	19	1.9	
Iron				2500		29)	4.9	
Magnesium				2100		6.6	3	49	
Manganese				53		0.2	20	0.97	
Sodium				430		17		49	
Lead				5.4		0.1	5	0.49	
Titanium				43		0.2	pq	0.97	
Vanadium				64		0.2	1	0.07	
Zinc				21		0.4	19	1.9	
Method:	6010B		Analysis	Batch: 660-90852		Instrument I	D:	ICPA	
Preparation:	3050B		Prep Ba	tch: 660-90828		Lab File ID:		10B19A	
Dilution:	10					Initial Weigh	nt/Volume:	1.03 a	
Date Analyzed:	02/19/2010	0 1723				Final Weigh	t/Volume:	50 ml	
Date Prepared:	02/18/2010	0 1533				i illa i troigi		00 1112	
Analyte		DryWt Corrected	: N	Result (mg/Kg)	Qualif	ier ME	DL	PQL	
Calcium				60000		15	0	490	
Method:	6010B		Analysis	s Batch: 660-90964		Instrument I	D:	ICPA	
Preparation:	3050B		Prep Ba	Itch: 660-90828		Lab File ID:		10B22A	
Dilution:	40		•			Initial Weigh	nt/Volume:	1.03 a	
Date Analyzed:	02/22/2010	0 1218				Final Weigh	t/Volume:	50 ml	
Date Prepared:	02/18/2010	0 1533				i incli i i cigit			
Analyte		DryWt Corrected	: N	Result (mg/Kg)	Qualif	ier ME	DL	PQL	
Strontium				3100		3.8	3	39	
			-		• • `				
Mathadi	7474 ^		Anchai	(4/1A Mercury (CV	AA)	la atau	D.	Deaneil	
	747 IA		Analysis	Batch: 000-91412			U:	P520011	
Preparation:	/4/1A		Ргер Ва	itcn: 660-91390		Lab File ID:		IN/A	
Dilution:	1.0					Initial Weigh	nt/Volume:	0.32 g	
Date Analyzed:	03/04/2010	0 1457				Final Weigh	t/Volume:	50 mL	
Date Prepared:	03/04/2010	0 1100							

Client Sample ID:	13								
Lab Sample ID: Client Matrix:	660-33863-2 Solid	Date Sampled: 02/15/2010 11 Date Received: 02/17/2010 09							
	7471A Mercury (CVAA)								
Analyte	DryWt Corrected: N	Result (mg/Kg)	Qualifier	MDL	PQL				
Mercury		0.023		0.0070	0.019				

Client Sample II	D: 8A								
Lab Sample ID: Client Matrix:	660-338 Solid	63-3					Date San Date Rec	npled: 02/15/2 eived: 02/17/2	010 1340 010 0900
				6010B Metals (ICP)				
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	6010B 3050B 1.0 02/19/2010 02/18/2010	1614 1533	Analysis Prep Bate	Batch: 660-90852 ch: 660-90828		Instrument II Lab File ID: Initial Weight Final Weight	D: t/Volume: /Volume:	ICPA 10B19A 1.04 g 50 mL	
Analyte	Dr	yWt Corrected:	N	Result (mg/Kg)	Qualifi	ier MD	L	PQL	
Aluminum Arsenic Boron Barium Cadmium Cobalt Chromium Copper Iron Magnesium Manganese Sodium Lead Titanium Vanadium Zinc				410 0.22 11 2.0 0.084 0.18 1.0 1.7 280 1600 5.0 520 3.1 4.6 2.1 3.9	U U I	5.6 0.2: 0.5 0.1 0.1 0.1 0.1 0.4 2.9 6.5 0.2 17 0.1 0.1 0.4 0.1	2 7 5 84 8 6 8 0 4 9 1 8	19 0.48 4.8 0.96 0.48 0.96 0.96 1.9 4.8 48 0.96 48 0.48 0.96 0.96 0.96 1.9	
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	6010B 3050B 10 02/19/2010 02/18/2010	1729 1533	Analysis Prep Bate	Batch: 660-90852 ch: 660-90828		Instrument II Lab File ID: Initial Weight Final Weight	D: t/Volume: /Volume:	ICPA 10B19A 1.04 g 50 mL	
Analyte Calcium Strontium	Dr	ryWt Corrected:	N	Result (mg/Kg) 41000 530	Qualifi	ier MD 140 0.94	L) 4	PQL 480 9.6	
Guonadin			7/	714 Mercury (CVA		0.0	T	0.0	
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	7471A 7471A 1.0 03/04/2010 03/04/2010	1500	Analysis Prep Bate	Batch: 660-91412 ch: 660-91390		Instrument II Lab File ID: Initial Weight Final Weight	D: t/Volume: /Volume:	PS200II N/A 0.32 g 50 mL	
Analyte Mercury	Dr	ryWt Corrected:	N	Result (mg/Kg) 0.0093	Qualifi I	ier MD 0.00	L 070	PQL 0.019	

Client Sample I	D: 6B								
Lab Sample ID: Client Matrix:	660-3 Solid	3863-4					Date San Date Rec	npled: 02/15/2 ceived: 02/17/2	010 1400 010 0900
				6010B Metals (ICI	P)				
Method: Preparation: Dilution: Date Analyzed:	6010B 3050B 1.0 02/19/2010	0 1632	Analysis Prep Ba	Batch: 660-90852 ttch: 660-90828		Instrument I Lab File ID: Initial Weigh Final Weigh	D: t/Volume: t/Volume:	ICPA 10B19A 1.01 g 50 mL	
Date Prepared:	02/18/2010	0 1533							
Analyte		DryWt Corrected	: N	Result (mg/Kg)	Qualif	ier MD	L	PQL	
Aluminum				2000		5.7	_	20	
Arsenic				0.33	I	0.2	3	0.50	
Boron				10		0.5	8	5.0	
Barium				9.6		0.1	6	0.99	
Cadmium				0.086	U	0.0	86	0.50	
Cobalt				0.37	I	0.1	9	0.99	
Chromium				1.8		0.1	7	0.99	
Copper				5.5		0.5	0	2.0	
Iron				1100		3.0		5.0	
Magnesium				1900		6.7		50	
Manganese				30		0.2	1	0.99	
Sodium				1400		18		50	
Lead				14		0.1	5	0.50	
Titanium				20		0.3	0	0.99	
Vanadium				3.1		0.1	1	0.99	
Zinc				8.9		0.5	0	2.0	
Method:	6010B		Analysis	Batch: 660-90852		Instrument I	D:	ICPA	
Preparation:	3050B		Prep Ba	tch: 660-90828		Lab File ID:		10B19A	
Dilution.	10		-1			Initial Weigh	t/Volume [.]	1 01 a	
Date Analyzed:	02/10/2010	1 1735				Final Weight		50 ml	
Date Prepared:	02/18/2010	0 1533				T inal Weight	a volume.	50 ML	
Analyte		DryWt Corrected	: N	Result (mg/Kg)	Qualif	ier MD	L	PQL	
Calcium				110000		150)	500	
Method:	6010B		Analysis	Batch: 660-90964		Instrument I	D:	ICPA	
Preparation:	3050B		Prep Ba	tch: 660-90828		Lab File ID:		10B22A	
Dilution:	40					Initial Weigh	t/Volume:	1.01 g	
Date Analvzed:	02/22/2010	0 1224				Final Weight	/Volume:	50 mL	
Date Prepared:	02/18/2010	0 1533							
Analyte		DryWt Corrected	: N	Result (mg/Kg)	Qualif	ier MD	L	PQL	
Strontium				2500		3.9		40	
			7	7471A Mercury (CV	AA)		_		
Method:	7471A		Analysis	Batch: 660-91412		Instrument I	D:	PS200II	
Preparation:	7471A		Prep Ba	tch: 660-91390		Lab File ID:		N/A	
Dilution:	1.0					Initial Weigh	t/Volume:	0.30 g	
Date Analyzed:	03/04/2010	0 1502				Final Weight	/Volume:	50 mL	
Date Prepared:	03/04/201	0 1100				5			

Mercury

Client Sample ID:	6B								
Lab Sample ID: Client Matrix:	660-33863-4 Solid	Date Sampled: 02/15/2010 Date Received: 02/17/2010							
	7471A Mercury (CVAA)								
Analyte	DryWt Corrected: N	Result (mg/Kg)	Qualifier	MDL	PQL				

Τ

0.014

Job Number: 660-33863-1

0.020

0.0075

Client Sample I	D: 11A				
Lab Sample ID: Client Matrix:	660-33863-5 Water			Date Sar Date Rec	npled: 02/15/2010 1010 ceived: 02/17/2010 0900
		6010B Metals (ICP)-Total Re	coverable	9	
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	6010B 3005A 1.0 03/01/2010 1628 02/22/2010 1600	Analysis Batch: 660-91239 Prep Batch: 660-90946		Instrument ID: Lab File ID: Initial Weight/Volume: Final Weight/Volume:	ICPA 10C01A 50 mL 50 mL
Analyte		Result (mg/L)	Qualifie	r MDL	PQL
Copper Iron Potassium Magnesium Lead Zinc		0.0029 0.24 41 80 0.0020 0.014	U U I	0.0029 0.050 0.19 0.020 0.0020 0.0050	0.010 0.20 1.0 0.080 0.010 0.020
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	6010B 3005A 20 03/01/2010 1915 02/22/2010 1600	Analysis Batch: 660-91239 Prep Batch: 660-90946		Instrument ID: Lab File ID: Initial Weight/Volume: Final Weight/Volume:	ICPA 10C01A 50 mL 50 mL
Analyte		Result (mg/L)	Qualifie	r MDL	PQL
Sodium		570		6.2	10
		7470A Mercury			
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	7470A 7470A 1.0 02/18/2010 1340 02/18/2010 0900	Analysis Batch: 660-90825 Prep Batch: 660-90800		Instrument ID: Lab File ID: Initial Weight/Volume: Final Weight/Volume:	PS200II N/A 25 mL 25 mL
Analyte		Result (mg/L)	Qualifie	r MDL	PQL
Mercury		0.000072	U	0.000072	0.00020

Client Sample I	D: 8A				
Lab Sample ID: Client Matrix:	660-33863-6 Water			Date Sar Date Rec	npled: 02/15/2010 1330 ceived: 02/17/2010 0900
		6010B Metals (ICP)-Total Re	coverable	9	
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	6010B 3005A 1.0 03/01/2010 1634 02/22/2010 1600	Analysis Batch: 660-91239 Prep Batch: 660-90946		Instrument ID: Lab File ID: Initial Weight/Volume: Final Weight/Volume:	ICPA 10C01A 50 mL 50 mL
Analyte		Result (mg/L)	Qualifie	r MDL	PQL
Copper Iron Potassium Magnesium Lead Zinc		0.0029 0.052 21 47 0.0020 0.0076	U I U I	0.0029 0.050 0.19 0.020 0.0020 0.0050	0.010 0.20 1.0 0.080 0.010 0.020
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	6010B 3005A 20 03/01/2010 1921 02/22/2010 1600	Analysis Batch: 660-91239 Prep Batch: 660-90946		Instrument ID: Lab File ID: Initial Weight/Volume: Final Weight/Volume:	ICPA 10C01A 50 mL 50 mL
Analyte Sodium		Result (mg/L) 280	Qualifie	nr MDL 6.2	PQL 10
		7470A Moroury			
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	7470A 7470A 1.0 02/18/2010 1333 02/18/2010 0900	Analysis Batch: 660-90825 Prep Batch: 660-90800		Instrument ID: Lab File ID: Initial Weight/Volume: Final Weight/Volume:	PS200II N/A 25 mL 25 mL
Analyte		Result (mg/L)	Qualifie	r MDL	PQL
Mercury		0.000072	U	0.000072	0.00020

Client Sample II	D: 13				
Lab Sample ID: Client Matrix:	660-33863-7 Water			Date San Date Rec	npled: 02/15/2010 1100 eived: 02/17/2010 0900
		6010B Metals (ICP)-Total Re	coverable		
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	6010B 3005A 1.0 03/01/2010 1640 02/22/2010 1600	Analysis Batch: 660-91239 Prep Batch: 660-90946	lr L Ir F	nstrument ID: ab File ID: nitial Weight/Volume: inal Weight/Volume:	ICPA 10C01A 50 mL 50 mL
Analyte		Result (mg/L)	Qualifier	MDL	PQL
Copper Iron Potassium Magnesium Lead Zinc		0.0029 0.34 11 42 0.0020 0.018	U U I	0.0029 0.050 0.19 0.020 0.0020 0.0050	0.010 0.20 1.0 0.080 0.010 0.020
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	6010B 3005A 20 03/01/2010 1927 02/22/2010 1600	Analysis Batch: 660-91239 Prep Batch: 660-90946	lr L Ir F	nstrument ID: ab File ID: nitial Weight/Volume: inal Weight/Volume:	ICPA 10C01A 50 mL 50 mL
Analyte		Result (mg/L)	Qualifier	MDL	PQL
Sodium		110		6.2	10
		7470A Mercury			
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	7470A 7470A 1.0 02/18/2010 1343 02/18/2010 0900	Analysis Batch: 660-90825 Prep Batch: 660-90800	lr L F	nstrument ID: ab File ID: nitial Weight/Volume: inal Weight/Volume:	PS200II N/A 25 mL 25 mL
Analyte		Result (mg/L)	Qualifier	MDL	PQL
Mercury		0.000072	U	0.000072	0.00020

Client Sample I	D: 14				
Lab Sample ID: Client Matrix:	660-33863-8 Water			Date San Date Rec	npled: 02/15/2010 1140 ceived: 02/17/2010 0900
		6010B Metals (ICP)-Total Re	coverable		
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	6010B 3005A 1.0 03/01/2010 1701 02/22/2010 1600	Analysis Batch: 660-91239 Prep Batch: 660-90946	In La In Fi	strument ID: ab File ID: itial Weight/Volume: nal Weight/Volume:	ICPA 10C01A 50 mL 50 mL
Analyte		Result (mg/L)	Qualifier	MDL	PQL
Copper Iron Potassium Magnesium Lead Zinc		0.0029 0.33 20 53 0.0020 0.030	U	0.0029 0.050 0.19 0.020 0.0020 0.0050	0.010 0.20 1.0 0.080 0.010 0.020
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	6010B 3005A 20 03/01/2010 1933 02/22/2010 1600	Analysis Batch: 660-91239 Prep Batch: 660-90946	In La In Fi	strument ID: ab File ID: itial Weight/Volume: nal Weight/Volume:	ICPA 10C01A 50 mL 50 mL
Analyte		Result (mg/L)	Qualifier	MDL	PQL
Socium		210		0.2	10
		7470A Mercury			
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	7470A 7470A 1.0 02/18/2010 1345 02/18/2010 0900	Analysis Batch: 660-90825 Prep Batch: 660-90800	In La In Fi	strument ID: ab File ID: itial Weight/Volume: nal Weight/Volume:	PS200II N/A 25 mL 25 mL
Analyte		Result (mg/L)	Qualifier	MDL	PQL
Mercury		0.000072	U	0.000072	0.00020

Client Sample I	D: 12A				
Lab Sample ID: Client Matrix:	660-33863-9 Water			Date Sar Date Rec	npled: 02/15/2010 1350 ceived: 02/17/2010 0900
		6010B Metals (ICP)-Total Re	coverable	9	
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	6010B 3005A 1.0 03/01/2010 1707 02/22/2010 1600	Analysis Batch: 660-91239 Prep Batch: 660-90946		Instrument ID: Lab File ID: Initial Weight/Volume: Final Weight/Volume:	ICPA 10C01A 50 mL 50 mL
Analyte		Result (mg/L)	Qualifie	r MDL	PQL
Copper Iron Potassium Magnesium Lead Zinc		0.0029 0.053 30 62 0.0020 0.033	U I U	0.0029 0.050 0.19 0.020 0.0020 0.0050	0.010 0.20 1.0 0.080 0.010 0.020
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	6010B 3005A 20 03/01/2010 1939 02/22/2010 1600	Analysis Batch: 660-91239 Prep Batch: 660-90946		Instrument ID: Lab File ID: Initial Weight/Volume: Final Weight/Volume:	ICPA 10C01A 50 mL 50 mL
Analyte		Result (mg/L)	Qualifie	r MDL	PQL
Sodium		410		6.2	10
		7470A Mercury			
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	7470A 7470A 1.0 02/18/2010 1347 02/18/2010 0900	Analysis Batch: 660-90825 Prep Batch: 660-90800		Instrument ID: Lab File ID: Initial Weight/Volume: Final Weight/Volume:	PS200II N/A 25 mL 25 mL
Analyte		Result (mg/L)	Qualifie	r MDL	PQL
Mercury		0.000072	U	0.000072	0.00020

Client Sample I	D: 9A				
Lab Sample ID: Client Matrix:	660-33863-10 Water			Date San Date Rec	npled: 02/15/2010 1250 ceived: 02/17/2010 0900
		6010B Metals (ICP)-Total Re	coverable		
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	6010B 3005A 1.0 03/01/2010 1713 02/22/2010 1600	Analysis Batch: 660-91239 Prep Batch: 660-90946	lr L Ir F	nstrument ID: ab File ID: nitial Weight/Volume: inal Weight/Volume:	ICPA 10C01A 50 mL 50 mL
Analyte		Result (mg/L)	Qualifier	MDL	PQL
Copper Iron Potassium Magnesium Lead Zinc		0.0029 0.12 17 41 0.0020 0.022	U I U	0.0029 0.050 0.19 0.020 0.0020 0.0050	0.010 0.20 1.0 0.080 0.010 0.020
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	6010B 3005A 20 03/01/2010 1945 02/22/2010 1600	Analysis Batch: 660-91239 Prep Batch: 660-90946	lr L F	nstrument ID: ab File ID: nitial Weight/Volume: inal Weight/Volume:	ICPA 10C01A 50 mL 50 mL
Analyte Sodium		Result (mg/L) 210	Qualifier	MDL 6.2	PQL 10
		7470A Mercury			
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	7470A 7470A 1.0 02/18/2010 1349 02/18/2010 0900	Analysis Batch: 660-90825 Prep Batch: 660-90800	lr L F	nstrument ID: ab File ID: nitial Weight/Volume: inal Weight/Volume:	PS200II N/A 25 mL 25 mL
Analyte		Result (mg/L)	Qualifier	MDL	PQL
Mercury		0.000072	U	0.000072	0.00020

Client Sample ID: 6B						
Lab Sample ID: 660-33863-11 Client Matrix: Water		Date Sampled: 02/15/2010 1 Date Received: 02/17/2010 0				
		6010B Metals (ICP)-Total Re	coverable			
Method: 6010B Preparation: 3005A Dilution: 1.0 Date Analyzed: 03/02/2010 1759 Date Prepared: 03/02/2010 1030		Analysis Batch: 660-91268 Prep Batch: 660-91263	l I F	nstrument ID: .ab File ID: nitial Weight/Volume: ⁻ inal Weight/Volume:	ICPA 10C02A 50 mL 50 mL	
Analyte		Result (mg/L)	Qualifier	MDL	PQL	
Copper Iron Magnesium Lead Zinc		0.0029 0.16 98 0.0020 0.015	U I U I	0.0029 0.050 0.020 0.0020 0.0050	0.010 0.20 0.080 0.010 0.020	
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	6010B 3005A 10 03/02/2010 1847 03/02/2010 1030	Analysis Batch: 660-91268 Prep Batch: 660-91263	l L F	nstrument ID: .ab File ID: nitial Weight/Volume: Final Weight/Volume:	ICPA 10C02A 50 mL 50 mL	
Analyte		Result (mg/L)	Qualifier	MDL	PQL	
Potassium Sodium		33 620		1.9 3.1	10 5.0	
		7470A Mercury				
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	7470A 7470A 1.0 02/18/2010 1352 02/18/2010 0900	Analysis Batch: 660-90825 Prep Batch: 660-90800	l L F	nstrument ID: .ab File ID: nitial Weight/Volume: Final Weight/Volume:	PS200II N/A 25 mL 25 mL	
Analyte		Result (mg/L)	Qualifier	MDL	PQL	
Mercury		0.000072	U	0.000072	0.00020	

General Chemistry

Client Sample ID: 11A

Lab Sample ID:	660-33863-1					Date	Sampled:	02/15/2010 1020
Client Matrix:	Solid					Date	Received:	02/17/2010 0900
Analyte		Result	Qual	Units	MDL	PQL	Dil	Method
Ammonia (as N)		18		mg/Kg	0.26	0.60	2.0	350.1
	Analysis Batch: 68	0-161811	Date Analyze	d: 02/26/2	2010 1148		Dr	yWt Corrected: N
	Prep Batch: 68	30-161659	Date Pre	pared: 02	/25/2010 1234			
Nitrite as N-Solul	ole	1.0	U	mg/Kg	1.0	5.0	1.0	353.2
	Analysis Batch: 66	0-91352	Date Analyze	d: 03/03/2	2010 0939		Dr	yWt Corrected: N
Nitrate as N-Solu	ıble	1.0	U	mg/Kg	1.0	5.0	1.0	353.2
	Analysis Batch: 66	0-91352	Date Analyze	d: 03/03/2	2010 0939		Dr	yWt Corrected: N
Phosphorus, Tota	al	360		mg/Kg	9.9	18	1.0	365.4
	Analysis Batch: 68	0-161565	Date Analyze	d: 02/24/2	2010 1410		Dr	yWt Corrected: N
	Prep Batch: 68	30-161349	Date Pre	pared: 02	/22/2010 1258			
Total Organic Ca	rbon	38000		mg/Kg	1000	3000	1.0	9060
	Analysis Batch: 68	0-161519	Date Analyze	d: 02/23/2	2010 1035		Dr	yWt Corrected: N
Orthophosphate-	Soluble	1.4	I	mg/L	0.75	3.0	1.0	SM 4500 P E
	Analysis Batch: 66	0-91342	Date Analyze	d: 03/02/2	2010 1600		Dr	ryWt Corrected: N
Analyte		Result	Qual	Units	PQL	PQL	Dil	Method
Sulfide		29		mg/Kg	25	25	1.0	9034
	Analysis Batch: 68	0-161436	Date Analyze	d: 02/23/2	2010 1430		Dr	yWt Corrected: N
	Prep Batch: 68	30-161395	Date Pre	pared: 02	2/23/2010 1144			
Sulfate-Soluble		97	U	mg/Kg	97	97	1.0	9038
	Analysis Batch: 68	0-162106	Date Analyze	d: 03/02/2	2010 1707		Dr	yWt Corrected: N
pH-Soluble		7.62	Q	SU	1.00	1.00	1.0	9045C
	Analysis Batch: 66	0-90922	Date Analyze	d: 02/18/2	2010 2145		Dr	yWt Corrected: N
Percent Solids	-	34	-	%	0.10	0.10	1.0	Moisture
	Analysis Batch: 66	0-90780	Date Analyze	d: 02/17/2	2010 1456		Di	wWt Corrected: N

General Chemistry

Client Sample ID: 13

Lab Sample ID:	660-33863-2					Date	e Sampled:	02/15/2010 1110
Client Matrix:	Solid					Date	Received:	02/17/2010 0900
Analyte		Result	Qual	Units	MDL	PQL	Dil	Method
Ammonia (as N)		46		mg/Kg	1.3	3.0	10	350.1
	Analysis Batch: 680	D-161811	Date Analyze	d: 02/26/2	010 1159		Dr	yWt Corrected: N
	Prep Batch: 68	80-161659	Date Pre	pared: 02	/25/2010 1234			
Nitrite as N-Solu	ble	1.0	U	mg/Kg	1.0	5.0	1.0	353.2
	Analysis Batch: 660	0-91352	Date Analyze	d: 03/03/2	010 0939		Dr	wWt Corrected: N
Nitrate as N-Solu	ıble	1.0	U	mg/Kg	1.0	5.0	1.0	353.2
	Analysis Batch: 660	0-91352	Date Analyze	d: 03/03/2	010 0939		Dr	wWt Corrected: N
Phosphorus, Tot	al	360		mg/Kg	11	21	1.0	365.4
Analysis Batch: 680-		0-161565	Date Analyze	d: 02/24/2	010 1410		Dr	wWt Corrected: N
	Prep Batch: 68	80-161349	Date Pre	pared: 02	/22/2010 1258			
Total Organic Ca	arbon	57000		mg/Kg	1000	3000	1.0	9060
	Analysis Batch: 680	0-161519	Date Analyze	d: 02/23/2	010 1035		Dr	yWt Corrected: N
Orthophosphate-	Soluble	1.3	I	mg/L	0.75	3.0	1.0	SM 4500 P E
	Analysis Batch: 660	0-91342	Date Analyze	d: 03/02/2	010 1600		Dr	yWt Corrected: N
Analyte		Result	Qual	Units	PQL	PQL	Dil	Method
Sulfide		25	U	mg/Kg	25	25	1.0	9034
	Analysis Batch: 680	0-161436	Date Analyze	d: 02/23/2	010 1430		Dr	yWt Corrected: N
	Prep Batch: 68	80-161395	Date Pre	pared: 02	/23/2010 1144			
Sulfate-Soluble		100	U	mg/Kg	100	100	1.0	9038
	Analysis Batch: 680	0-162106	Date Analyze	d: 03/02/2	010 1709		Dr	wWt Corrected: N
pH-Soluble		7.41	Q	SU	1.00	1.00	1.0	9045C
	Analysis Batch: 660)-90922	Date Analyze	d: 02/18/2	010 2145		Dr	wWt Corrected: N
Percent Solids		26		%	0.10	0.10	1.0	Moisture
	Analysis Batch: 660	0-90780	Date Analyze	d: 02/17/2	010 1429		Dr	yWt Corrected: N

General Chemistry

Client	Sam	ple	ID:	8A
•	••••	P.0		

Lab Sample ID: Client Matrix:	660-33863- Solid	3				Date Date	Sampled: Received:	02/15/2010 1340 02/17/2010 0900
Analyte		Result	Qual	Units	MDL	PQL	Dil	Method
Ammonia (as N)		6.8		mg/Kg	0.13	0.30	1.0	350.1
	Analysis Batch:	680-161811	Date Analyze	d: 02/26/2	2010 1111		Dr	yWt Corrected: N
	Prep Batch:	: 680-161659	Date Pre	pared: 02/	/25/2010 1234			
Nitrite as N-Solut	ole	1.0	U	mg/Kg	1.0	5.0	1.0	353.2
	Analysis Batch:	660-91352	Date Analyze	d: 03/03/2	2010 0939		Dr	yWt Corrected: N
Nitrate as N-Solu	ıble	1.0	U	mg/Kg	1.0	5.0	1.0	353.2
	Analysis Batch:	660-91352	Date Analyze	d: 03/03/2	2010 0939		Dr	yWt Corrected: N
Phosphorus, Tota	al	160		mg/Kg	10	18	1.0	365.4
	Analysis Batch:	680-161565	Date Analyze	d: 02/24/2	2010 1410		Dr	yWt Corrected: N
	Prep Batch	: 680-161349	Date Pre	pared: 02/	/22/2010 1258			
Total Organic Ca	rbon	18000		mg/Kg	1000	3000	1.0	9060
	Analysis Batch:	680-161519	Date Analyze	d: 02/23/2	2010 1035		Dr	yWt Corrected: N
Orthophosphate-	Soluble	0.75	U	mg/L	0.75	3.0	1.0	SM 4500 P E
	Analysis Batch:	660-91342	Date Analyze	d: 03/02/2	2010 1600		Dr	yWt Corrected: N
Analyte		Result	Qual	Units	PQL	PQL	Dil	Method
Sulfide		25	U	mg/Kg	25	25	1.0	9034
	Analysis Batch:	680-161436	Date Analyze	d: 02/23/2	2010 1430		Dr	yWt Corrected: N
	Prep Batch:	: 680-161395	Date Pre	pared: 02/	/23/2010 1144			
Sulfate-Soluble		100	U	mg/Kg	100	100	1.0	9038
	Analysis Batch:	680-162106	Date Analyze	d: 03/02/2	2010 1709		Dr	yWt Corrected: N
pH-Soluble		7.56	Q	SU	1.00	1.00	1.0	9045C
	Analysis Batch:	660-90922	Date Analyze	d: 02/18/2	2010 2145		Dr	yWt Corrected: N
Percent Solids		32		%	0.10	0.10	1.0	Moisture
	Analysis Batch:	660-90780	Date Analyze	d: 02/17/2	2010 1428		Dr	yWt Corrected: N
Job Number: 660-33863-1

Client	Sam	ole	ID:	6B
•	•••••			•-

Lab Sample ID: Client Matrix:	660-33863-4 Solid					Date Date	Sampled: Received:	02/15/2010 1400 02/17/2010 0900
Analyte		Result	Qual	Units	MDL	PQL	Dil	Method
Ammonia (as N)		14		mg/Kg	0.26	0.60	2.0	350.1
	Analysis Batch: 68	30-161811	Date Analyzed	d: 02/26/2	010 1148		Dr	yWt Corrected: N
	Prep Batch: 6	80-161659	Date Prep	bared: 02	/25/2010 1234			
Nitrite as N-Solut	ble	1.0	U	mg/Kg	1.0	5.0	1.0	353.2
	Analysis Batch: 66	60-91352	Date Analyzed	d: 03/03/2	010 0939		Dr	yWt Corrected: N
Nitrate as N-Solu	ble	1.0	U	mg/Kg	1.0	5.0	1.0	353.2
	Analysis Batch: 66	60-91352	Date Analyzed	d: 03/03/2	010 0939		Dr	yWt Corrected: N
Phosphorus, Tota	al	670		mg/Kg	9.7	18	1.0	365.4
	Analysis Batch: 68	30-161565	Date Analyzed	d: 02/24/2	010 1410		Dr	yWt Corrected: N
	Prep Batch: 6	80-161349	Date Prep	bared: 02	/22/2010 1258			
Total Organic Ca	rbon	39000		mg/Kg	1000	3000	1.0	9060
	Analysis Batch: 68	30-161519	Date Analyzed	d: 02/23/2	010 1035		Dr	yWt Corrected: N
Orthophosphate-	Soluble	1.9	I	mg/L	0.75	3.0	1.0	SM 4500 P E
	Analysis Batch: 66	60-91342	Date Analyzed	d: 03/02/2	010 1600		Dr	yWt Corrected: N
Analyte		Result	Qual	Units	PQL	PQL	Dil	Method
Sulfide		25	U	mg/Kg	25	25	1.0	9034
	Analysis Batch: 68	30-161436	Date Analyzed	d: 02/23/2	010 1430		Dr	yWt Corrected: N
	Prep Batch: 6	80-161395	Date Prep	bared: 02	/23/2010 1144			
Sulfate-Soluble		98	U	mg/Kg	98	98	1.0	9038
	Analysis Batch: 68	30-162106	Date Analyzed	d: 03/02/2	010 1718		Dr	yWt Corrected: N
pH-Soluble		7.56	Q	SU	1.00	1.00	1.0	9045C
	Analysis Batch: 66	60-90922	Date Analyzed	d: 02/18/2	010 2145		Dr	yWt Corrected: N
Percent Solids		22		%	0.10	0.10	1.0	Moisture
	Analysis Batch: 66	60-90780	Date Analyzed	d: 02/17/2	010 1503		Dr	yWt Corrected: N

Job Number: 660-33863-1

Client Sample ID): 11A							
Lab Sample ID:	660-33863-5					Dat	e Sampled:	02/15/2010 1010
Client Matrix:	Water					Dat	e Received:	02/17/2010 0900
Analyte		Result	Qual	Units	MDL	PQL	Dil	Method
Nitrite as N		0.10	UQ	mg/L	0.10	0.50	1.0	353.2
	Analysis Batch: 6	60-90798	Date Analyze	d: 02/17/	2010 1242			
Nitrate as N		1.7	Q	mg/L	0.10	0.50	1.0	353.2
	Analysis Batch: 6	60-90798	Date Analyze	d: 02/17/	2010 1242			
Phosphorus, Tota	l	0.10	U	mg/L	0.10	0.30	1.0	365.4
	Analysis Batch: 6	60-91269	Date Analyze	d: 03/02/	2010 0939			
	Prep Batch: 6	60-91206	Date Pre	pared: 03	3/01/2010 1300			
Sulfate		150		mg/L	10	25	5.0	SM 426C
	Analysis Batch: 6	60-91248	Date Analyze	d: 03/01/	2010 1350			
Chloride		950		mg/L	30	50	10	SM 4500 CI- E
	Analysis Batch: 6	60-91159	Date Analyze	d: 02/25/	2010 1400			
Chemical Oxyger	Demand	33		mg/L	10	20	1.0	SM 5220D
	Analysis Batch: 6	60-91132	Date Analyze	d: 02/25/	2010 1557			
	Prep Batch: 6	60-91131	Date Pre	pared: 02	2/25/2010 1333			
Tannins and Lign	ins	1.0		mg/L	0.037	0.10	1.0	SM 5550B
	Analysis Batch: 68	80-161223	Date Analyze	d: 02/19/	2010 1126			
Analyte		Result	Qual	Units	PQL	PQL	Dil	Method
Turbidity		45	Q	NTU	0.20	0.20	2.0	180.1
	Analysis Batch: 6	60-90880	Date Analyze	d: 02/18/	2010 2100			
Biochemical Oxyg	gen Demand	2.0	Q,U	mg/L	2.00	2.00	1.0	405.1
	Analysis Batch: 6	60-91308	Date Analyze	d: 02/23/	2010 0830			
Chlorophyll a		21.7	Q	ug/L	2.00	2.00	1.0	SM 10200H
	Analysis Batch: 6	60-91277	Date Analyze	d: 02/23/	2010 1221			
Alkalinity		270		mg/L	1.0	1.0	1.0	SM 2320B
	Analysis Batch: 6	60-90996	Date Analyze	d: 02/23/	2010 1024			
Salinity		2.5		ppt	2.0	2.0	1.0	SM 2520B
	Analysis Batch: 6	60-91137	Date Analyze	d: 02/25/	2010 1400			
Total Suspended	Solids	110		mg/L	2.0	2.0	1.0	SM 2540D
	Analysis Batch: 6	60-90872	Date Analyze	d: 02/19/	2010 1457			
Sulfide		1.0	U	mg/L	1.0	1.0	1.0	SM 4500 S2 F
	Analysis Batch: 6	60-90918	Date Analyze	d: 02/19/	2010 1600			

Job Number: 660-33863-1

Client Sample ID): 8A							
Lab Sample ID:	660-33863-	6				Dat	e Sampled:	02/15/2010 1330
Client Matrix:	Water					Dat	e Received:	02/17/2010 0900
Analyte		Result	Qual	Units	MDL	PQL	Dil	Method
Nitrite as N		0.10	U	mg/L	0.10	0.50	1.0	353.2
	Analysis Batch:	660-90798	Date Analyze	d: 02/17/	2010 1242			
Nitrate as N		0.10	U	mg/L	0.10	0.50	1.0	353.2
	Analysis Batch:	660-90798	Date Analyze	d: 02/17/	2010 1242			
Phosphorus, Tota	l	0.10	U	mg/L	0.10	0.30	1.0	365.4
	Analysis Batch:	660-91269	Date Analyze	d: 03/02/	2010 0939			
	Prep Batch:	: 660-91206	Date Pre	pared: 0	3/01/2010 1300			
Sulfate		82		mg/L	10	25	5.0	SM 426C
	Analysis Batch:	660-91248	Date Analyze	d: 03/01/	2010 1350			
Chloride		440		mg/L	30	50	10	SM 4500 CI- E
	Analysis Batch:	660-91159	Date Analyze	d: 02/25/	2010 1400			
Chemical Oxyger	Demand	21		mg/L	10	20	1.0	SM 5220D
	Analysis Batch:	660-91132	Date Analyze	d: 02/25/	2010 1557			
	Prep Batch:	: 660-91131	Date Pre	pared: 02	2/25/2010 1333			
Tannins and Lign	ins	1.2		mg/L	0.037	0.10	1.0	SM 5550B
	Analysis Batch:	680-161223	Date Analyze	d: 02/19/	2010 1126			
Analyte		Result	Qual	Units	PQL	PQL	Dil	Method
Turbidity		6.5	Q	NTU	0.10	0.10	1.0	180.1
	Analysis Batch:	660-90880	Date Analyze	d: 02/18/	2010 2100			
Biochemical Oxyg	gen Demand	2.00	Q,U	mg/L	2.00	2.00	1.0	405.1
	Analysis Batch:	660-91308	Date Analyze	d: 02/23/	2010 0830			
Chlorophyll a		18.3	Q	ug/L	2.00	2.00	1.0	SM 10200H
	Analysis Batch:	660-91277	Date Analyze	d: 02/23/	2010 1223			
Alkalinity		280		mg/L	1.0	1.0	1.0	SM 2320B
	Analysis Batch:	660-90996	Date Analyze	d: 02/23/	2010 1038			
Salinity		2.0	U	ppt	2.0	2.0	1.0	SM 2520B
	Analysis Batch:	660-91137	Date Analyze	d: 02/25/	2010 1400			
Total Suspended	Solids	10		mg/L	1.0	1.0	1.0	SM 2540D
	Analysis Batch:	660-90872	Date Analyze	d: 02/19/	2010 1457			
Sulfide		1.0	U	mg/L	1.0	1.0	1.0	SM 4500 S2 F
	Analysis Batch:	660-90918	Date Analyze	d: 02/19/	2010 1600			

Client Sample ID: 13

Job Number: 660-33863-1

Lab Sample ID: Client Matrix:	660-33863-7 Water					Dat Dat	e Sampled: e Received:	02/15/2010 1100 02/17/2010 0900
Analyte		Result	Qual	Units	MDL	PQL	Dil	Method
Nitrite as N		0.16	IQ	mg/L	0.10	0.50	1.0	353.2
	Analysis Batch: 660)-90798	Date Analyze	d: 02/17/	2010 1242			
Nitrate as N		5.8	Q	mg/L	0.10	0.50	1.0	353.2
	Analysis Batch: 660)-90798	Date Analyze	d: 02/17/	2010 1242			
Phosphorus, Tota	al	0.10	U J3	mg/L	0.10	0.30	1.0	365.4
•	Analysis Batch: 660)-91269	Date Analyze	d: 03/02/	2010 0939			
	Prep Batch: 66	0-91206	Date Pre	pared: 0	3/01/2010 1300			
Sulfate	·	71		mg/L	4.0	10	2.0	SM 426C
	Analysis Batch: 660)-91248	Date Analyze	d: 03/01/	2010 1350			
Chloride		160	-	mg/L	12	20	4.0	SM 4500 CI- E
	Analysis Batch: 660)-91210	Date Analyze	d: 02/27/	2010 0946			
Chemical Oxyger	Demand	10	U J3	mg/L	10	20	1.0	SM 5220D
,,,	Analysis Batch: 660)-91132	Date Analyze	d: 02/25/	2010 1557			
	Prep Batch: 66	0-91131	Date Pre	pared: 0	2/25/2010 1333			
Tannins and Lign	ins	0.47		mg/L	0.037	0.10	1.0	SM 5550B
· ·	Analysis Batch: 680)-161223	Date Analyze	d: 02/19/	2010 1126			
Analyte		Result	Qual	Units	PQL	PQL	Dil	Method
Turbidity		17	Q	NTU	0.10	0.10	1.0	180.1
	Analysis Batch: 660)-90880	Date Analyze	d: 02/18/	2010 2100			
Biochemical Oxyg	gen Demand	2.16	Q	mg/L	2.00	2.00	1.0	405.1
	Analysis Batch: 660)-91308	Date Analyze	d: 02/23/	2010 0830			
Chlorophyll a		14.9	Q	ug/L	2.00	2.00	1.0	SM 10200H
	Analysis Batch: 660)-91277	Date Analyze	d: 02/23/	2010 1224			
Alkalinity		280		mg/L	1.0	1.0	1.0	SM 2320B
	Analysis Batch: 660)-90996	Date Analyze	d: 02/23/	2010 1044			
Salinity		2.0	U	ppt	2.0	2.0	1.0	SM 2520B
	Analysis Batch: 660)-91137	Date Analyze	d: 02/25/	2010 1400			
Total Suspended	Solids	31		mg/L	1.0	1.0	1.0	SM 2540D
	Analysis Batch: 660)-90872	Date Analyze	d: 02/19/	2010 1457			
Sulfide		1.0	U	mg/L	1.0	1.0	1.0	SM 4500 S2 F
	Analysis Batch: 660)-90918	Date Analyze	d: 02/19/	2010 1600			

Job Number: 660-33863-1

Client Sample ID): 14							
Lab Sample ID:	660-33863-8					Date	e Sampled:	02/15/2010 1140
Client Matrix:	Water					Dat	e Received:	02/17/2010 0900
Analyte		Result	Qual	Units	MDL	PQL	Dil	Method
Nitrite as N		0.10	UQ	mg/L	0.10	0.50	1.0	353.2
	Analysis Batch: 6	60-90798	Date Analyze	d: 02/17/	2010 1242			
Nitrate as N		0.33	IQ	mg/L	0.10	0.50	1.0	353.2
	Analysis Batch: 6	60-90798	Date Analyze	d: 02/17/	2010 1242			
Phosphorus, Tota	l	0.10	U	mg/L	0.10	0.30	1.0	365.4
	Analysis Batch: 6	60-91269	Date Analyze	d: 03/02/	2010 0939			
	Prep Batch: 6	60-91206	Date Pre	pared: 0	3/01/2010 1300			
Sulfate		90		mg/L	10	25	5.0	SM 426C
	Analysis Batch: 6	60-91248	Date Analyze	d: 03/01/	2010 1350			
Chloride		290		mg/L	30	50	10	SM 4500 CI- E
	Analysis Batch: 6	60-91159	Date Analyze	d: 02/25/	2010 1400			
Chemical Oxyger	Demand	30		mg/L	10	20	1.0	SM 5220D
	Analysis Batch: 6	60-91132	Date Analyze	d: 02/25/	2010 1557			
	Prep Batch: 6	60-91131	Date Pre	pared: 02	2/25/2010 1333			
Tannins and Lign	ins	1.0		mg/L	0.037	0.10	1.0	SM 5550B
	Analysis Batch: 68	80-161223	Date Analyze	d: 02/19/	2010 1126			
Analyte		Result	Qual	Units	PQL	PQL	Dil	Method
Turbidity		79	Q	NTU	0.20	0.20	2.0	180.1
	Analysis Batch: 6	60-90880	Date Analyze	d: 02/18/	2010 2100			
Biochemical Oxyg	gen Demand	2.73	Q	mg/L	2.00	2.00	1.0	405.1
	Analysis Batch: 6	60-91308	Date Analyze	d: 02/23/	2010 0830			
Chlorophyll a		64.2	Q	ug/L	2.00	2.00	1.0	SM 10200H
	Analysis Batch: 6	60-91277	Date Analyze	d: 02/23/	2010 1225			
Alkalinity		310		mg/L	1.0	1.0	1.0	SM 2320B
	Analysis Batch: 6	60-90996	Date Analyze	d: 02/23/	2010 1051			
Salinity		2.0	U	ppt	2.0	2.0	1.0	SM 2520B
	Analysis Batch: 6	60-91137	Date Analyze	d: 02/25/	2010 1400			
Total Suspended	Solids	150		mg/L	1.9	1.9	1.0	SM 2540D
	Analysis Batch: 6	60-90872	Date Analyze	d: 02/19/	2010 1457			
Sulfide		1.0	U	mg/L	1.0	1.0	1.0	SM 4500 S2 F
	Analysis Batch: 6	60-90918	Date Analyze	d: 02/19/	2010 1600			

Job Number: 660-33863-1

Client Sample ID): 12A							
Lab Sample ID:	660-33863-9					Date	e Sampled:	02/15/2010 1350
Client Matrix:	Water					Dat	e Received:	02/17/2010 0900
Analyte		Result	Qual	Units	MDL	PQL	Dil	Method
Nitrite as N		0.10	U	mg/L	0.10	0.50	1.0	353.2
	Analysis Batch: 66	60-90798	Date Analyze	d: 02/17/	2010 1242			
Nitrate as N		0.41	I	mg/L	0.10	0.50	1.0	353.2
	Analysis Batch: 66	60-90798	Date Analyze	d: 02/17/	2010 1242			
Phosphorus, Tota	l	0.10	U	mg/L	0.10	0.30	1.0	365.4
	Analysis Batch: 66	60-91269	Date Analyze	d: 03/02/	2010 0939			
	Prep Batch: 6	60-91206	Date Pre	pared: 03	3/01/2010 1300			
Sulfate		120		mg/L	10	25	5.0	SM 426C
	Analysis Batch: 66	60-91248	Date Analyze	d: 03/01/	2010 1350			
Chloride		670		mg/L	30	50	10	SM 4500 CI- E
	Analysis Batch: 66	60-91159	Date Analyze	d: 02/25/	2010 1400			
Chemical Oxyger	Demand	33		mg/L	10	20	1.0	SM 5220D
	Analysis Batch: 66	60-91132	Date Analyze	d: 02/25/	2010 1557			
	Prep Batch: 6	60-91131	Date Pre	pared: 02	2/25/2010 1333			
Tannins and Lign	ins	1.1		mg/L	0.037	0.10	1.0	SM 5550B
	Analysis Batch: 68	30-161223	Date Analyzed	d: 02/19/	2010 1126			
Analyte		Result	Qual	Units	PQL	PQL	Dil	Method
Turbidity		3.5		NTU	0.10	0.10	1.0	180.1
	Analysis Batch: 66	60-90880	Date Analyze	d: 02/18/	2010 2100			
Biochemical Oxy	gen Demand	2.00	Q,U	mg/L	2.00	2.00	1.0	405.1
	Analysis Batch: 66	50-91308	Date Analyze	d: 02/23/	2010 0830			
Chlorophyll a		10.3	Q	ug/L	2.00	2.00	1.0	SM 10200H
	Analysis Batch: 66	60-91277	Date Analyze	d: 02/23/	2010 1227			
Alkalinity		280		mg/L	1.0	1.0	1.0	SM 2320B
	Analysis Batch: 66	60-90996	Date Analyze	d: 02/23/	2010 1058			
Salinity		2.0		ppt	2.0	2.0	1.0	SM 2520B
	Analysis Batch: 66	60-91137	Date Analyzed	d: 02/25/	2010 1400			
Total Suspended	Solids	4.4		mg/L	1.0	1.0	1.0	SM 2540D
	Analysis Batch: 66	60-90872	Date Analyzed	d: 02/19/	2010 1457			
Sulfide		1.0	U	mg/L	1.0	1.0	1.0	SM 4500 S2 F
	Analysis Batch: 66	50-90918	Date Analyzed	d: 02/19/	2010 1600			

Job Number: 660-33863-1

Client Sample ID): 9A							
Lab Sample ID:	660-33863-1	10				Dat	e Sampled:	02/15/2010 1250
Client Matrix:	Water					Dat	e Received:	02/17/2010 0900
Analyte		Result	Qual	Units	MDL	PQL	Dil	Method
Nitrite as N		0.10	U	mg/L	0.10	0.50	1.0	353.2
	Analysis Batch: 6	60-90798	Date Analyze	d: 02/17/	2010 1242			
Nitrate as N		0.10	U	mg/L	0.10	0.50	1.0	353.2
	Analysis Batch: 6	60-90798	Date Analyze	d: 02/17/	2010 1242			
Phosphorus, Tota	al	0.10	U	mg/L	0.10	0.30	1.0	365.4
	Analysis Batch: 6	60-91269	Date Analyze	d: 03/02/	2010 0939			
	Prep Batch:	660-91206	Date Pre	pared: 0	3/01/2010 1300			
Sulfate		69		mg/L	4.0	10	2.0	SM 426C
	Analysis Batch: 6	60-91248	Date Analyze	d: 03/01/	2010 1350			
Chloride		340		mg/L	30	50	10	SM 4500 CI- E
	Analysis Batch: 6	60-91159	Date Analyze	d: 02/25/	2010 1400			
Chemical Oxyger	Demand	20		mg/L	10	20	1.0	SM 5220D
	Analysis Batch: 6	60-91132	Date Analyze	d: 02/25/	2010 1557			
	Prep Batch:	660-91131	Date Pre	pared: 02	2/25/2010 1333			
Tannins and Lign	ins	1.2		mg/L	0.037	0.10	1.0	SM 5550B
	Analysis Batch: 6	80-161223	Date Analyze	d: 02/19/	2010 1126			
Analyte		Result	Qual	Units	PQL	PQL	Dil	Method
Turbidity		5.7	Q	NTU	0.10	0.10	1.0	180.1
	Analysis Batch: 6	60-90880	Date Analyze	d: 02/18/	2010 2100			
Biochemical Oxy	gen Demand	2.00	Q,U	mg/L	2.00	2.00	1.0	405.1
	Analysis Batch: 6	60-91308	Date Analyze	d: 02/23/	2010 0830			
Chlorophyll a		29.6	Q	ug/L	2.00	2.00	1.0	SM 10200H
	Analysis Batch: 6	60-91277	Date Analyze	d: 02/23/	2010 1228			
Alkalinity		290		mg/L	1.0	1.0	1.0	SM 2320B
	Analysis Batch: 6	60-90996	Date Analyze	d: 02/23/	2010 1104			
Salinity		2.0	U	ppt	2.0	2.0	1.0	SM 2520B
	Analysis Batch: 6	60-91137	Date Analyze	d: 02/25/	2010 1400			
Total Suspended	Solids	16		mg/L	1.0	1.0	1.0	SM 2540D
	Analysis Batch: 6	60-90872	Date Analyze	d: 02/19/	2010 1458			
Sulfide		1.0	U	mg/L	1.0	1.0	1.0	SM 4500 S2 F
	Analysis Batch: 6	60-90918	Date Analyze	d: 02/19/	2010 1600			

Job Number: 660-33863-1

Client Sample ID): 6B							
Lab Sample ID:	660-33863-1	1				Da	te Sampled:	02/15/2010 1450
Client Matrix:	Water					Da	te Received:	02/17/2010 0900
Analyte		Result	Qual	Units	MDL	PQL	Dil	Method
Nitrite as N		0.10	U	mg/L	0.10	0.50	1.0	353.2
	Analysis Batch: 6	60-90798	Date Analyze	d: 02/17/	2010 1242			
Nitrate as N		0.10	U	mg/L	0.10	0.50	1.0	353.2
	Analysis Batch: 6	60-90798	Date Analyze	d: 02/17/	2010 1242			
Phosphorus, Tota	al	0.10	U	mg/L	0.10	0.30	1.0	365.4
	Analysis Batch: 6	60-91269	Date Analyze	d: 03/02/	2010 0939			
	Prep Batch: 6	60-91206	Date Pre	pared: 03	3/01/2010 1300			
Sulfate		140		mg/L	10	25	5.0	SM 426C
	Analysis Batch: 6	60-91248	Date Analyze	d: 03/01/	2010 1350			
Chloride		960		mg/L	30	50	10	SM 4500 CI- E
	Analysis Batch: 6	60-91159	Date Analyze	d: 02/25/	2010 1400			
Chemical Oxyger	n Demand	63		mg/L	10	20	1.0	SM 5220D
	Analysis Batch: 6	60-91132	Date Analyze	d: 02/25/	2010 1557			
	Prep Batch: 6	60-91131	Date Pre	pared: 02	2/25/2010 1333			
Tannins and Lign	ins	2.3		mg/L	0.074	0.20	2.0	SM 5550B
	Analysis Batch: 6	80-161223	Date Analyze	d: 02/19/	2010 1131			
Analyte		Result	Qual	Units	PQL	PQL	Dil	Method
Turbidity		15	Q	NTU	0.10	0.10	1.0	180.1
	Analysis Batch: 6	60-90880	Date Analyze	d: 02/18/	2010 2100			
Biochemical Oxy	gen Demand	8.72	Q	mg/L	2.00	2.00	1.0	405.1
	Analysis Batch: 6	60-91308	Date Analyze	d: 02/23/	2010 0830			
Chlorophyll a		30.9	Q	ug/L	2.00	2.00	1.0	SM 10200H
	Analysis Batch: 6	60-91277	Date Analyze	d: 02/23/	2010 1230			
Alkalinity		470		mg/L	1.0	1.0	1.0	SM 2320B
	Analysis Batch: 6	60-90996	Date Analyze	d: 02/23/	2010 1112			
Salinity		3.0		ppt	2.0	2.0	1.0	SM 2520B
	Analysis Batch: 6	60-91137	Date Analyze	d: 02/25/	2010 1400			
Total Suspended	Solids	22		mg/L	1.0	1.0	1.0	SM 2540D
	Analysis Batch: 6	60-90872	Date Analyze	d: 02/19/	2010 1458			
Sulfide		1.0	U	mg/L	1.0	1.0	1.0	SM 4500 S2 F
	Analysis Batch: 6	60-90918	Date Analyze	d: 02/19/	2010 1600			

DATA REPORTING QUALIFIERS

Client: Environmental Engineering Consultant

Lab Section	Qualifier	Description
GC VOA		
	V	Indicates the analyte was detected in both the sample and the associated method blank.
	I	The reported value is between the laboratory method detection limit and the laboratory practical quantitation limit.
GC Semi VOA		
	J3	Estimated value; value may not be accurate. Spike recovery or RPD outside of criteria.
	J1	Estimated value; value may not be accurate. Surrogate recovery outside of criteria.
	U	Indicates that the compound was analyzed for but not detected.
	L	Off-scale high. Actual value is known to be greater than the value given.
	I	The reported value is between the laboratory method detection limit and the laboratory practical quantitation limit.
Metals		
	J3	Estimated value; value may not be accurate. Spike recovery or RPD outside of criteria.
	U	Indicates that the compound was analyzed for but not detected.
	I	The reported value is between the laboratory method detection limit and the laboratory practical quantitation limit.
General Chemistry		
	J3	Estimated value; value may not be accurate. Spike recovery or RPD outside of criteria.
	U	Indicates that the compound was analyzed for but not detected.
	Q	Sample held beyond the accepted holding time.
	Ι	The reported value is between the laboratory method detection limit and the laboratory practical quantitation limit.

Method Blank - Batch: 400-104462

Job Number: 660-33863-1

Method: RSK-175 Preparation: N/A

Lab Sample ID: MB 400-104462/1 Client Matrix: Water Dilution: 1.0 Date Analyzed: 02/26/2010 0808 Date Prepared: N/A		Analysis Batch: Prep Batch: N/A Units: ug/L	Analysis Batch: 400-104462 Prep Batch: N/A Units: ug/L			Instrument ID: No Equipment Assigned Lab File ID: N/A Initial Weight/Volume: 1.0 mL Final Weight/Volume: 1.0 mL Injection Volume:		
Analyte		Resul	t Qı	ual	MDL	PQL		
Carbon dioxide	(as CO2)	8.00	I		7.0	50		
Lab Control S Lab Control S	Sample/ Sample Duplicate Recove	ry Report - Batc	h: 400-104462	Meth Prepa	od: RSK-1 aration: N	175 //A		
LCS Lab Sampl Client Matrix: Dilution: Date Analyzed: Date Prepared:	e ID: LCS 400-104462/2 Water 1.0 02/26/2010 0743 N/A	Analysis Batch Prep Batch: N/ Units: ug/L	: 400-104462 A	Instrum Lab File Initial W Final W Injectio	ent ID: No iD: N/A /eight/Volur /eight/Volun n Volume:	o Equipment Assigned me: 1.0 mL ne: 1.0 mL		
LCSD Lab Sam Client Matrix: Dilution: Date Analyzed: Date Prepared:	ple ID: LCSD 400-104462/3 Water 1.0 02/26/2010 0755 N/A	Analysis Batch Prep Batch: N/ Units: ug/L	: 400-104462 A	Instrum Lab File Initial W Final W Injectio	ent ID: NA ≥ ID: N/A /eight/Volur /eight/Volun n Volume:	No Equipment Assigned me: 1.0 mL ne: 1.0 mL		
Analyte	(KCS LCSD	Limit	RPD I	RPD Limit	LCS Qual LCSD Qual		
Carbon dioxide	(as CO2)	104 108	80 - 120	4	50			

Method Blank - Batch: 660-90781

Lab Sample ID:MB 660-90781/1-AClient Matrix:WaterDilution:1.0Date Analyzed:02/19/2010Date Prepared:02/18/20100642

Analysis Batch: 660-91002 Prep Batch: 660-90781 Units: ug/L

Quality Control Results

Job Number: 660-33863-1

Method: 8081A Preparation: 3510C

Instrument ID: BSGJ Lab File ID: 1B19J044.D Initial Weight/Volume: 1000 mL Final Weight/Volume: 10 mL Injection Volume: 2 uL Column ID: PRIMARY

Analyte	Result	Qual	MDL	PQL
4,4'-DDD	0.0041	U	0.0041	0.010
4,4'-DDE	0.0055	U	0.0055	0.010
4,4'-DDT	0.0032	U	0.0032	0.010
Aldrin	0.0018	U	0.0018	0.010
alpha-BHC	0.0028	U	0.0028	0.010
beta-BHC	0.0027	U	0.0027	0.010
Chlordane (technical)	0.057	U	0.057	0.50
delta-BHC	0.0028	U	0.0028	0.010
Dieldrin	0.0014	U	0.0014	0.010
Endosulfan I	0.0034	U	0.0034	0.010
Endosulfan II	0.0033	U	0.0033	0.010
Endosulfan sulfate	0.0030	U	0.0030	0.010
Endrin	0.0031	U	0.0031	0.010
Endrin aldehyde	0.0032	U	0.0032	0.010
Endrin ketone	0.0054	U	0.0054	0.10
gamma-BHC (Lindane)	0.0026	U	0.0026	0.010
Heptachlor	0.0031	U	0.0031	0.010
Heptachlor epoxide	0.0031	U	0.0031	0.010
Methoxychlor	0.0051	U	0.0051	0.010
Toxaphene	0.72	U	0.72	3.0
Surrogate	% Rec	Accep	tance Limits	
DCB Decachlorobiphenyl	71	3	0 - 150	
Tetrachloro-m-xylene	75	3	0 - 150	

Lab Control Sample/ Lab Control Sample Duplicate Recovery Report - Batch: 660-90781

LCS Lab Sample ID Client Matrix: Dilution: Date Analyzed: Date Prepared:	2: LCS 660-90781/2-A Water 1.0 02/23/2010 1157 02/18/2010 0642	Analysis Batch: 660-91002 Prep Batch: 660-90781 Units: ug/L	Instrument ID: BSGJ Lab File ID: 1B23J014.D Initial Weight/Volume: 1000 mL Final Weight/Volume: 10 mL Injection Volume: 2 uL Column ID: PRIMARY
LCSD Lab Sample Client Matrix: Dilution: Date Analyzed: Date Prepared:	ID: LCSD 660-90781/3-A Water 1.0 02/23/2010 1211 02/18/2010 0642	Analysis Batch: 660-91002 Prep Batch: 660-90781 Units: ug/L	Instrument ID: BSGJ Lab File ID: 1B23J015.D Initial Weight/Volume: 1000 mL Final Weight/Volume: 10 mL Injection Volume: 2 uL Column ID: PRIMARY

		<u>% Rec.</u>					
Analyte	LCS	LCSD	Limit	RPD	RPD Limit	LCS Qual	LCSD Qual
4,4'-DDD	99	106	37 - 139	6	39		
4,4'-DDE	99	104	39 - 130	4	18		
4,4'-DDT	98	104	46 - 130	6	27		
Aldrin	81	89	31 - 130	9	25		
alpha-BHC	101	104	48 - 130	3	30		
beta-BHC	101	103	41 - 130	3	35		
delta-BHC	96	99	42 - 130	3	41		
Dieldrin	97	101	51 - 130	4	42		
Endosulfan I	96	99	40 - 130	4	24		
Endosulfan II	95	97	41 - 130	3	22		
Endosulfan sulfate	92	96	33 - 142	4	28		
Endrin	94	97	49 - 130	3	25		
Endrin aldehyde	90	93	34 - 132	3	34		
Endrin ketone	99	102	26 - 144	2	25		
gamma-BHC (Lindane)	98	101	53 - 130	3	26		
Heptachlor	87	94	36 - 130	7	26		
Heptachlor epoxide	96	98	41 - 130	1	31		
Methoxychlor	96	100	45 - 130	5	43		
Surrogate		LCS % Rec	LCSD %	Rec	Accep	tance Limits	
DCB Decachlorobiphenyl		86	84		3	0 - 150	
Tetrachloro-m-xylene		87	91		3	0 - 150	

Quality Control Results

Method: 8081A

Preparation: 3510C

Method Blank - Batch: 660-90841

Client Matrix: Solid Dilution: 1.0 Date Analyzed: 02/19/2010 1534 Date Prepared: 02/19/2010 0657

Lab Sample ID: MB 660-90841/1-A

Analysis Batch: 660-90917 Prep Batch: 660-90841 Units: ug/Kg

Quality Control Results

Job Number: 660-33863-1

Method: 8081A Preparation: 3550B

Instrument ID: BSGJ Lab File ID: 1B19J019.D Initial Weight/Volume: 30.00 g Final Weight/Volume: 10 mL Injection Volume: 2 uL Column ID: PRIMARY

Analyte	Result	Qual	MDL	PQL
4,4'-DDD	0.50	U	0.50	3.3
4,4'-DDE	0.50	U	0.50	3.3
4,4'-DDT	0.50	U	0.50	3.3
Aldrin	0.50	U	0.50	2.0
alpha-BHC	0.14	U	0.14	1.7
beta-BHC	0.50	U	0.50	2.0
Chlordane (technical)	2.4	U	2.4	17
delta-BHC	0.50	U	0.50	2.0
Dieldrin	0.15	U	0.15	1.7
Endosulfan I	0.25	U	0.25	2.0
Endosulfan II	0.25	U	0.25	3.3
Endosulfan sulfate	0.25	U	0.25	3.3
Endrin	0.50	U	0.50	4.0
Endrin aldehyde	0.50	U	0.50	4.0
Endrin ketone	0.50	U	0.50	4.0
gamma-BHC (Lindane)	0.50	U	0.50	2.0
Heptachlor	0.50	U	0.50	2.0
Heptachlor epoxide	0.14	U	0.14	2.0
Methoxychlor	1.0	U	1.0	17
Toxaphene	29	U	29	170
Surrogate	% Rec		Acceptance Limits	
DCB Decachlorobiphenyl	78		30 - 150	
Tetrachloro-m-xylene	87		30 - 150	

Lab Sample ID: LCS 660-90841/2-A

Client Matrix: Solid

Lab Control Sample	- Batch:	660-90841
--------------------	----------	-----------

Dilution: 1.0 Date Analyzed: 02/19/2010 1547 Date Prepared: 02/19/2010 0657	Units: ug/Kg		Initial Final \ Injecti Colum	Initial Weight/Volume: 30.00 g Final Weight/Volume: 10 mL Injection Volume: 2 uL Column ID: PRIMARY			
Analyte	Spike Amount	Result	% Rec.	Limit	Qual		
4,4'-DDD	16.7	16.3	98	62 - 130			
4,4'-DDE	16.7	17.2	103	60 - 130			
4,4'-DDT	16.7	14.4	87	35 - 142			
Aldrin	16.7	15.2	91	52 - 130			
alpha-BHC	16.7	15.8	95	58 - 130			
beta-BHC	16.7	16.3	98	56 - 130			
delta-BHC	16.7	13.4	80	48 - 130			
Dieldrin	16.7	15.4	92	60 - 130			
Endosulfan I	16.7	15.3	92	59 - 130			
Endosulfan II	16.7	15.5	93	60 - 130			
Endosulfan sulfate	16.7	16.5	99	49 - 130			
Endrin	16.7	15.0	90	57 - 130			
Endrin aldehyde	16.7	13.3	80	57 - 130			
Endrin ketone	16.7	17.4	104	42 - 136			
gamma-BHC (Lindane)	16.7	16.0	96	58 - 130			
Heptachlor	16.7	17.0	102	55 - 130			
Heptachlor epoxide	16.7	15.2	91	59 - 130			
Methoxychlor	16.7	14.8	89	37 - 133			
Surrogate	% R	ec	Acceptance Limits				
DCB Decachlorobiphenyl	83		30 - 150				
Tetrachloro-m-xylene	93		30 - 150				

Analysis Batch: 660-90917

Prep Batch: 660-90841

Quality Control Results

Method: 8081A Preparation: 3550B

Instrument ID: BSGJ

Lab File ID: 1B19J020.D

Job Number: 660-33863-1

Client: Environmental Engineering Consultant

Matrix Spike/ Matrix Spike Duplicate Recovery Report - Batch: 660-90841

Method: 8081A Preparation: 3550B

MS Lab Sample ID: Client Matrix: Dilution: Date Analyzed: Date Prepared:	660-33863-3 Solid 1.0 02/19/2010 1654 02/19/2010 0657	Analysis Batch: 660-90917 Prep Batch: 660-90841	Instrument ID: BSGJ Lab File ID: 1B19J025.D Initial Weight/Volume: 30.05 g Final Weight/Volume: 10 mL Injection Volume: 2 uL Column ID: PRIMARY
MSD Lab Sample ID: Client Matrix: Dilution: Date Analyzed: Date Prepared:	660-33863-3 Solid 1.0 02/19/2010 1708 02/19/2010 0657	Analysis Batch: 660-90917 Prep Batch: 660-90841	Instrument ID: BSGJ Lab File ID: 1B19J026.D Initial Weight/Volume: 30.05 g Final Weight/Volume: 10 mL Injection Volume: 2 uL Column ID: PRIMARY

	<u>%</u>	Rec.					
Analyte	MS	MSD	Limit	RPD	RPD Limit	MS Qual	MSD Qual
4,4'-DDD	92	89	62 - 130	3	50		
4,4'-DDE	62	62	60 - 130	0	25		
4,4'-DDT	31	28	35 - 142	13	26	J3	J3
Aldrin	51	50	52 - 130	2	38	J3	J3
alpha-BHC	71	72	58 - 130	1	40		
beta-BHC	74	74	56 - 130	0	40		
delta-BHC	78	78	48 - 130	0	47		
Dieldrin	60	64	60 - 130	7	30		
Endosulfan I	62	66	59 - 130	7	40		
Endosulfan II	64	64	60 - 130	0	65		
Endosulfan sulfate	81	81	49 - 130	1	50		
Endrin	50	48	57 - 130	5	32	J3	J3
Endrin aldehyde	14	17	57 - 130	14	86	J3	J3
Endrin ketone	102	100	42 - 136	2	31		
gamma-BHC (Lindane)	71	72	58 - 130	1	37		
Heptachlor	61	57	55 - 130	6	38		
Heptachlor epoxide	61	63	59 - 130	3	40		
Methoxychlor	65	67	37 - 133	4	40		
Surrogate		MS % Rec	MSD	% Rec	Acc	eptance Limit	S
DCB Decachlorobiphenyl		32	34		3	30 - 150	
Tetrachloro-m-xylene		55	60		3	30 - 150	

Method Blank - Batch: 640-65758

Lab Sample ID: MB 640-65758/1-A Client Matrix: Dilution: Date Analyzed: Date Prepared:

Water		Prep E	Batch:	640-65758
1.0		Units:	ug/L	
02/23/2010	1701			
02/18/2010	1430			
			_	

Quality Control Results

Job Number: 660-33863-1

Method: 8141A Preparation: 3520C

Instrument ID: SGF Lab File ID: 1B23F35.d Initial Weight/Volume: 1000 mL Final Weight/Volume: 5.0 mL Injection Volume: 1 uL Column ID: PRIMARY

Analyte	Result	Qual	MDL	PQL
Azinphos-methyl	0.33	U	0.33	1.0
Bolstar	0.095	U	0.095	1.0
Chlorpyrifos	0.11	U	0.11	1.0
Coumaphos	0.081	U	0.081	1.0
Demeton, Total	0.15	U	0.15	2.5
Diazinon	0.11	U	0.11	1.0
Dichlorvos	0.26	U	0.26	2.0
Dimethoate	0.32	U	0.32	2.0
Disulfoton	0.12	U	0.12	2.0
EPN	0.071	U	0.071	1.0
Ethoprop	0.41	U	0.41	0.50
Fensulfothion	0.17	U	0.17	5.0
Hexazinone	0.16	U	0.16	2.0
Malathion	0.092	U	0.092	1.0
Merphos	0.13	U	0.13	1.0
Mevinphos	0.15	U	0.15	2.0
Ethyl Parathion	0.080	U	0.080	1.0
Monochrotophos	2.6	U	2.6	10
Methyl parathion	0.12	U	0.12	0.50
Naled	0.36	U	0.36	5.0
Phorate	0.16	U	0.16	1.0
Ronnel	0.13	U	0.13	1.0
Stirophos	0.084	U	0.084	1.0
Sulfotepp	0.055	U	0.055	0.50
Tokuthion	0.087	U	0.087	1.0
Trichloronate	0.11	U	0.11	1.0
Surrogate	% Rec		Acceptance Limits	
Triphenylphosphate	111		37 - 139	

Analysis Batch: 640-65935

Lab Control Sample/ Lab Control Sample Duplicate Recovery Report - Batch: 640-65758

LCS Lab Sample ID: LCS 640-65758/2-A		Analysis Batch: 640-65935	Instrument ID: SGF			
Client Matrix:	Water	Prep Batch: 640-65758	Lab File ID: 1B23F55.d			
Dilution:	1.0	Units: ug/L	Initial Weight/Volume: 1000 mL			
Date Analyzed:	02/23/2010 2145		Final Weight/Volume: 5.0 mL			
Date Prepared:	02/18/2010 1430		Injection Volume: 1 uL			
			Column ID: PRIMARY			
LCSD Lab Sample	e ID: LCSD 640-65758/3-A	Analysis Batch: 640-65935	Instrument ID: SGF			
Client Matrix:	Water	Prep Batch: 640-65758	Lab File ID: 1B23F56.d			
Dilution:	1.0	Units: ug/L	Initial Weight/Volume: 1000 mL			
Date Analyzed:	02/23/2010 2159		Final Weight/Volume: 5.0 mL			
Date Prepared:	02/18/2010 1430		Injection Volume: 1 uL			
			Column ID: PRIMARY			

	<u>%</u> F	Rec.					
Analyte	LCS	LCSD	Limit	RPD	RPD Limit	LCS Qual	LCSD Qual
Azinphos-methyl	118	111	50 - 130	6	30		
Bolstar	111	96	50 - 130	10	30		
Chlorpyrifos	107	95	50 - 130	12	30		
Coumaphos	115	115	50 - 130	0	30		
Demeton, Total	61	60		2			
Diazinon	111	99	42 - 132	8	30		
Dichlorvos	133	119	50 - 130	11	30	J3	
EPN	125	122	50 - 130	5	30		
Ethoprop	112	105	50 - 130	2	30		
Fensulfothion	107	97	50 - 130	10	30	I	I
Malathion	111	99	50 - 130	11	30		
Mevinphos	111	100	50 - 130	4	30		
Ethyl Parathion	116	103	49 - 134	12	30		
Monochrotophos	42	44	50 - 130	5	30	I J3	I J3
Methyl parathion	118	103	43 - 140	14	30		
Naled	64	60	50 - 130	5	30		
Phorate	97	87	50 - 130	11	30		
Ronnel	108	95	38 - 124	1	30		
Stirophos	111	99	50 - 130	11	30		
Tokuthion	109	97	50 - 130	11	30		
Trichloronate	105	93	50 - 130	12	30		
Surrogate	LCS	S % Rec	LCSD % F	Rec	Accept	ance Limits	
Triphenylphosphate	116	;	106		37	′ - 139	

Quality Control Results

Method: 8141A

Preparation: 3520C

Method Blank - Batch: 640-65855

Lab Sample ID:	MB 640-65855/1-A
Client Matrix:	Solid
Dilution:	1.0
Date Analyzed:	02/24/2010 0831
Date Prepared:	02/22/2010 1006

Job Number:	660-33863-1

Method: 8141A Preparation: 3550B

Instrument ID: SGF Lab File ID: 1B23F63.d Initial Weight/Volume: 00030.24 g Final Weight/Volume: 10.0 mL Injection Volume: 1 uL Column ID: PRIMARY

Analyte	Result	Qual	MDL	PQL
Azinphos-methyl	4.4	U	4.4	65
Bolstar	8.4	U	8.4	33
Chlorpyrifos	8.3	U	8.3	33
Coumaphos	8.5	U	8.5	330
Demeton, Total	13	U	13	82
Diazinon	8.7	U	8.7	33
Dichlorvos	17	U	17	65
Dimethoate	9.9	U	9.9	65
Disulfoton	11	U	11	65
EPN	9.0	U	9.0	33
Ethoprop	15	U	15	17
Fensulfothion	9.9	U	9.9	330
Hexazinone	7.6	U	7.6	33
Hexazinone	7.6	U	7.6	33
Malathion	8.9	U	8.9	33
Merphos	8.2	U	8.2	33
Mevinphos	11	U	11	65
Ethyl Parathion	8.7	U	8.7	33
Monochrotophos	84	U	84	330
Methyl parathion	5.4	U	5.4	17
Naled	5.2	U	5.2	330
Phorate	11	U	11	33
Ronnel	7.9	U	7.9	33
Stirophos	8.8	U	8.8	33
Sulfotepp	5.3	U	5.3	17
Tokuthion	7.6	U	7.6	33
Trichloronate	8.1	U	8.1	330
Surrogate	% Rec	Accep	tance Limits	
Triphenylphosphate	94	35	5 - 134	

Analysis Batch: 640-65935

Prep Batch: 640-65855

Units: ug/Kg

Analyte

Bolstar

Chlorpyrifos

Coumaphos

Diazinon

Ethoprop

Malathion

Mevinphos

Naled

Phorate

Ronnel

Stirophos

Tokuthion

Surrogate

Trichloronate

Triphenylphosphate

Fensulfothion

Ethyl Parathion

Monochrotophos

Methyl parathion

EPN

Dichlorvos

Demeton, Total

Azinphos-methyl

Client: Environmental Engineering Consultant

Lab Control Sample/ Lab Control Sample Duplicate Recovery Report - Batch: 640-65855

LCS Lab Sample ID Client Matrix: Dilution: Date Analyzed: Date Prepared:	0: LCS 640-65855/2-A Solid 1.0 02/24/2010 1004 02/22/2010 1006	Analysis Batch: 640-65935 Prep Batch: 640-65855 Units: ug/Kg	Instrument ID: SGF Lab File ID: 1B23F69.d Initial Weight/Volume: 00030.07 g Final Weight/Volume: 10.0 mL Injection Volume: 1 uL Column ID: PRIMARY
LCSD Lab Sample Client Matrix: Dilution: Date Analyzed: Date Prepared:	ID: LCSD 640-65855/3-A Solid 1.0 02/24/2010 1018 02/22/2010 1006	Analysis Batch: 640-65935 Prep Batch: 640-65855 Units: ug/Kg	Instrument ID: SGF Lab File ID: 1B23F70.d Initial Weight/Volume: 00030.36 g Final Weight/Volume: 10.0 mL Injection Volume: 1 uL Column ID: PRIMARY

% Rec.

LCSD

105

80

76

88

70

73

82

109

75

107

77

78

87

76

84

53

72

74

85

78

75

LCS % Rec

79

Limit

50 - 130

50 - 130

31 - 130

50 - 130

20 - 100

50 - 130

50 - 130

50 - 130

50 - 130

50 - 130

50 - 130

22 - 116

50 - 130

20 - 107

50 - 130

50 - 130

38 - 130

50 - 130

50 - 130

50 - 130

80

LCSD % Rec

LCS

102

74

70

87

65

68

76

103

102

68

72

72

80

70

79

53

66

69

79

71

68

		Method: 8141A
Report - Batch:	640-65855	Preparation: 3550B

RPD

50

50

50

50

50

50

50

50

50

50

50

50

50

50

50

50

50

50

50

50

2

1

7

1

7

6

7

4

8

4

6

4

8

8

3

1

0

6

2

9

1

Quality Control Results

Job Number: 660-33863-1

RPD Limit LCS Qual LCSD Qual

I

I

I

T

I

Т

Acceptance Limits

35 - 134

Matrix Spike/ Matrix Spike Duplicate Recovery Report - Batch: 640-65855

Method: 8141A Preparation: 3550B

MS Lab Sample ID: Client Matrix: Dilution: Date Analyzed: Date Prepared:	400-45631-C-1-A MS Solid 1.0 02/24/2010 0936 02/22/2010 1006	Analysis Batch: 640-65935 Prep Batch: 640-65855	Instrument ID: SGF Lab File ID: 1B23F67.d Initial Weight/Volume: 00030.26 g Final Weight/Volume: 10.0 mL Injection Volume: 1 uL Column ID: PRIMARY
MSD Lab Sample ID: Client Matrix: Dilution: Date Analyzed: Date Prepared:	400-45631-C-1-B MSD Solid 1.0 02/24/2010 0950 02/22/2010 1006	Analysis Batch: 640-65935 Prep Batch: 640-65855	Instrument ID: SGF Lab File ID: 1B23F68.d Initial Weight/Volume: 00030.25 g Final Weight/Volume: 10.0 mL Injection Volume: 1 uL Column ID: PRIMARY

	<u>%</u> R	lec.					
Analyte	MS	MSD	Limit	RPD	RPD Limit	MS Qual	MSD Qual
Azinphos-methyl	94	61	50 - 130	42	50		
Bolstar	74	58	50 - 130	34	50		
Chlorpyrifos	70	55	31 - 130	23	50		
Coumaphos	93	64	50 - 130	37	50	I	I
Demeton, Total	52	35	50 - 130	38			J3
Diazinon	62	46	20 - 100	29	50		
Dichlorvos	56	36	50 - 130	44	50		I J3
EPN	106	78	50 - 130	31	50		
Ethoprop	57	40	50 - 130	35	50		J3
Fensulfothion	58	55	50 - 130	6	50	I	I
Malathion	69	46	50 - 130	40	50		J3
Mevinphos	23	24	50 - 130	4	50	I J3	I J3
Ethyl Parathion	80	56	22 - 116	35	50		
Monochrotophos	0	0	50 - 130	NC	50	U J3	U J3
Methyl parathion	72	49	20 - 107	43	50		
Naled	36	20	50 - 130	63	50	I J3	I J3
Phorate	56	40	50 - 130	40	50		J3
Ronnel	67	51	38 - 130	26	50		
Stirophos	76	52	50 - 130	38	50		
Tokuthion	70	58	50 - 130	18	50		
Trichloronate	67	55	50 - 130	25	50	I	I
Surrogate		MS % Rec	MSD % R	Rec	Accep	tance Limit	S
Triphenylphosphate		74	51		35	- 134	

Page 95 of 150

Quality Control Results

Method Blank - Batch: 660-90805

Lab Sample ID: MB 660-90805/1-A

1.0 Date Analyzed: 02/26/2010 0742 Date Prepared: 02/18/2010 1200

Client Matrix: Solid

Dilution:

Method: 8151A Preparation: 8151A

Instrument ID: E	BSGJ
Lab File ID:	1B25J054.D
Initial Weight/Vo	olume: 30.00 g
Final Weight/Vo	lume: 10 mL
Injection Volum	e: 2 uL
Column ID:	PRIMARY

Analyte	Result	Qual	MDL	PQL
2,4,5-T	10	U	10	50
2,4-D	1.6	U	1.6	8.3
2,4-DB	6.4	U	6.4	8.3
Dalapon	23	U	23	2000
Dicamba	12	U	12	50
Dichlorprop	25	U	25	100
Dinoseb	8.3	U	8.3	30
MCPA	740	U	740	2000
MCPP	400	U	400	2000
Pentachlorophenol	5.0	U	5.0	17
Picloram	1.2	U	1.2	3.3
Silvex (2,4,5-TP)	10	U	10	50
Surrogate	% Rec		Acceptance Limit	S
2.4 Dichlorophonylacotic acid	60		10 135	

Analysis Batch: 660-91251

Prep Batch: 660-90805

Units: ug/Kg

2,4-Dichlorophenylacetic acid

60

Page 96 of 150

10 - 135

Quality Control Results

Lab Control Sample - Batch: 660-90805

Method: 8151A
Preparation: 8151A

Lab Sample ID:LCS 660-90805/2-AClient Matrix:SolidDilution:1.0Date Analyzed:02/26/201002/26/20100759Date Prepared:02/18/20101200	ample ID: LCS 660-90805/2-A Analysis Batch: 660-91251 Matrix: Solid Prep Batch: 660-90805 m: 1.0 Units: ug/Kg Analyzed: 02/26/2010 0759 Prepared: 02/18/2010 1200			Instrument ID: BSGJ Lab File ID: 1B25J055.D Initial Weight/Volume: 30.00 g Final Weight/Volume: 10 mL Injection Volume: 2 uL			
			Colum	IN ID: PRIMA	RY		
Analyte	Spike Amount	Result	% Rec.	Limit	Qual		
2,4,5-T	83.3	71.6	86	27 - 168			
2,4-D	83.3	73.6	88	26 - 159			
2,4-DB	83.3	94.4	113	10 - 181			
Dalapon	83.3	61.1	73	10 - 213			
Dicamba	83.3	60.8	73	29 - 145			
Dichlorprop	83.3	61.8	74	28 - 130			
Dinoseb	83.3	44.1	53	10 - 130			
MCPA	8330	6360	76	29 - 134			
MCPP	8330	6480	78	13 - 157			
Pentachlorophenol	83.3	49.9	60	16 - 132			
Picloram	83.3	70.4	84	10 - 150			
Silvex (2,4,5-TP)	83.3	64.4	77	32 - 134			
Surrogate	% R	% Rec		Acceptance Limits			
2,4-Dichlorophenylacetic acid	68 10 - 135						

Job Number: 660-33863-1

Client: Environmental Engineering Consultant

Matrix Spike/ Matrix Spike Duplicate Recovery Report - Batch: 660-90805

Method: 8151A Preparation: 8151A

MS Lab Sample ID: Client Matrix: Dilution: Date Analyzed: Date Prepared:	660-33863-4 Solid 1.0 02/26/2010 1055 02/18/2010 1200	Analysis Batch: 660-91251 Prep Batch: 660-90805	Instrument ID: BSGJ Lab File ID: 1B25J065.D Initial Weight/Volume: 29.57 g Final Weight/Volume: 10 mL Injection Volume: 2 uL Column ID: PRIMARY
MSD Lab Sample ID: Client Matrix: Dilution: Date Analyzed: Date Prepared:	660-33863-4 Solid 1.0 02/26/2010 1113 02/18/2010 1200	Analysis Batch: 660-91251 Prep Batch: 660-90805	Instrument ID: BSGJ Lab File ID: 1B25J066.D Initial Weight/Volume: 29.57 g Final Weight/Volume: 10 mL Injection Volume: 2 uL Column ID: PRIMARY

	<u>%</u>	Rec.					
Analyte	MS	MSD	Limit	RPD	RPD Limit	MS Qual	MSD Qual
2,4,5-T	73	78	27 - 168	6	59		
2,4-D	506	206	26 - 159	84	47	J3	J3
2,4-DB	111	106	10 - 181	4	40		
Dalapon	28	41	10 - 213	37	40		
Dicamba	55	62	29 - 145	12	40		
Dichlorprop	65	67	28 - 130	3	40		
Dinoseb	87	72	10 - 130	18	50		
MCPA	86	67	29 - 134	25	50		
MCPP	93	59	13 - 157	45	50		
Pentachlorophenol	71	64	16 - 132	10	40		
Picloram	38	58	10 - 150	43	40		J3
Silvex (2,4,5-TP)	78	69	32 - 134	12	51		
Surrogate		MS % Rec	MSD 9	% Rec	Acce	eptance Limit	s
2,4-Dichlorophenylacetic acid		1630	L J1 490	J1	1	0 - 135	

Method Blank - Batch: 660-90939

Lab Sample ID: MB 660-90939/1-A

Method: 8151A Preparation: 8151A

Instrument ID: BSGJ

Client Matrix: Water		Prep Batch: 660-90939		Lab File ID:	Lab File ID: 1B25J044.D		
Date Analyzed:	02/26/2010 0449			Final Weight/Vo	Final Weight/Volume: 10 ml		
Date Prepared:	02/22/2010 1412			Injection Volum Column ID:	e: 2 uL PRIMARY		
Analyte		Result	Qual	MDL	PQL		
2,4,5-T		1.0	U	1.0	5.0		
2,4-D		1.0	U	1.0	5.0		
2,4-DB		1.0	U	1.0	5.0		
Dalapon		25	U	25	120		
Dicamba		0.25	U	0.25	1.2		
Dichlorprop		1.0	U	1.0	6.0		
Dinoseb		1.0	U	1.0	6.0		
MCPA		34	U	34	120		
MCPP		35	U	35	120		
Pentachlorophe	enol	0.085	U	0.085	1.0		
Picloram		1.0	U	1.0	5.0		

Analysis Batch: 660-91375

2,4-Dichlorophenylacetic acid

Silvex (2,4,5-TP)

Surrogate

% Rec 74 U

1.0

Acceptance Limits 33 - 120

1.0

Job Number: 660-33863-1

5.0

Job Number: 660-33863-1

Lab Control Sample/ Lab Control Sample Duplicate Recovery Report - Batch: 660-90939

Method: 8151A Preparation: 8151A

LCS Lab Sample I	D: LCS 660-90939/2-A	Analysis Batch: 660-91375	Instrument ID: BSGJ
Client Matrix:	Water	Prep Batch: 660-90939	Lab File ID: 1B25J045.D
Dilution:	1.0	Units: ug/L	Initial Weight/Volume: 1000 mL
Date Analyzed:	02/26/2010 0507		Final Weight/Volume: 10 mL
Date Prepared:	02/22/2010 1412		Injection Volume: 2 uL
			Column ID: PRIMARY
LCSD Lab Sample	e ID: LCSD 660-90939/3-A	Analysis Batch: 660-91375	Instrument ID: BSGJ
Client Matrix:	Water	Prep Batch: 660-90939	Lab File ID: 1B25J046.D
Dilution:	1.0	Units: ug/L	Initial Weight/Volume: 1000 mL
Date Analyzed:	02/26/2010 0524		Final Weight/Volume: 10 mL
Date Prepared:	02/22/2010 1412		Injection Volume: 2 uL
			Column ID: PRIMARY
		% Rec	

Analyte			Limit	PPD	PPD Limit		
Analyte	200	LCOD				LCO Quai	LCOD Quai
2,4,5-T	81	84	50 - 130	4	48		
2,4-D	79	84	60 - 130	6	78		
2,4-DB	99	103	10 - 181	4	43		
Dalapon	53	56	10 - 228	4	68		
Dicamba	65	68	24 - 150	5	46		
Dichlorprop	69	70	13 - 130	2	95		
Dinoseb	77	79	10 - 130	3	115		
MCPA	73	75	10 - 158	3	28		
MCPP	77	79	10 - 214	3	78		
Pentachlorophenol	56	57	25 - 134	2	34		
Picloram	51	61	10 - 150	18	56		
Silvex (2,4,5-TP)	73	77	33 - 130	6	66		
Surrogate		LCS % Rec	LCSD %	Rec	Accep	tance Limits	
2,4-Dichlorophenylacetic acid		61	63		3	3 - 120	

Method Blank - Batch: 660-90828

Lab Sample ID: MB 660-90828/1-A

1.0 Date Analyzed: 02/19/2010 1520 Date Prepared: 02/18/2010 1533

Client Matrix: Solid

Dilution:

Method: 6010B Preparation: 3050B

Instrument ID:	ICPA
Lab File ID:	10B19A
Initial Weight/	Volume: 1.00 g
Final Weight/\	/olume: 50 mL

Analyte	Result	Qual	MDL	PQL
Aluminum	5.8	U	5.8	20
Arsenic	0.23	U	0.23	0.50
Boron	0.59	U	0.59	5.0
Barium	0.16	U	0.16	1.0
Calcium	15	U	15	50
Cadmium	0.087	U	0.087	0.50
Cobalt	0.19	U	0.19	1.0
Chromium	0.17	U	0.17	1.0
Copper	0.50	U	0.50	2.0
Iron	3.0	U	3.0	5.0
Magnesium	6.8	U	6.8	50
Manganese	0.21	U	0.21	1.0
Sodium	18	U	18	50
Lead	0.15	U	0.15	0.50
Strontium	0.098	U	0.098	1.0
Titanium	0.30	U	0.30	1.0
Vanadium	0.11	U	0.11	1.0
Zinc	0.50	U	0.50	2.0

Analysis Batch: 660-90852 Prep Batch: 660-90828

Units: mg/Kg

Quality Control Results

Lab Control Sample - Batch: 660-90828

Lab Sample ID:	LCS 660-90	828/2-A
Client Matrix:	Solid	
Dilution:	1.0	
Date Analyzed:	02/19/2010	1526
Date Prepared:	02/18/2010	1533

ID:	LCS 660-90828/2-A	Analysis Batch: 660-90852
:	Solid	Prep Batch: 660-90828
	1.0	Units: mg/Kg

Quality Control Results

Job Number: 660-33863-1

Method: 6010B Preparation: 3050B

Instrument ID: ICPA Lab File ID: 10B19A Initial Weight/Volume: 1.00 g Final Weight/Volume: 50 mL

Analyte	Spike Amount	Result	% Rec.	Limit	Qual
Aluminum	50.0	48.6	97	75 - 125	
Arsenic	50.0	50.1	100	75 - 125	
Boron	50.0	48.5	97	75 - 125	
Barium	50.0	50.1	100	75 - 125	
Calcium	50.0	53.2	106	75 - 125	
Cadmium	50.0	52.8	106	75 - 125	
Cobalt	50.0	49.6	99	75 - 125	
Chromium	49.5	49.8	101	75 - 125	
Copper	50.0	49.8	100	75 - 125	
Iron	50.0	51.0	102	75 - 125	
Magnesium	50.0	48.9	98	75 - 125	
Manganese	50.0	51.9	104	75 - 125	
Sodium	500	495	99	75 - 125	
Lead	50.0	52.1	104	75 - 125	
Strontium	50.0	51.5	103	75 - 125	
Titanium	50.0	50.7	101	75 - 125	
Vanadium	50.0	49.9	100	75 - 125	
Zinc	50.0	51.5	103	75 - 125	

Quality Control Results

Job Number: 660-33863-1

Client: Environmental Engineering Consultant

Matrix Spike/ Matrix Spike Duplicate Recovery Report - Batch: 660-90828

Method: 6010B Preparation: 3050B

MS Lab Sample ID: Client Matrix: Dilution: Date Analyzed: Date Prepared:	660-33889-B-1-B MS Solid 1.0 02/19/2010 1544 02/18/2010 1533	Analysis Batch: 660-90852 Prep Batch: 660-90828	Instrument ID: ICPA Lab File ID: 10B19A Initial Weight/Volume: 1.03 g Final Weight/Volume: 50 mL
MSD Lab Sample ID:	660-33889-B-1-C MSD	Analysis Batch: 660-90852	Instrument ID: ICPA
Dilution:	1.0	1 Tep Batch. 000-30020	Initial Weight/Volume: 1.00 g
Date Analyzed:	02/19/2010 1550		Final Weight/Volume: 50 mL
Date Prepared:	02/18/2010 1533		-

	<u>% Rec.</u>						
Analyte	MS	MSD	Limit	RPD	RPD Limit	MS Qual	MSD Qual
Aluminum	153	490	75 - 125	8	20	J3	J3
Arsenic	78	76	75 - 125	1	20		
Boron	76	75	75 - 125	2	20		
Barium	78	79	75 - 125	3	20		
Calcium	-2840	1750	75 - 125	8	20	J3	J3
Cadmium	77	75	75 - 125	0	20		
Cobalt	73	71	75 - 125	0	20	J3	J3
Chromium	73	73	75 - 125	2	20	J3	J3
Copper	79	78	75 - 125	2	20		
Iron	-91	107	75 - 125	10	20	J3	
Magnesium	53	62	75 - 125	3	20	J3	J3
Manganese	75	76	75 - 125	3	20		
Sodium	81	86	75 - 125	5	20		
Lead	77	76	75 - 125	1	20		
Strontium	71	80	75 - 125	5	20	J3	
Titanium	74	78	75 - 125	5	20	J3	
Vanadium	75	75	75 - 125	2	20		
Zinc	72	71	75 - 125	2	20	J3	J3

Method Blank - Batch: 660-90946

Lab Sample ID:MB 660-90946/1-AClient Matrix:WaterDilution:1.0Date Analyzed:03/01/2010Date Prepared:02/22/20101600

Quality Control Results

Job Number: 660-33863-1

Method: 6010B Preparation: 3005A Total Recoverable

Instrument ID: ICPA Lab File ID: 10C01A Initial Weight/Volume: 50 mL Final Weight/Volume: 50 mL

Analyte	Result	Qual	MDL	PQL	
Potassium	0.19	U	0.19	1.0	
Copper	0.0029	U	0.0029	0.010	
Iron	0.050	U	0.050	0.20	
Magnesium	0.020	U	0.020	0.080	
Sodium	0.31	U	0.31	0.50	
Lead	0.0020	U	0.0020	0.010	
Zinc	0.0050	U	0.0050	0.020	

Analysis Batch: 660-91239

Prep Batch: 660-90946

Units: mg/L

Lab Control Sample - Batch: 660-90946

Lab Sample ID:LCS 660-90946/2-AClient Matrix:WaterDilution:1.0Date Analyzed:03/01/2010Date Prepared:02/22/20101600

Analysis Batch: 660-91239 Prep Batch: 660-90946 Units: mg/L

Method: 6010B Preparation: 3005A Total Recoverable

Instrument ID: ICPA Lab File ID: 10C01A Initial Weight/Volume: 50 mL Final Weight/Volume: 50 mL

Analyte	Spike Amount	Result	% Rec.	Limit	Qual
Potassium	10.0	10.4	103	75 - 125	
Copper	1.00	0.988	99	75 - 125	
Iron	1.00	1.01	101	75 - 125	
Magnesium	1.00	1.00	100	75 - 125	
Sodium	10.0	10.2	102	75 - 125	
Lead	1.00	1.03	103	75 - 125	
Zinc	1.00	1.02	102	75 - 125	

Quality Control Results

Job Number: 660-33863-1

Client: Environmental Engineering Consultant

Matrix Spike/ Matrix Spike Duplicate Recovery Report - Batch: 660-90946

Method: 6010B Preparation: 3005A Total Recoverable

MS Lab Sample ID:	660-33845-B-1-B MS	Analysis Batch: 660-91239	Instrument ID: ICPA
Dilution:		Prep Balch: 660-90946	Lab File ID: 10C01A Initial Weight/Volume: 50 ml
Date Analyzed	03/01/2010 1610		Final Weight/Volume: 50 ml
Date Prepared:	02/22/2010 1600		
MSD Lab Sample ID:	660-33845-B-1-C MSD	Analysis Batch: 660-91239	Instrument ID: ICPA
Client Matrix:	Water	Prep Batch: 660-90946	Lab File ID: 10C01A
Dilution:	1.0		Initial Weight/Volume: 50 mL
Date Analyzed:	03/01/2010 1616		Final Weight/Volume: 50 mL
Date Prepared:	02/22/2010 1600		

	<u>% Re</u>	<u>ec.</u>					
Analyte	MS	MSD	Limit	RPD	RPD Limit	MS Qual	MSD Qual
Potassium	115	110	75 - 125	3	20		
Copper	100	99	75 - 125	1	20		
Iron	102	105	75 - 125	2	20		
Magnesium	118	117	75 - 125	0	20		
Sodium	86	112	75 - 125	7	20		
Lead	103	105	75 - 125	2	20		
Zinc	102	105	75 - 125	3	20		

Method Blank - Batch: 660-91263

Lab Sample ID:MB 660-91263/1-AClient Matrix:WaterDilution:1.0Date Analyzed:03/02/2010Date Prepared:03/02/2010

Quality Control Results

Job Number: 660-33863-1

Method: 6010B Preparation: 3005A Total Recoverable

Instrument ID: ICPA Lab File ID: 10C02A Initial Weight/Volume: 50 mL Final Weight/Volume: 50 mL

Analyte	Result	Qual	MDL	PQL	
Potassium	0.19	U	0.19	1.0	
Copper	0.0029	U	0.0029	0.010	
Iron	0.050	U	0.050	0.20	
Magnesium	0.020	U	0.020	0.080	
Sodium	0.31	U	0.31	0.50	
Lead	0.0020	U	0.0020	0.010	
Zinc	0.0050	U	0.0050	0.020	

Analysis Batch: 660-91268

Prep Batch: 660-91263

Units: mg/L

Lab Control Sample - Batch: 660-91263

Lab Sample ID:LCS 660-91263/2-AClient Matrix:WaterDilution:1.0Date Analyzed:03/02/2010Date Prepared:03/02/20101030

Analysis Batch: 660-91268 Prep Batch: 660-91263 Units: mg/L

Method: 6010B Preparation: 3005A Total Recoverable

Instrument ID: ICPA Lab File ID: 10C02A Initial Weight/Volume: 50 mL Final Weight/Volume: 50 mL

Analyte	Spike Amount	Result	% Rec.	Limit	Qual
Potassium	10.0	8.90	89	75 - 125	
Copper	1.00	0.966	97	75 - 125	
Iron	1.00	0.959	96	75 - 125	
Magnesium	1.00	0.943	94	75 - 125	
Sodium	10.0	9.55	96	75 - 125	
Lead	1.00	0.973	97	75 - 125	
Zinc	1.00	0.956	96	75 - 125	

Quality Control Results

Job Number: 660-33863-1

Client: Environmental Engineering Consultant

Matrix Spike/ Matrix Spike Duplicate Recovery Report - Batch: 660-91263

Method: 6010B Preparation: 3005A Total Recoverable

MS Lab Sample ID:	660-34028-E-1-C MS	Analysis Batch: 660-91268	Instrument ID: ICPA
Client Matrix:	Water	Prep Batch: 660-91263	Lab File ID: 10C02A
Dilution:	1.0		Initial Weight/Volume: 50 mL
Date Analyzed:	03/02/2010 1741		Final Weight/Volume: 50 mL
Date Prepared:	03/02/2010 1030		
MSD Lab Sample ID:	660-34028-E-1-D MSD	Analysis Batch: 660-91268	Instrument ID: ICPA
Client Matrix:	Water	Prep Batch: 660-91263	Lab File ID: 10C02A
Dilution:	1.0		Initial Weight/Volume: 50 mL
Date Analyzed:	03/02/2010 1747		Final Weight/Volume: 50 mL
Date Prepared:	03/02/2010 1030		

	<u>% Re</u>	ec.					
Analyte	MS	MSD	Limit	RPD	RPD Limit	MS Qual	MSD Qual
Potassium	103	99	75 - 125	4	20		
Copper	100	96	75 - 125	4	20		
Iron	102	99	75 - 125	3	20		
Magnesium	214	128	75 - 125	3	20	J3	J3
Sodium	123	107	75 - 125	4	20		
Lead	98	96	75 - 125	2	20		
Zinc	95	94	75 - 125	1	20		

TestAmerica Tampa

Mercury

Quality Control Results

Job Number: 660-33863-1

Method: 7470A

Client: Environmental Engineering Consultant

Method Blank - Batch: 660-90800

					Preparation: 7470	Α		
Lab Sample ID:MB 660-90800/1-AClient Matrix:WaterDilution:1.0Date Analyzed:02/18/2010Date Prepared:02/18/2010		Analysis Batc Prep Batch: Units: mg/L	h: 660-90825 660-90800		Instrument ID: PS200II Lab File ID: N/A Initial Weight/Volume: 25 mL Final Weight/Volume: 1.0 mL			
Analyte		Re	sult	Qual	MDL	PQL		
Mercury		0.0	00072	U	0.000072	0.00020		
Lab Control Samp	le - Batch: 660-908	800			Method: 7470A Preparation: 7470	A		
Lab Sample ID:LCSClient Matrix:WateDilution:1.0Date Analyzed:02/18Date Prepared:02/18	660-90800/2-A er 8/2010 1253 8/2010 0900	Analysis Batc Prep Batch: Units: mg/L	h: 660-90825 660-90800		Instrument ID: PS200 Lab File ID: N/A Initial Weight/Volume Final Weight/Volume	DII : 25 mL : 25 mL		
Analyte		Spike Amoun	Result	% R	Rec. Limit	Qual		
Matrix Spike/ Matrix Spike Dupli	icate Recovery Rep	oort - Batch: 66	0.00103 0-90800	103	Method: 7470A Preparation: 7470	A		
MS Lab Sample ID: Client Matrix: Dilution: Date Analyzed: Date Prepared:	660-33863-6 Water 1.0 02/18/2010 1335 02/18/2010 0900	Analysis Batc Prep Batch:	h: 660-90825 660-90800		Instrument ID: PS2 Lab File ID: N/A Initial Weight/Volume Final Weight/Volume	0011 : 25 mL : 25 mL		
MSD Lab Sample ID: Client Matrix: Dilution: Date Analyzed: Date Prepared:	660-33863-6 Water 1.0 02/18/2010 1338 02/18/2010 0900	Analysis Batc Prep Batch:	h: 660-90825 660-90800		Instrument ID: PS200 Lab File ID: N/A Initial Weight/Volume Final Weight/Volume	DII : 25 mL : 25 mL		
Analyte		<u>% Rec.</u> MS MSD	Limit	RF	PD RPD Limit M	IS Qual MSD Qual		

105

108

80 - 120

3

20

TestAmerica Tampa

Quality Control Results

Job Number: 660-33863-1

Method: 7471A Preparation: 7471A

Client: Environmental Engineering Consultant

Method Blank - Batch: 660-91390

Lab Sample ID:MBClient Matrix:SolidDilution:1.0Date Analyzed:03/0Date Prepared:03/0	660-91390/1-A d)4/2010 1357)4/2010 1100	Analys Prep B Units:	is Batch: atch: 660 mg/Kg	660-91412)-91390		Instrument ID: PS200II Lab File ID: N/A Initial Weight/Volume: 0.30 g Final Weight/Volume: 50 mL			
Analyte			Result		Qual	MDL	PQL		
Mercury			0.0075	5	U	0.007	5 0.020		
Lab Control Sam	ole - Batch: 660-9139	0				Method: 747 [,] Preparation:	1A 7471A		
Lab Sample ID: LCS Client Matrix: Solid Dilution: 1.0 Date Analyzed: 03/0 Date Prepared: 03/0	660-91390/2-A d)4/2010 1400)4/2010 1100	Analys Prep E Units:	is Batch: atch: 660 mg/Kg	660-91412)-91390		Instrument ID: Lab File ID: Initial Weight/V Final Weight/Vo	PS200II N/A olume: 0.30 g olume: 50 mL		
Analyte		Spike	Amount	Result	% Re	c. Lin	nit	Qual	
Mercury		0.167		0.188	113	80	- 120		
Matrix Spike/ Matrix Spike Dup	licate Recovery Repo	rt - Bato	:h: 660-9	1390		Method: 747 Preparation:	1A 7471A		
MS Lab Sample ID: Client Matrix: Dilution: Date Analyzed: Date Prepared:	660-34106-A-2-B MS Solid 1.0 03/04/2010 1449 03/04/2010 1100	Analys Prep B	is Batch: atch: 660	660-91412)-91390		Instrument ID: Lab File ID: Initial Weight/V Final Weight/Vo	PS200II N/A olume: 0.30 g olume: 50 ml	9	
MSD Lab Sample ID Client Matrix: Dilution: Date Analyzed: Date Prepared:	: 660-34106-A-2-C MSD Solid 1.0 03/04/2010 1451 03/04/2010 1100	Analys Prep B	is Batch: atch: 660	660-91412)-91390		Instrument ID: Lab File ID: Initial Weight/V Final Weight/Vo	PS200II N/A olume: 0.30 g olume: 50 mL		
Analyta		<u>% F</u>	Rec.	l imit	זסס		MS Quel		
Andiyle		IVIO	INISD		RPL			งเอม Qua	

Method Blank - Batch: 660-90880

Client: Environmental Engineering Consultant

Method: 180.1 Preparation: N/A

Analyte		Sample Result/C	Qual R	esult	RPD	Limit	Qual
Lab Sample ID: Client Matrix: Dilution: Date Analyzed: Date Prepared:	660-33863-5 Water 2.0 02/18/2010 2100 N/A	Analysis Batch: 66 Prep Batch: N/A Units: NTU	60-90880	lı L F	nstrument ID: .ab File ID: nitial Weight/V ⁻ inal Weight/V	Turbidity2 N/A /olume: /olume: 30 r	nL
Duplicate - Ba	tch: 660-90880			N F	Method: 180 Preparation:	.1 N/A	
Turbidity		40.0	39.7	99	90	- 110	
Analyte		Spike Amount	Result	% Rec.	. Lir	nit	Qual
Lab Sample ID: Client Matrix: Dilution: Date Analyzed: Date Prepared:	LCS 660-90880/4 Water 1.0 02/18/2010 2100 N/A	Analysis Batch: Prep Batch: N/A Units: NTU	660-90880	li L F	nstrument ID: .ab File ID: nitial Weight/V Final Weight/V	Turbidity2 N/A /olume: /olume: 30 r	nL
Lab Control S	ample - Batch: 6	60-90880		N	Method: 180 Preparation:	.1 N/A	
Turbidity		0.10		U	0.10	0.1	10
Analyte		Resul	t	Qual	PQL	PC	QL
Lab Sample ID: Client Matrix: Dilution: Date Analyzed: Date Prepared:	MB 660-90880/3 Water 1.0 02/18/2010 2100 N/A	Analysis Batch: Prep Batch: N/A Units: NTU	660-90880	lı L F	nstrument ID: .ab File ID: nitial Weight/V Final Weight/V	Turbidity2 N/A /olume: /olume: 30 r	nL

Quality Control Results

Quality Control Results

Job Number: 660-33863-1

Qual

Method: 350.1 Preparation: 3-154

Lab File ID:

Instrument ID: KONELAB1

N/A

Client: Environmental Engineering Consultant

Method Blank - Batch: 680-161659

Lab Sample ID: MB 680-161659/1-A

Solid

Client Matrix:

Dilution: 1.0 Date Analyzed: 02 Date Prepared: 02) //26/2010 1111 //25/2010 1234	Units: mg/Kg			Initial Weight/Volume Final Weight/Volume	e: 20.05 g e: 100 mL
Analyte		Resu	It	Qual	MDL	PQL
Ammonia (as N)		0.13		U	0.13	0.30
Lab Control San	nple - Batch: 680-161	659			Method: 350.1 Preparation: 3-15	4
Lab Sample ID: LC Client Matrix: Sc Dilution: 1.0 Date Analyzed: 02 Date Prepared: 02	CS 680-161659/2-A blid D /26/2010 1111 /25/2010 1234	Analysis Batch: Prep Batch: 68 Units: mg/Kg	680-161811 0-161659		Instrument ID: KON Lab File ID: N/A Initial Weight/Volume Final Weight/Volume	ELAB1 e: 19.95 g e: 100 mL
Analyte		Spike Amount	Result	% Re	ec. Limit	
Ammonia (as N) Matrix Spike/ Matrix Spike Du	plicate Recovery Rep	5.01 ort - Batch: 680-	4.94 161659	99	75 - 125 Method: 350.1 Preparation: 3-15	4
MS Lab Sample ID Client Matrix: Dilution: Date Analyzed: Date Prepared:	: 660-33863-2 Solid 10 02/26/2010 1159 02/25/2010 1234	Analysis Batch: Prep Batch: 68	680-161811 0-161659		Instrument ID: KOI Lab File ID: N/A Initial Weight/Volume Final Weight/Volume	NELAB1 e: 19.99 g e: 100 mL
MSD Lab Sample I Client Matrix: Dilution: Date Analyzed: Date Prepared:	D: 660-33863-2 Solid 10 02/26/2010 1159 02/25/2010 1234	Analysis Batch: Prep Batch: 68	680-161811 0-161659		Instrument ID: KON Lab File ID: N/A Initial Weight/Volume Final Weight/Volume	ELAB1 e: 20.00 g e: 100 mL

Analysis Batch: 680-161811

Prep Batch: 680-161659

	<u>% Re</u>	<u>ec.</u>					
Analyte	MS	MSD	Limit	RPD	RPD Limit	MS Qual	MSD Qual
Ammonia (as N)	42	73	75 - 125	3	30	J3	J3
Job Number: 660-33863-1

Duplicate - Batch: 680-161659

Method: 350.1 Preparation: 3-154

Units. Hig/kg		Final Weight/V	'olume: 100 r	g nL
Sample Result/Qual	Result	RPD	Limit	Qual
	Sample Result/Qual	Sample Result/Qual Result	Sample Result/Qual Result RPD	Sample Result/Qual Result RPD Limit 9.3 11.1 17 30

Nitrite as N

Client: Environmental Engineering Consultant

Method Blank - Batch: 660-90798

Lab Sample ID:	MB 660-90798/1
Client Matrix:	Water
Dilution:	1.0
Date Analyzed:	02/17/2010 1000
Date Prepared:	N/A

Method: 353.2 **Preparation: N/A**

Instrument ID: LACHAT	
Lab File ID: N/A	
Initial Weight/Volume: 10	mL
Final Weight/Volume: 10	mL

Analyte	Result	Qual	MDL	PQL
Nitrate Nitrite as N	0.10	U	0.10	0.50
Nitrite as N	0.10	U	0.10	0.50
Nitrate as N	0.10	U	0.10	0.50

Analysis Batch: 660-90798

Prep Batch: N/A Units: mg/L

Lab Control Sample - Batch: 660-90798

Method: 353.2 **Preparation: N/A**

90 - 110

99

Lab Sample ID: LCS 660-90798/2 Analysis Batch: 660-90798 Instrument ID: LACHAT Client Matrix: Water Prep Batch: N/A Lab File ID: N/A Units: mg/L Dilution: 1.0 Initial Weight/Volume: 10 mL Date Analyzed: 02/17/2010 1000 Final Weight/Volume: 10 mL Date Prepared: N/A Analyte Spike Amount Result % Rec. Limit Qual Nitrate Nitrite as N 1.00 90 - 110 0.976 98

0.991

1.00

Quality Control Results

Quality Control Results

Client: Environmental Engineering Consultant

Matrix Spike/ Matrix Spike Duplicate Recovery Report - Batch: 660-90798

Job Number: 660-33863-1

Method: 353.2 Preparation: N/A

MS Lab Sample ID: Client Matrix: Dilution: Date Analyzed: Date Prepared:	660-33863-5 Water 1.0 02/17/2010 1242 N/A	Analysis Batch: Prep Batch: N/A	660-90798	Instrument ID: Lab File ID: Initial Weight/Vol Final Weight/Vol	LACHAT N/A lume: 50 ume: 50) mL) mL
MSD Lab Sample ID: Client Matrix: Dilution: Date Analyzed: Date Prepared:	660-33863-5 Water 1.0 02/17/2010 1242 N/A	Analysis Batch: Prep Batch: N/A	660-90798	Instrument ID: L/ Lab File ID: N Initial Weight/Vol Final Weight/Vol	ACHAT I/A lume: 50 ume: 50	mL mL

	<u>% Re</u>	<u>eC.</u>					
Analyte	MS	MSD	Limit	RPD	RPD Limit	MS Qual	MSD Qual
Nitrate Nitrite as N	90	90	90 - 110	0	30		
Nitrite as N	96	104	90 - 110	8	30		

Lab Sample ID: Client Matrix: Dilution:	MB 660-91350/1-A Solid 1.0	Analysis Batch: 6 Prep Batch: N/A Units: mg/Kg	60-91352	Instrument ID: No Eq Lab File ID: N/A Initial Weight/Volume	uipment Assigned : 10 mL
Date Analyzed: Date Prepared:	03/03/2010 0939 N/A			Final Weight/Volume	: 10 mL
Date Leached:	03/01/2010 1600	Leachate Batch:	660-91350		
Analyte		Result	Qual	MDL	PQL

Analyte	Result	Qual	MDL	PQL
Nitrate Nitrite as N-Soluble	1.0	U	1.0	5.0
Nitrite as N-Soluble	1.0	U	1.0	5.0
Nitrate as N-Soluble	1.0	U	1.0	5.0

Lab Control Sample - Batch: 660-91352

Method: 353.2 Preparation: N/A

Method: 353.2 **Preparation: N/A**

Lab Sample ID: Client Matrix: Dilution: Date Analyzed: Date Prepared:	LCS 660-91350/2-A Solid 1.0 03/03/2010 0939 N/A	Analysis Batch: 6 Prep Batch: N/A Units: mg/Kg	660-91352	Instrument Lab File ID Initial Weig Final Weigl	ID: No Equipment As : N/A ht/Volume: 10 mL ht/Volume: 10 mL	signed
Date Leached:	03/01/2010 1600	Leachate Batch:	660-91350			
Analyte		Spike Amount	Result	% Rec.	Limit	Qual
Nitrate Nitrite as Nitrite as N-Solu	N-Soluble uble	10.0 10.0	9.80 9.46	98 95	90 - 110 90 - 110	

MS Lab Sample ID: 660-33863-1

Matrix Spike/ Matrix Spike Duplicate Recovery Report - Batch: 660-91352

	Method: 353.2	
itch: 660-91352	Preparation: N/A	

Client Matrix:	Solid	Prep	Batch: N/A		La	ab File ID:	N/A	
Dilution:	1.0				In	itial Weight/Vol	ume: 50 i	nL
Date Analyzed:	03/03/2010 0939				Fi	nal Weight/Vol	ume: 50 i	nL
Date Prepared:	N/A							
Date Leached:	03/01/2010 1600	Leacl	nate Batch:	660-91350				
MSD Lab Sample ID:	660-33863-1	Analy	sis Batch:	660-91352	In	strument ID: N	o Equipmen	t Assigned
Client Matrix:	Solid	Prep	Batch: N/A		La	ab File ID: N	/Α	
Dilution:	1.0				In	itial Weight/Vol	ume: 50 m	L
Date Analyzed:	03/03/2010 0939				Fi	nal Weight/Vol	ume: 50 m	L
Date Prepared:	N/A							
Date Leached:	03/01/2010 1600	Leac	nate Batch:	660-91350				
		%	Rec.					
Analyte		MS	MSD	Limit	RPD	RPD Limit	MS Qual	MSD Qual
Nitrate Nitrite as N-So	oluble	106	107	90 - 110	1	20		
Nitrite as N-Soluble		110	105	90 - 110	5	20		

Analysis Batch: 660-91352

Quality Control Results

Instrument ID: No Equipment Assigned

						Qualit	ty Contr	ol Results
Client: Environr	nental Engineering Con	sultant				Job	Number:	660-33863-1
Method Blank -	Batch: 680-161349					Method: 365.4 Preparation: 3	l 365.2/365.	.3/365
Lab Sample ID: M Client Matrix: So Dilution: 1. Date Analyzed: 02 Date Prepared: 02	B 680-161349/1-A blid 0 2/24/2010 1400 2/22/2010 1258	Analysi Prep Ba Units:	s Batch: 68(atch: 680-16 mg/Kg	D-161565 \$1349		Instrument ID: K Lab File ID: N Initial Weight/Vo Final Weight/Vol	CONELAB1 I/A Jume: 0.20 Jume: 40	0 g mL
Analyte			Result	C	Qual	MDL	Р	QL
Phosphorus, Total			11	U	J	11	20)
Lab Control Sa Lab Control Sa	mple/ mple Duplicate Recove	ery Repo	rt - Batch:	680-161349	9	Method: 365.4 Preparation: 3	1 365.2/365	.3/365
LCS Lab Sample I Client Matrix: Dilution: Date Analyzed: Date Prepared:	D: LCS 680-161349/2-A Solid 1.0 02/24/2010 1400 02/22/2010 1258	Analy Prep Units:	sis Batch: 6 Batch: 680- [.] mg/Kg	80-161565 161349		Instrument ID: K Lab File ID: N/A Initial Weight/Volu Final Weight/Volu	(ONELAB1 ume: 0.2 ime: 40	200 g mL
LCSD Lab Sample Client Matrix: Dilution: Date Analyzed: Date Prepared:	e ID: LCSD 680-161349/3-A Solid 1.0 02/24/2010 1400 02/22/2010 1258	A Analy Prep Units:	sis Batch: 6 Batch: 680- [,] mg/Kg	80-161565 161349		Instrument ID: Lab File ID: N// Initial Weight/Volu Final Weight/Volu	KONELAB A ume: 0.20 ume: 40	i1 i0 g mL
Analyte		LCS	<u>% Rec.</u> LCSD	Limit	RPD) RPD Limit	LCS Qua	al LCSD Qual
Phosphorus, Total		95	97	60 - 140	3	40		
Duplicate - Bato	ch: 680-161349					Method: 365.4 Preparation: 3	l 365.2/365.	.3/365
Lab Sample ID: 66 Client Matrix: So Dilution: 1. Date Analyzed: 02 Date Prepared: 02	60-33914-E-11-B DU blid 0 2/24/2010 1417 2/22/2010 1258	Analysis B Prep Batcl Units: mg	atch: 680-10 n: 680-1613 J/Kg	61565 49		Instrument ID: K Lab File ID: N Initial Weight/Vo Final Weight/Vol	(ONELAB1 I/A Ilume: 0.23 Iume: 40	95 g mL
Analyte		Sample	e Result/Qual	Res	ult	RPD	Limit	Qual
Phosphorus, Total		270		432		45	40	J3

Method Blank - E	Batch: 660-91206			ľ	Method: 365.4 Preparation: 365.	2/365.3/365
Lab Sample ID: MB Client Matrix: Wa Dilution: 1.0 Date Analyzed: 03/ Date Prepared: 03/	660-91206/10-A ter 02/2010 0939 01/2010 1300	Analysis Batch: Prep Batch: 660 Units: mg/L	660-91269 D-91206	l L F	nstrument ID: No E Lab File ID: N/A nitial Weight/Volume Final Weight/Volume	quipment Assigned e: 20 mL e: 20 mL
Analyte		Result	t	Qual	MDL	PQL
Phosphorus, Total		0.10		U	0.10	0.30
Lab Control Sam	ple - Batch: 660-912	06		ľ	Method: 365.4 Preparation: 365.	2/365.3/365
Lab Sample ID:LCSClient Matrix:WaDilution:1.0Date Analyzed:03/Date Prepared:03/	S 660-91206/11-A ter 02/2010 0939 01/2010 1300	Analysis Batch: Prep Batch: 660 Units: mg/L	660-91269)-91206	l L F	nstrument ID: No E Lab File ID: N/A nitial Weight/Volume Final Weight/Volume	quipment Assigned e: 20 mL e: 20 mL
Analyte		Spike Amount	Result	% Rec	. Limit	Qual
Phosphorus, Total		3.00	3.11	104	90 - 110	
Matrix Spike/ Matrix Spike Dup	licate Recovery Rep	ort - Batch: 660-9	91206	ľ	Method: 365.4 Preparation: 365.	2/365.3/365
MS Lab Sample ID: Client Matrix: Dilution: Date Analyzed: Date Prepared:	660-33863-7 Water 1.0 03/02/2010 0939 03/01/2010 1300	Analysis Batch: Prep Batch: 660	660-91269)-91206	l L I F	nstrument ID: No .ab File ID: N/A nitial Weight/Volume Final Weight/Volume	Equipment Assigned e: 20 mL e: 20 mL

MSD Lab Sample ID: 660-33863-7 Analysis Batch: 660-91269 Instrument ID: No Equipment Assigned Client Matrix: Water Prep Batch: 660-91206 Lab File ID: N/A Dilution: 1.0 Initial Weight/Volume: 20 mL Final Weight/Volume: 20 mL Date Analyzed: 03/02/2010 0939 Date Prepared: 03/01/2010 1300

	<u>% Re</u>	ec.					
Analyte	MS	MSD	Limit	RPD	RPD Limit	MS Qual	MSD Qual
Phosphorus, Total	118	117	90 - 110	0	30	J3	J3

Page 118 of 150

Quality Control Results

Job Number: 660-33863-1

365.3/365

Sulfide

Client: Environmental Engineering Consultant

Method Blank - Batch: 680-161395

Method: 9034 Preparation: 9030B

Lab Sample ID: Client Matrix: Dilution: Date Analyzed: Date Prepared:	MB 680-161395/1-A Solid 1.0 02/23/2010 1430 02/23/2010 1144	Analysis Batch: 680-161436 Prep Batch: 680-161395 Units: mg/Kg		Instrument ID: No Equipment Assigned Lab File ID: N/A Initial Weight/Volume: 10.00 g Final Weight/Volume: 250 mL		
Analyte		Result		Qual	PQL	PQL
Sulfide		25		U	25	25
Lab Control S	ample - Batch: 680-161	395			Method: 9034 Preparation: 903	0B
Lab Sample ID: Client Matrix: Dilution: Date Analyzed: Date Prepared:	LCS 680-161395/2-A Solid 1.0 02/23/2010 1430 02/23/2010 1144	Analysis Batch: Prep Batch: 680 Units: mg/Kg	680-161436 -161395		Instrument ID: No E Lab File ID: N/A Initial Weight/Volum Final Weight/Volume	quipment Assigned e: 10.00 g e: 250 mL
Analyte		Spike Amount	Result	% Red	c. Limit	Qual
Sulfide		252	207	82	50 - 150	
Matrix Spike/ Matrix Spike D	Ouplicate Recovery Rep	ort - Batch: 680-1	61395		Method: 9034 Preparation: 903	0B
MS Lab Sample Client Matrix: Dilution: Date Analyzed: Date Prepared:	ID: 660-33863-4 Solid 1.0 02/23/2010 1430 02/23/2010 1144	Analysis Batch: Prep Batch: 680	680-161436 I-161395		Instrument ID: No Lab File ID: N/A Initial Weight/Volum Final Weight/Volume	Equipment Assigned e: 10.03 g e: 250 mL
MSD Lab Sample Client Matrix: Dilution: Date Analyzed: Date Prepared:	e ID: 660-33863-4 Solid 1.0 02/23/2010 1430 02/23/2010 1144	Analysis Batch: Prep Batch: 680	680-161436 -161395		Instrument ID: No E Lab File ID: N/A Initial Weight/Volum Final Weight/Volume	quipment Assigned e: 10.03 g e: 250 mL
Analyte		<u>% Rec.</u> MS MSD	Limit	RPD) RPD Limit I	MS Qual MSD Qual

Job Number: 660-33863-1

50 - 150

2

50

83

84

Method Blank - Batch: 680-162106

Job Number: 660-33863-1

Method: 9038 Preparation: N/A

Lab Sample ID: Client Matrix: Dilution: Date Analyzed: Date Prepared:	MB 680-162053/1-A Solid 1.0 03/02/2010 1707 N/A	Analysis Batch: 680-162106 Prep Batch: N/A Units: mg/Kg		Instrument ID: KONELAB1 Lab File ID: N/A Initial Weight/Volume: 1.0 mL Final Weight/Volume: 1.0 mL		
Date Leached:	03/02/2010 1138	Leachate Batch	n: 680-162053	}		
Analyte		Resu	ult	Qual	PQL	PQL
Sulfate-Soluble		100		U	100	100
Lab Control S Lab Control S	Sample/ Sample Duplicate Recove	ry Report - Bat	ch: 680-162′	106	Method: 9038 Preparation: N	I/A
LCS Lab Sampl Client Matrix: Dilution: Date Analyzed: Date Prepared:	le ID: LCS 680-162053/2-A Solid 1.0 03/02/2010 1707 N/A	Analysis Batc Prep Batch: N Units: mg/Kg	h: 680-16210 N/A J	6	Instrument ID: K Lab File ID: N/A Initial Weight/Volu Final Weight/Volur	ONELAB1 me: 1.0 mL me: 1.0 mL
Date Leached:	03/02/2010 1138	Leachate Bat	ch: 680-16205	53		
LCSD Lab Sam Client Matrix: Dilution: Date Analyzed: Date Prepared:	ple ID: LCSD 680-162053/3-A Solid 1.0 03/02/2010 1707	Analysis Batc Prep Batch: N Units: mg/Kg	h: 680-16210 I/A J	6	Instrument ID: Lab File ID: N/A Initial Weight/Volu Final Weight/Volur	KONELAB1 A me: 1.0 mL me: 1.0 mL
Date Leached:	03/02/2010 1138	Leachate Bat	ch: 680-16205	53		
Analyte		<u>% Rec.</u> LCS LCS	D Limit	RPI	D RPD Limit	LCS Qual LCSD Qual
Sulfate-Soluble		100 100	75 - 12	5 0	30	

Date Analyzed: 03/02/2010 1726

Date Prepared: N/A

Client: Environmental Engineering Consultant

Matrix Spike/ Matrix Spike Duplicate Recovery Report - Batch: 680-162106

MS Lab Sample ID: Client Matrix: Dilution: Date Analyzed: Date Prepared:	660-33863-1 Solid 1.0 03/02/2010 1709 N/A	Analy Prep∣	sis Batch: Batch: N/A	680-162106	In: La Ini Fii	strument ID: ab File ID: itial Weight/Vol nal Weight/Vol	KONELAB1 N/A lume: 1.0 mL ume: 1.0 mL
Date Leached:	03/02/2010 1138	Leach	ate Batch:	680-162053			
MSD Lab Sample ID Client Matrix: Dilution: Date Analyzed: Date Prepared: Date Leached:	2: 660-33863-1 Solid 1.0 03/02/2010 1709 N/A 03/02/2010 1138	Analy Prep I Leach	sis Batch: Batch: N/A nate Batch:	680-162106 680-162053	In: La Ini Fii	strument ID: K ab File ID: N itial Weight/Vol nal Weight/Vol	ONELAB1 I/A lume: 1.0 mL ume: 1.0 mL
		0/	Dee				
Analyte		MS	<u>Rec.</u> MSD	Limit	RPD	RPD Limit	MS Qual MSD Qual
Sulfate-Soluble		119	113	75 - 125	7	30	
Duplicate - Batch	: 680-162106				M Pi	ethod: 9038 reparation: N	I/A
Lab Sample ID: 660 Client Matrix: Soli Dilution: 1.0	-33914-D-11-C DU d	Analysis Prep Bat Units: n	Batch: 680 ch: N/A ng/Kg	0-162106	ln: La Ini	strument ID: K ab File ID: N itial Weight/Vol	ONELAB1 I/A Iume: 1.0 mL

Sulfate-Soluble		96	U	98	NC	30	U	
Analyte		Sample Resu	ılt/Qual	Result	RPD	Limit	Qual	
Date Leached: 03/	/02/2010 1138	Leachate Batch: 680-162053						

Quality Control Results

Method: 9038

Preparation: N/A

Final Weight/Volume: 1.0 mL

Method Blank - Batch: 660-90922

Client: Environmental Engineering Consultant

Lab Sample ID: MB 660-90923/1-A

1.0 Date Analyzed: 02/18/2010 2145

Client Matrix: Solid

Dilution:

Lab	Control	Sample	- Batch:	660-90922

сар со

Analyte pH-Solut

Duplica

Lab Sam Client Ma Dilution: Date Ana Date Pre Date Lea Analyte

Analyte	Sample Result/Qual	Result	RPD	Limit	Qual
pH-Soluble	7.76	7.750	0	20	

Page 122 of 150

Quality Control Results

Job Number: 660-33863-1

Method: 9045C **Preparation: N/A**

Lab File ID:

Instrument ID: No Equipment Assigned

N/A

Initial Weight/Volume: 1.0 mL

Final Weight/Volume: 1.0 mL

Date Prepared:	N/A				-	
Date Leached:	02/18/2010 1907	Leachate Batch:	660-90923			
Analyte		Resul	t	Qual	PQL	PQL
pH-Soluble		7.520			1.00	1.00
Lab Control S	Sample - Batch: 660-90	922		Me Pre	thod: 9045C eparation: N/A	
Lab Sample ID: Client Matrix: Dilution: Date Analyzed: Date Prepared:	LCS 660-90923/2-A Solid 1.0 02/18/2010 2145 N/A	Analysis Batch: Prep Batch: N/A Units: SU	660-90922	Inst Lab Initi Fina	rument ID: No E File ID: N/A al Weight/Volume al Weight/Volume	quipment Assigned e: 1.0 mL e: 1.0 mL
Date Leached:	02/18/2010 1907	Leachate Batch:	660-90923			
Analyte		Spike Amount	Result	% Rec.	Limit	Qual
pH-Soluble		6.00	5.990	100	98 - 102	
Duplicate - B	atch: 660-90922			Me Pre	thod: 9045C eparation: N/A	
Lab Sample ID: Client Matrix: Dilution: Date Analyzed: Date Prepared:	660-33608-A-4-B DU Solid 1.0 02/18/2010 2145 N/A	Analysis Batch: 66 Prep Batch: N/A Units: SU	60-90922	Inst Lab Initi Fina	rument ID: No E File ID: N/A al Weight/Volume al Weight/Volume	quipment Assigned e: 1.0 mL e: 1.0 mL
Date Leached:	02/18/2010 1907	Leachate Batch: 6	60-90923			
				No. 11		

Analysis Batch: 660-90922

Prep Batch: N/A

Units: SU

Method Blank - Batch: 680-161519

Method: 9060
Preparation: N/A

Total Organic Carbon		83 83	60 - 140	1	40	
Analyte		<u>% Rec.</u> MS M	SD Limit	RPD	RPD Limit MS (Qual MSD Qual
MSD Lab Sample ID: Client Matrix: Dilution: Date Analyzed: Date Prepared:	680-55167-A-8 MSD Solid 1.0 02/23/2010 1035 N/A	Analysis Ba Prep Batch	atch: 680-161519 : N/A	Instr Lab Initia Fina	rument ID: TOC2 File ID: N/A al Weight/Volume: 1 I Weight/Volume: 1	13.1 mg 13.1 mg
MS Lab Sample ID: Client Matrix: Dilution: Date Analyzed: Date Prepared:	680-55167-A-8 MS Solid 1.0 02/23/2010 1035 N/A	Analysis Ba Prep Batch	atch: 680-161519 : N/A	lnstr Lab Initia Fina	rument ID: TOC2 File ID: N/A al Weight/Volume: I Weight/Volume:	113.5 mg 113.5 mg
Total Organic Carbon Matrix Spike/ Matrix Spike Dupli	cate Recovery Repo	408000	377000 680-161519	92 Met Pre	60 - 140 hod: 9060 paration: N/A	
Analyte		Spike Amo	unt Result	% Rec.	Limit	Qual
Lab Sample ID: LCS Client Matrix: Solid Dilution: 1.0 Date Analyzed: 02/23 Date Prepared: N/A	680-161519/2 3/2010 1035	Analysis Ba Prep Batch Units: mg/	atch: 680-161519 : N/A Kg	Instr Lab Initia Fina	rument ID: TOC2 File ID: N/A al Weight/Volume: 2 I Weight/Volume: 1	0.5 mg .0 mL
Lab Control Samp	le - Batch: 680-1615	519		Met Pre	hod: 9060 paration: N/A	
Total Organic Carbon		1	1000	U	1000	3000
Analyte		F	Result	Qual	MDL	PQL
Date Prepared: N/A	0/2010 1035			Filld	i weight/volume.	.0 IIIE
Dilution: 1.0	2/2010 1025	Units: mg/	'Kg	Initia	al Weight/Volume: 1	00 mg
Lab Sample ID: MB 6	80-161519/1	Analysis Ba	atch: 680-161519	Instr	Tument ID: TOC2	

Quality Control Results

TestAmerica Tampa

Client: Environmental Engineering Consultant

Duplicate - Batch: 68

80-161519	
-----------	--

Method: 9060 Preparation: N/A

Lab Sample ID:	680-55167-A-2 DU	Analysis Batch: 680-1615	519	Instrument ID:	TOC2	
Client Matrix:	Solid	Prep Batch: N/A		Lab File ID:	N/A	
Dilution:	1.0	Units: mg/Kg		Initial Weight/V	/olume: 97.0	mg
Date Analyzed:	02/23/2010 1035			Final Weight/V	olume: 1.0	mL
Date Prepared: N/A						
Analyte		Sample Result/Qual	Result	RPD	Limit	Qua

Analyte	Sample Result/Qual		Result	RPD	Limit	Qual
Total Organic Carbon	1500	I	1760	13	40	I

Quality Control Results

Quality Control Results

Client: Environmental Engineering Consultant

Method Blank - Batch: 660-90996

Quality Contr	ol Results
Job Number:	660-33863-1

Method: SM 2320B Preparation: N/A

Lab Sample ID: Client Matrix: Dilution: Date Analyzed: Date Prepared:	MB 660-90996/3 Water 1.0 02/23/2010 1010 N/A	Analysis Batch: Prep Batch: N/A Units: mg/L	660-90996		Instrument ID: Lab File ID: Initial Weight/\ Final Weight/\	: MANTECH N/A Volume: 50 mL /olume: 50 mL	
Analyte		Result		Qual	PQL	PQL	
Alkalinity		1.0		U	1.0	1.0	
Lab Control S	Sample - Batch: 660-909	96			Method: SM Preparation	l 2320B : N/A	
Lab Sample ID: Client Matrix: Dilution: Date Analyzed: Date Prepared:	LCS 660-90996/4 Water 1.0 02/23/2010 1017 N/A	Analysis Batch: Prep Batch: N/A Units: mg/L	660-90996		Instrument ID: Lab File ID: Initial Weight/ Final Weight/\	: MANTECH N/A Volume: 50 mL /olume: 50 mL	
Analyte		Spike Amount	Result	% R	ec. Li	mit	Qual
Alkalinity		118	119	101	80) - 120	
Duplicate - Ba	atch: 660-90996				Method: SM Preparation	l 2320B : N/A	
Lab Sample ID: Client Matrix: Dilution: Date Analyzed: Date Prepared:	660-33863-5 Water 1.0 02/23/2010 1031 N/A	Analysis Batch: 66 Prep Batch: N/A Units: mg/L	0-90996		Instrument ID: Lab File ID: Initial Weight/ Final Weight/\	: MANTECH N/A Volume: 50 mL /olume: 50 mL	
Analyte		Sample Result/Q	ual I	Result	RPD	Limit	Qual
Alkalinity		270	2	272	1	30	

TestAmerica Tampa

Quality Control Results

Job Number: 660-33863-1

Client: Environmental Engineering Consultant

Method Blank - Batch: 660-91137

Method: SM 2520B
Preparation: N/A

Lab Sample ID: MB 660-91137/1 Client Matrix: Water Dilution: 1.0 Date Analyzed: 02/25/2010 1400 Date Prepared: N/A	Analysis Batch: 660-911 Prep Batch: N/A Units: ppt	37	Instrument ID: No Equipment Assigned Lab File ID: N/A Initial Weight/Volume: 1.0 mL Final Weight/Volume: 100 mL
Analyte	Result	Qual	PQL PQL
Salinity	2.0	U	2.0 2.0
Lab Control Sample/ Lab Control Sample Duplicate Recov	very Report - Batch: 660-	91137	Method: SM 2520B Preparation: N/A
LCS Lab Sample ID: LCS 660-91137/2Client Matrix:WaterDilution:1.0Date Analyzed:02/25/2010 1400Date Prepared:N/A	Analysis Batch: 660-9 ⁷ Prep Batch: N/A Units: ppt	137	Instrument ID: No Equipment Assigned Lab File ID: N/A Initial Weight/Volume: 1.0 mL Final Weight/Volume: 100 mL
LCSD Lab Sample ID: LCSD 660-91137/3Client Matrix:WaterDilution:1.0Date Analyzed:02/25/2010 1400Date Prepared:N/A	Analysis Batch: 660-97 Prep Batch: N/A Units: ppt	137	Instrument ID: No Equipment Assigned Lab File ID: N/A Initial Weight/Volume: 1.0 mL Final Weight/Volume: 100 mL
Analyte	<u>% Rec.</u> LCS LCSD Lin	nit RP	D RPD Limit LCS Qual LCSD Qual
Salinity	103 103 90	- 110 0	10
Duplicate - Batch: 660-91137			Method: SM 2520B Preparation: N/A
Lab Sample ID: 660-33863-5 Client Matrix: Water Dilution: 1.0 Date Analyzed: 02/25/2010 1400 Date Prepared: N/A	Analysis Batch: 660-91137 Prep Batch: N/A Units: ppt		Instrument ID: No Equipment Assigned Lab File ID: N/A Initial Weight/Volume: 1.0 mL Final Weight/Volume: 100 mL
Analyte	Sample Result/Qual	Result	RPD Limit Qual
Salinity	2.5	2.50	0 10

Method Blank - Batch: 660-90872

Lab Sample ID: MB 660-90872/1

Water

1.0

Date Analyzed: 02/19/2010 1455

Client Matrix:

Dilution:

Date Prepared: N/A					
Analyte	Result	Qual	PQL	F	۶QL
Total Suspended Solids	1.0	U	1.0	1	.0
Lab Control Sample - Batch: 660-	90872		Method: SM Preparation	2540D : N/A	
Lab Sample ID:LCS 660-90872/2Client Matrix:WaterDilution:1.0Date Analyzed:02/19/2010Date Prepared:N/A	Analysis Batch: 660-90 Prep Batch: N/A Units: mg/L	372	Instrument ID: Lab File ID: Initial Weight/ Final Weight/\	No Equipme N/A Volume: 250 /olume: 250	ent Assigned mL mL
Analyte	Spike Amount Resu	lt % F	Rec. Li	mit	Qual
Total Suspended Solids	100 106	106	80) - 120	
Duplicate - Batch: 660-90872			Method: SM Preparation	2540D : N/A	
Lab Sample ID:660-33876-E-1 DUClient Matrix:WaterDilution:1.0Date Analyzed:02/19/2010 1455Date Prepared:N/A	Analysis Batch: 660-90872 Prep Batch: N/A Units: mg/L		Instrument ID: Lab File ID: Initial Weight/ Final Weight/\	No Equipme N/A Volume: 250 /olume: 250	ent Assigned mL mL
Analyte	Sample Result/Qual	Result	RPD	Limit	Qual
Total Suspended Solids	1.6	1.60	0	20	

Analysis Batch: 660-90872

Prep Batch: N/A

Units: mg/L

Method: SM 2540D Preparation: N/A

Lab File ID:

Instrument ID: No Equipment Assigned

N/A

Initial Weight/Volume: 250 mL Final Weight/Volume: 250 mL

TestAmerica Tampa

Quality Control Results	

Method: SM 426C **Preparation: N/A**

Instrument ID: Turbidity

Job Number: 660-33863-1

Client: Environmental Engineering Consultant

Method Blank - Batch: 660-91248

Lab Sample ID: MB 660-91248/12

Client Matrix: Dilution: Date Analyzed: Date Prepared:	Water 1.0 03/01/2010 1350 N/A	Prep Batch: N/A Units: mg/L				ab File ID: N/ nitial Weight/Volu -inal Weight/Volu	A ume: 25 mL ume: 25 mL
Analyte			Result		Qual	MDL	PQL
Sulfate			2.0		U	2.0	5.0
Lab Control S	ample - Batch: 660-9	1248			r F	Method: SM 42 Preparation: N	26C /A
Lab Sample ID:LCS 660-91248/13Client Matrix:WaterDilution:1.0Date Analyzed:03/01/2010 1350Date Prepared:N/A		Analy Prep Units	rsis Batch: Batch: N/A : mg/L	660-91248	l L F	nstrument ID: Tu .ab File ID: N/ nitial Weight/Volu ⁻ inal Weight/Volu	urbidity 'A ume: 25 mL ume: 25 mL
Analyte		Spike	Amount	Result	% Rec	. Limit	
Sulfate		10.0		9.24	92	75 - 1	125
Matrix Spike/ Matrix Spike I	Duplicate Recovery R	eport - Bat	ch: 660-9	1248	r F	Method: SM 42 Preparation: N	26C /A
MS Lab Sample Client Matrix: Dilution: Date Analyzed: Date Prepared:	ID: 660-33863-9 Water 5.0 03/01/2010 1350 N/A	Analy Prep	rsis Batch: Batch: N/A	660-91248	l L I F	nstrument ID: 7 .ab File ID: 1 nitial Weight/Volu Final Weight/Volu	Furbidity V/A ume: 25 mL ıme: 25 mL
MSD Lab Samp Client Matrix: Dilution: Date Analyzed: Date Prepared:	le ID: 660-33863-9 Water 5.0 03/01/2010 1350 N/A	Analy Prep	sis Batch: Batch: N/A	660-91248	l I F	nstrument ID: Tu .ab File ID: N/ nitial Weight/Volu Final Weight/Volu	urbidity /A ume: 25 mL ume: 25 mL
Analyte		<u>%</u> MS	<u>Rec.</u> MSD	Limit	RPD	RPD Limit	MS Qual M
Sulfate		107	92	75 - 125	4	30	

Analysis Batch: 660-91248

MSD Qual

Qual

Method Blank - Batch: 660-91159

Quality Control Results

Job Number: 660-33863-1

Method: SM 4500 CI- E Preparation: N/A

Lab Sample ID: MB 6 Client Matrix: Wate Dilution: 1.0 Date Analyzed: 02/29 Date Prepared: N/A	560-91159/3 er 5/2010 1400	Analysis Batch Prep Batch: N// Units: mg/L	: 660-91159 A		Instrument ID: No Lab File ID: N// Initial Weight/Volu Final Weight/Volu	Equipment Assigned A ıme: 2 mL me: 2 mL
Analyte		Resu	ult	Qual	MDL	PQL
Chloride		3.0		U	3.0	5.0
Lab Control Samp	le - Batch: 660-9115	9			Method: SM 45 Preparation: N/	00 CI- E ⁄A
Lab Sample ID: LCS Client Matrix: Wate Dilution: 1.0 Date Analyzed: 02/29 Date Prepared: N/A	660-91159/4 er 5/2010 1400	Analysis Batch Prep Batch: N// Units: mg/L	: 660-91159 A		Instrument ID: No Lab File ID: N// Initial Weight/Volu Final Weight/Volu	e Equipment Assigned A Ime: 2 mL me: 2 mL
Analyte		Spike Amount	Result	% Rec	c. Limit	Qual
Chloride		25.0	24.8	99	90 - 1	10
Matrix Spike/ Matrix Spike Dupl	icate Recovery Repo	rt - Batch: 660	-91159		Method: SM 45 Preparation: N/	00 CI- E /A
MS Lab Sample ID: Client Matrix: Dilution: Date Analyzed: Date Prepared:	660-33886-N-6 MS Water 1.0 02/25/2010 1400 N/A	Analysis Batch: Prep Batch: N//	: 660-91159 A		Instrument ID: N Lab File ID: N Initial Weight/Volu Final Weight/Volu	lo Equipment Assigned I/A Ime: 2 mL me: 2 mL
MSD Lab Sample ID: Client Matrix: Dilution: Date Analyzed: Date Prepared:	660-33886-N-6 MSD Water 1.0 02/25/2010 1400 N/A	Analysis Batch Prep Batch: N//	: 660-91159 A		Instrument ID: No Lab File ID: N// Initial Weight/Volu Final Weight/Volu	e Equipment Assigned A Ime: 2 mL me: 2 mL
		<u>% Rec.</u>				
Analyte		MS MSD	Limit	RPD	RPD Limit	MS Qual MSD Qual
Chloride		95 100	90 - 110	1	30	

TestAmerica Tampa

Job Number: 660-33863-1	
Method: SM 4500 CI- E Preparation: N/A	

Lab Sample ID: MB 660-91210/3 Analysis Batch: 660-91210 Instrument ID: SEAL1 Prep Batch: N/A Client Matrix: Water Lab File ID: N/A Units: mg/L Dilution: 1.0 Initial Weight/Volume: 1.0 mL Date Analyzed: 02/27/2010 0946 Final Weight/Volume: 2 mL Date Prepared: N/A PQI Analyte Result Qual MDL Chloride 3.0 U 3.0 5.0 Method: SM 4500 CI- E Lab Control Sample - Batch: 660-91210 Preparation: N/A Lab Sample ID: LCS 660-91210/4 Analysis Batch: 660-91210 Instrument ID: SEAL1 Client Matrix: Water Prep Batch: N/A Lab File ID: N/A Dilution: 1.0 Units: mg/L Initial Weight/Volume: 1.0 mL Date Analyzed: 02/27/2010 0946 Final Weight/Volume: 2 mL Date Prepared: N/A Analyte Spike Amount Result % Rec. Limit Qual Chloride 25.0 25.0 100 90 - 110 Method: SM 4500 CI- E Matrix Spike/ Matrix Spike Duplicate Recovery Report - Batch: 660-91210 Preparation: N/A MS Lab Sample ID: Analysis Batch: 660-91210 Instrument ID: SEAL1 660-33863-7 Client Matrix: Water Prep Batch: N/A Lab File ID: N/A Initial Weight/Volume: 1.0 mL Dilution: 1.0 Date Analyzed: 02/27/2010 0946 Final Weight/Volume: 2 mL Date Prepared: N/A MSD Lab Sample ID: 660-33863-7 Analysis Batch: 660-91210 Instrument ID: SEAL1 Client Matrix: Water Prep Batch: N/A Lab File ID: N/A 1.0 Initial Weight/Volume: 1.0 mL Dilution: Date Analyzed: 02/27/2010 0946 Final Weight/Volume: 2 mL Date Prepared: N/A o/ ח

Analyte	<u>% Re</u> MS	MSD	Limit	RPD	RPD Limit	MS Qual	MSD Qual
Chloride	95	91	90 - 110	0	30		

Quality Control Results

Client: Environmental Engineering Consultant

Method Blank - Batch: 660-91210

Method Blank - Batch: 660-91342

Job Number: 660-33863-1

Method: SM 4500 P E Preparation: N/A

Lab Sample ID: ME Client Matrix: So Dilution: 1.0 Date Analyzed: 03/ Date Prepared: N/A	660-91341/1-A lid 02/2010 1600	Analys Prep E Units:	sis Batch: 3atch: N/A mg/L	660-91342	Instrument ID: No Equipment Assigned Lab File ID: N/A Initial Weight/Volume: 1.0 mL Final Weight/Volume: 50 mL			
Date Leached: 03/	01/2010 1600	Leach	ate Batch:	660-91341				
Analyte			Resul	t	Qual	MDL	PQL	
Orthophosphate-So	luble		0.75		U	0.75	3.0	
Lab Control Sam	ple - Batch: 660-9134	2				Method: SM 45 Preparation: N	500 P E /A	
Lab Sample ID:LCClient Matrix:SoDilution:1.0Date Analyzed:03/Date Prepared:N/4	S 660-91341/2-A lid 02/2010 1600 A	Analys Prep E Units:	sis Batch: 3atch: N/A mg/L	660-91342		Instrument ID: No Lab File ID: N/ Initial Weight/Volu Final Weight/Volu	o Equipment Assigned A ume: 1.0 mL ume: 50 mL	
Date Leached: 03/	01/2010 1600	Leach	ate Batch:	660-91341				
Analyte		Spike	Amount	Result	% Re	ec. Limit	Qual	
Orthophosphate-Sc	luble	3.00		3.07	102	90 - 1	110	
Matrix Spike/ Matrix Spike Dup	blicate Recovery Repo	ort - Bate	ch: 660-9	91342		Method: SM 45 Preparation: N	500 P E /A	
MS Lab Sample ID: Client Matrix: Dilution: Date Analyzed: Date Prepared: Date Leached:	660-33863-1 Solid 1.0 03/02/2010 1600 N/A 03/01/2010 1600	Analys Prep E Leach	sis Batch: 3atch: N/A ate Batch:	660-91342 660-91341		Instrument ID: N Lab File ID: N Initial Weight/Volu Final Weight/Volu	No Equipment Assigned N/A ume: 1.0 mL ume: 50 mL	
MSD Lab Sample II Client Matrix: Dilution: Date Analyzed: Date Prepared: Date Leached:	D: 660-33863-1 Solid 1.0 03/02/2010 1600 N/A 03/01/2010 1600	Analys Prep E Leach	sis Batch: 3atch: N/A ate Batch:	660-91342 660-91341		Instrument ID: No Lab File ID: N/ Initial Weight/Volu Final Weight/Volu	o Equipment Assigned A ume: 1.0 mL ume: 50 mL	
Analyte		<u>%</u> MS	<u>Rec.</u> MSD	Limit	RPI	D RPD Limit	MS Qual MSD Qual	
Orthophosphate-So	luble	94	96	90 - 110	1	30		

Method Blank - Batch: 660-90918

Job Number: 660-33863-1

Method: SM 4500 S2 F Preparation: N/A

Lab Sample ID: MB 660-90918/1 Client Matrix: Water Dilution: 1.0 Date Analyzed: 02/19/2010 1600 Date Prepared: N/A	Analysis Batch: 660-909 Prep Batch: N/A Units: mg/L	18	Instrument ID: No Equipment Assigned Lab File ID: N/A Initial Weight/Volume: 1.0 mL Final Weight/Volume: 250 mL				
Analyte	Result	Qual	PQL P	QL			
Sulfide	1.0	U	1.0 1.0)			
Lab Control Sample/ Lab Control Sample Duplicate Re	covery Report - Batch: 660-	90918	Method: SM 4500 S2 F Preparation: N/A				
LCS Lab Sample ID: LCS 660-90918/2Client Matrix:WaterDilution:1.0Date Analyzed:02/19/2010 1600Date Prepared:N/A	Analysis Batch: 660-9 Prep Batch: N/A Units: mg/L	0918	Instrument ID: No Equipme Lab File ID: N/A Initial Weight/Volume: 1.0 Final Weight/Volume: 250	nt Assigned mL) mL			
LCSD Lab Sample ID: LCSD 660-90918 Client Matrix: Water Dilution: 1.0 Date Analyzed: 02/19/2010 1600 Date Prepared: N/A	/3 Analysis Batch: 660-9 Prep Batch: N/A Units: mg/L	0918	Instrument ID: No Equipm Lab File ID: N/A Initial Weight/Volume: 1.0 Final Weight/Volume: 250	nent Assigned mL mL			
Analyte Sulfide	<u>% Rec.</u> LCS LCSD Lir 88 90 75	nit RPE - 125 2	D RPD Limit LCS Qua	I LCSD Qual			

TestAmerica Tampa

Chemical Oxygen Demand

Quality Control Results

Job Number: 660-33863-1

Client: Environmental Engineering Consultant

Client Matrix: Wa Dilution: 1.0 Date Analyzed: 02/2 Date Prepared: 02/2	ter 25/2010 1557 25/2010 1333	Prep Batch: 660 Units: mg/L	-91131	L II F	2 mL 2 mL	
Analyte		Result		Qual	MDL	PQL
Chemical Oxygen D	emand	10		U	10	20
Lab Control Sam	ple - Batch: 660-9113	31		N F	Method: SM 5220D Preparation: SM 52	220
Lab Sample ID:LCSClient Matrix:WaDilution:1.0Date Analyzed:02/2Date Prepared:02/2	S 660-91131/4-A ter 25/2010 1557 25/2010 1333	Analysis Batch: Prep Batch: 660 Units: mg/L	660-91132 -91131	li L F	nstrument ID: HACH .ab File ID: N/A nitial Weight/Volume: ⁻ inal Weight/Volume:	2 mL 2 mL
Analyte		Spike Amount	Result	% Rec	. Limit	Qual
Chemical Oxygen D	emand	50.0	45.3	91	90 - 110	
Matrix Spike/ Matrix Spike Dup	licate Recovery Repo	ort - Batch: 660-9	1131	N F	Method: SM 5220D Preparation: SM 52	220
MS Lab Sample ID: Client Matrix: Dilution: Date Analyzed: Date Prepared:	660-33863-7 Water 1.0 02/25/2010 1557 02/25/2010 1333	Analysis Batch: Prep Batch: 660	660-91132 -91131	lı L F	nstrument ID: HACH .ab File ID: N/A nitial Weight/Volume: ⁻ inal Weight/Volume:	l 25 mL 25 mL
MSD Lab Sample ID Client Matrix: Dilution: Date Analyzed: Date Prepared:	 660-33863-7 Water 1.0 02/25/2010 1557 02/25/2010 1333 	Analysis Batch: Prep Batch: 660	660-91132 -91131	li L F	nstrument ID: HACH .ab File ID: N/A nitial Weight/Volume: ⁻ inal Weight/Volume:	25 mL 25 mL
Analyte		<u>% Rec.</u> MS MSD	Limit	RPD	RPD Limit MS	S Qual MSD Qual

92

111

Analysis Batch: 660-91132

Lab Sample ID: MB 660-91131/3-A

Method Blank - Batch: 660-91131

Instrument ID: HACH

19

20

90 - 110

J3

TestAmerica Tampa

Tannins and Lignins

Quality Control Results

Job Number: 660-33863-1

Client: Environmental Engineering Consultant

Method Blank - Batch: 680-161223

Method:	SM	5550B
Preparat	ion:	N/A

Lab Sample ID:MBClient Matrix:WatDilution:1.0Date Analyzed:02/2Date Prepared:N/A	680-161223/1 ter 19/2010 1126	Analysis Batch: Prep Batch: N/A Units: mg/L	680-161223		LAB1 2 mL 2 mL	
Analyte		Result	:	Qual	MDL	PQL
Tannins and Lignins		0.037		U	0.037	0.10
Lab Control Sam	ple - Batch: 680-1612	23			Method: SM 5550B Preparation: N/A	5
Lab Sample ID: LCS Client Matrix: Wat Dilution: 1.0 Date Analyzed: 02/ ⁷ Date Prepared: N/A	8 680-161223/2 ter 19/2010 1126	Analysis Batch: Prep Batch: N/A Units: mg/L	680-161223		Instrument ID: KONEI Lab File ID: N/A Initial Weight/Volume: Final Weight/Volume:	LAB1 2 mL 2 mL
Analyte		Spike Amount	Result	% Re	c. Limit	Qual
Tannins and Lignins		1.00	0.937	94	80 - 120	
Matrix Spike/ Matrix Spike Dup	licate Recovery Repo	rt - Batch: 680-1	61223		Method: SM 5550B Preparation: N/A	5
MS Lab Sample ID: Client Matrix: Dilution: Date Analyzed: Date Prepared:	400-45490-A-1 MS Water 1.0 02/19/2010 1126 N/A	Analysis Batch: Prep Batch: N/A	680-161223		Instrument ID: KONI Lab File ID: N/A Initial Weight/Volume: Final Weight/Volume:	ELAB1 10 mL 10 mL
MSD Lab Sample ID Client Matrix: Dilution: Date Analyzed: Date Prepared:	2: 400-45490-A-1 MSD Water 1.0 02/19/2010 1126 N/A	Analysis Batch: Prep Batch: N/A	680-161223		Instrument ID: KONEI Lab File ID: N/A Initial Weight/Volume: Final Weight/Volume:	LAB1 10 mL 10 mL
		<u>% Rec.</u>				
Analyte		MS MSD	Limit	RPD	RPD Limit MS	S Qual MSD Qual

2/25/2010 11:36:32AM

Client:	TestAmerica Tampa 6712 Benjamin Road, Suite 100 Tampa, FL 33634	Work Order: Project Name: Project Number: Date Received:	NTB1374 GHNS Barbados 660-33863-1 02/17/10				
Attn:	Nancy Robertson						
	SAMPLE IDENTIFICATION	LAB NUMBER	COLLECTION DATE AND TIME				
11A		NTB1374-01	02/15/10 10:10				
8A		NTB1374-02	02/15/10 13:30				
13		NTB1374-03	02/15/10 11:00				
14		NTB1374-04	02/15/10 11:40				
12A		NTB1374-05	02/15/10 13:50				
9A		NTB1374-06	02/15/10 12:50				
6B		NTB1374-07	02/15/10 14:50				

Samples were received into laboratory at a temperature of 2.50 °C.

Comments:

An executed copy of the chain of custody, the project quality control data, and the sample receipt form are also included as an addendum to this report. If you have any questions relating to this analytical report, please contact your Laboratory Project Manager. Any opinions, if expressed, are outside the scope of the Laboratory's accreditation.

This material is intended only for the use of the individual(s) or entity to whom it is addressed, and may contain information that is privileged and confidential. If you are not the intended recipient, or the employee or agent responsible for delivering this material to the intended recipient, you are hereby notified that any dissemination, distribution, or copying of this material is strictly prohibited. If you have recieved this material in error, please notify us immediately.

Results are reported on a wet weight basis unless otherwise noted

The reported results were obtained in compliance with 2003 NELAC standards unless otherwise noted.

These results relate only to the items tested

Estimated uncertainty is available upon request.

Florida Certification Number: E87358

This report has been electronically signed.

Approved By:

udith a beats

TestAmerica Nashville Judith A Beato Project Manager

Page 1 of 6

2960 Foster Creighton Road Nashville, TN 37204 * 800-765-0980 * Fax 615-726-3404

Client:	TestAmerica Tampa
	6712 Benjamin Road, Suite 100
	Tampa, FL 33634
Attn:	Nancy Robertson

Work Order: Project: Project Number: NTB1374 GHNS Barbados 660-33863-1 Sampled: 02/15/10 Received: 02/17/10

LABORATORY REPORT Sample ID: 11A - Lab Number: NTB1374-01 - Matrix: Water

CAS #	Analyte	Result	Q	Units	MDL	PQL	Dil Factor	Analyzed Date/Time	Ву	Method	Batch
General C	Chemistry Parameters										
BOD	BOD - 5 Day	2.00	Q,U	mg/L	2.00	2.00	1	02/23/10 08:30	MXN	SM 5210B	10B3730
NA	Chlorophyll-a Uncorrected	21.7	Q	ug/L	2,00	2.00	1	Prep Date: 02/18/ 02/23/10 12:21	10 12:05 MXN	SM 10200H	10B3860
								Filtered Date:	2-17-10 1	5:52	

LABORATORY REPORT

Sample ID: 8A - Lab Number: NTB1374-02 - Matrix: Water

CAS #	Analyte	Result	Q	Units	MDL	PQL	Dil Factor	Analyzed Date/Time	Ву	Method	Batch
General Cho BOD	emistry Parameters BOD - 5 Day	2.00	Q,U	mg/L	2.00	2.00	1	02/23/10 08:30	MXN	SM 5210B	10B3730
NA	Chlorophyll-a Uncorrected	18.3	Q	ug/L	2.00	2.00	1	Prep Date: 02/18/10 02/23/10 12:23 Filtered Date: 2-1	12:05 MXN 17-10 15:	SM 10200H	10B3860

LABORATORY REPORT

Sample ID: 13 - Lab Number: NTB1374-03 - Matrix: Water

CAS #	Analyte	Result	Q	Units	MDL	PQL	Dil Factor	Analyzed Date/Time	Ву	Method	Batch
General Cho BOD	emistry Parameters BOD - 5 Day	2.16	Q	mg/L	2.00	2,00	1	02/23/10 08:30	MXN	SM 5210B	10B3730
NA	Chlorophyll-a Uncorrected	14.9	Q	ug/L	2.00	2.00	1	Prep Date: 02/18/10 02/23/10 12:24 Filtered Date: 2~	12:05 MXN 17-10 15	SM 10200H	10B3860

LABORATORY REPORT Sample ID: 14 - Lab Number: NTB1374-04 - Matrix: Water

CAS #	Analyte	Result	Q	Units	MDL	PQL	Dil Factor	Analyzed Date/Time	Ву	Method	Batch
General Che BOD	emistry Parameters BOD - 5 Day	2.73	Q	mg/L	2.00	2.00	1	02/23/10 08:30	MXN	SM 5210B	10B3730
NA	Chiorophyll-a Uncorrected	64,2	Q	ug/L	2.00	2.00	I	Prep Date: 02/18/10 02/23/10 12:25 Filtered Date: 2-	12:05 MXN 17-10 16	SM 10200H	10B3860

LABORATORY REPORT

Sample ID: 12A - Lab Number: NTB1374-05 - Matrix: Water

CAS # Analyte		Result	Q	Units	MDL	PQL.	Dil Factor	Analyzed Date/Time	Ву	Method	Batch
General (Chemistry Parameters				•••••						
BOD	BOD - 5 Day	2,00	Q,U	mg/L	2.00	2.00	1	02/23/10 08:30	MXN	SM 5210B	10B3730
								Prep Date: 02/18/	10 12:05		

2960 Foster Creighton Road Nashville, TN 37204 * 800-765-0980 * Fax 615-726-3404

Client: Attn:	TestAmerica Tampa 6712 Benjamin Road, Suite 100 Tampa, FL 33634 Nancy Robertson	Work Order: Project: Project Number:	NTB1374 GHNS Barbados 660-33863-1	Sampled: Received:	02/15/10 02/17/10
------------------	--	--	---	-----------------------	----------------------

LABORATORY REPORT Sample ID: 12A - Lab Number: NTB1374-05 - Matrix: Water

CAS #	Analyte	Result	Q	Units	MDL	PQL	Dil Factor	Analyzed Date/Time	Ву	Method	Batch
General Che NA	emistry Parameters - Cont. Chlorophyll-a Uncorrected	10.3	Q	ug/L	2.00	2.00	1	02/23/10 12:27 Filtered Date: 2	MXN 2-17-10 16	SM 10200H	10B3860

LABORATORY REPORT Sample ID: 9A - Lab Number: NTB1374-06 - Matrix: Water

CAS #	Analyte	Result	Q	Units	MDL	PQL	Dil Factor	Anałyzed Date/Time	Ву	Method	Batch
General Cho BOD	emistry Parameters BOD - 5 Day	2.00	Q,U	mg/L	2.00	2.00	1	02/23/10 08:30	MXN	SM 5210B	10B3730
NA	Chlorophyll-a Uncorrected	29.6	Q	ug/L	2,00	2.00	1	Prep Date: 02/18/2 02/23/10 12:28 Filtered Date: 2	10 12:05 MXN 2-17-10 16	SM 10200H	10B3860

LABORATORY REPORT Sample ID: 6B - Lab Number: NTB1374-07 - Matrix: Water

CAS #	Analyte	Result	Q	Units	MDL	PQL	Dil Factor	Analyzed Date/Time	Ву	Method	Batch
General Che BOD	emistry Parameters BOD - 5 Day	8.72	Q	mg/L	2.00	2.00	1	02/23/10 08:30	MXN	SM 5210B	10B3730
NA	Chlorophyll-a Uncorrected	30.9	Q	ug/L	2.00	2.00	****	Prep Date: 02/18/10 02/23/10 12:30 Filtered Date: 2-	12:05 MXN 17-10 16	SM 10200H :08	10B3860

2960 Foster Creighton Road Nashville, TN 37204 * 800-765-0980 * Fax 615-726-3404

Client:	TestAmerica Tampa 6712 Benjamin Road, Suite 100 Tampa, FL 33634	Work Order: Project: Project Number:	NTB1374 GHNS Barbados 660-33863-1	Sampled: Received:	02/15/10 02/17/10
---------	---	--	---	-----------------------	----------------------

Attn: Nancy Robertson

SAMPLE EXTRACTION DATA

		Wt/Vol				
Parameter	Lab Number	Extracted	Extracted Vol	Date	Analyst	Method
General Chemistry Parameters	NTB1374-01	300.0 mL	300.0 mL	02/18/2010	MXN	*** DEFAULT PREF
General Chemistry Parameters	NTB1374-02	300.0 mL	300.0 mL	02/18/2010	MXN	*** DEFAULT PREF
General Chemistry Parameters	NTB1374-03	300.0 mL	300.0 mL	02/18/2010	MXN	*** DEFAULT PREF
General Chemistry Parameters	NTB1374-04	300.0 mL	300.0 mL	02/18/2010	MXN	*** DEFAULT PREF
General Chemistry Parameters	NTB1374-05	300,0 mL	300.0 mL	02/18/2010	MXN	*** DEFAULT PREF
General Chemistry Parameters	NTB1374-06	300.0 mL	300.0 mL	02/18/2010	MXN	*** DEFAULT PREF
General Chemistry Parameters	NTB1374-07	300.0 mL	300,0 ml.	02/18/2010	MXN	*** DEFAULT PREF
General Chemistry Parameters	NTB1374-01	1.0 filter	1.0 filter	02/17/2010	MXN	Filtering
General Chemistry Parameters	NTB1374-02	1.0 filter	1.0 filter	02/17/2010	MXN	Filtering
General Chemistry Parameters	NTB1374-03	1.0 filter	1.0 filter	02/17/2010	MXN	Filtering
General Chemistry Parameters	NTB1374-04	1.0 filter	1.0 filter	02/17/2010	MXN	Filtering
General Chemistry Parameters	NTB1374-05	1.0 filter	1.0 filter	02/17/2010	MXN	Filtering
General Chemistry Parameters	NTB1374-06	1.0 filter	1.0 filter	02/17/2010	MXN	Filtering
General Chemistry Parameters	NTB1374-07	1.0 filter	1.0 filter	02/17/2010	MXN	Filtering

. .

2960 Foster Creighton Road Nashville, TN 37204 * 800-765-0980 * Fax 615-726-3404

Client: Attn:	TestAmerica Tampa 6712 Benjamin Road, Suite 100 Tampa, FL 33634 Nancy Robertson		Work Proje Proje	c Order: ect: ect Number:	NTB1374 GHNS Bart 660-33863-	oados 1			Sampled: Received:	02/15/10 02/17/10
		Pl	ROJECT	QUALITY C Blank	CONTROL E	PATA				
Analyte		Blank Value	Q	Units	Q.C. Bate	h	Lab Number			
General BOD - 5 D Chlorophy	Chemistry Parameters ay II-a Uncorrected	2.00 2.00	U	mg/L ug/L	10B373) 1) 1	0B3730-BLK 0B3860-BLK	1		
		Pl	ROJECT	QUALITY (Duplica	CONTROL I te	ATA				
Analyte		Orig, Val.	Duplicate	Q	Units	RF	D RP	D Limit	Q.C. Batch	Sample Duplicated
General BOD - 5 D Chlorophy	Chemistry Parameters Jay 11-a Uncorrected	<2.00 21.7	2.00 21.7		mg/L. ug/L.	c	ı	20 50	10B3730 10B3860	NTB1374-01 NTB1374-01
		P	ROJECT	QUALITY (LCS	CONTROL I	DATA				
Analyte		Known Val.	Ana	lyzed Val	Q	Units	% R	.ec.	Target Range	Q.C. Batch
General BOD - 5 D Chlorophy	Chemistry Parameters Pay II-a Uncorrected	198 200		193 168		mg/L ug/L	9' 84	7	85 - 115 80 - 120	10B3730 10B3860
		P	ROJECT	QUALITY C	CONTROL I	DATA				······································
Analyte		Orig. Val. Duplicate	Q	Units	Spike Conc	% Rec.	RPD	RPD Limit	Q.C. Batch	Sample Duplicated
General Chlorophy	Chemistry Parameters II-a Uncorrected	167		ug/L	200	83	0.8	50	10B3860	

2960 Foster Creighton Road Nashville, TN 37204 * 800-765-0980 * Fax 615-726-3404

Client:	TestAmerica Ta 6712 Benjamin Tampa, FL 336 Nancy Robertso	ampa Road, Suite 100 34 on	Wo Pro Pro	rk Order: ject: ject Number:	NTB1374 GHNS Barbados 660-33863-1		Sampled: Received:	02/15/10 02/17/10
			CER	TIFICATION	SUMMARY			
TestAm	erica Nashvilk	9						
	Method	Matrix	A2LA	AIHA	Nelac	Florida		
SN	10200H	Water		* • • • • • • • • • • • • •	X	Х		
SI	vi 5210B	Water		N/A	х	Х		
Subcont	racted Labora	tories						
TestAm	erica - Orlando, F	L Florida Cert #E83012						
8010 S	unport Drive Su	ite 116 - Orlando, FL 3280	9					
Ana	lysis Performed:	BOD 5 Day SM 521	0B					
	Samples:	NTB1374-01, NTB1374-	02, NTB1374-03, NTE	31374-04, NTB1	374-05, NTB1374-06, N	TB1374-07		
Ana	lysis Performed:	Chlorophyll-a Unco	rrected SM10200H					
	Samples:	NTB1374-01, NTB1374-	02, NTB1374-03, NTE	31374-04, NTB1	374-05, NTB1374-06, N	1B1374-07		
			DATA QU	JALIFIERS A	ND DEFINITIONS			
0	Sampl	e analyzed beyond accer	table holding time.					
Ũ	The co	mpound was analyzed for	or but not detected					

ADDITIONAL COMMENTS

When insufficient sample volume is received for Matrix Spike and Matrix Spike Duplicate, Laboratory Control Spike and Laboratory Control Spike Duplicate data is used for batch QC.

4310 East Anderson Road * Orlando, FL 32812 * 407-851-2560 * Fax: 407-856-0886 * 800-851-

Client: TestAmerica Tampa Project: NTB1374
Shipped By: Walk-in Tracking Number:
Cooler Received On: 02/17/10 15:13 And Opened On (Date/time): 2-17-10/15/3
Received By: Ryan Reich Logged in by: Ryan Reich
Were custody seals on the outside of cooler? YES NO If Yes # Location
Were custody seals intact? YES NO N/A _/ (no seals present)
Chain of Custody Complete? YES NO Discrepancy Comments:
Cooler Temparture When Opened: <u>2.50</u> Degrees Celsius Temparture Blank Included: <u>YES</u> <u>NO _1</u> Packing Material: Bubblewrap <u>NONE</u> <u>Other</u> <u>Plastic</u> Received on Ice: <u>YES _1</u> NO Other: Total # Of Containers: <u>14</u> # Vials
Any Bottles Broken? YES If Yes Which One(s)?
Any Missing Samples? YES NO/ If Yes Which One(s)?
pH Levels: H2SO4 <=2? HNO3 <=2? HCL <=2? NaOH >=10?
Of Containers Unpreserved between 6 and 8?
Any Air Bubbles in VOA Vials? YES NO N/A _/ (no VOA vials received)
Was there enough sample shipped in each container? YESNO
Correct Preservatives Used? YES/_ NO If No, see comments:
Project Manager: Judith A Beato
Corrective Actions Taken

Custody Seals Intact: ∆ Yes ∆ No	Relinquished by:	Relinguished by:	Reinquistigned by MANNI 12 Loca	Empty Kit Relinquished by:	Deliverable Requested: 1, II, III, IV, Other (specify)	Non-Hazard Contrication				6B (660-33863-11)	9A (660-33863-10)	12A (660-33863-9)	14 (660-33863-8)	13 (660-33863-7)	8A (660-33863-6)	11A (660-33863-5)			Constant Client ID (195 ID)	Sile	Project Name: GHNS Barbados 6	Email:	Ptone: P	State, Zip: FL, 32809	Criw Orlando	Address: D 8010 Sunport Drive, Suite 116, 2	Company: TestAmerica Laboratories, Inc	Client Contact Shipping/Receiving	Client Information (Sub Contract Lab)	Tampa, FL 33634 Phone (813) 885-7427 Fax (813) 885-7049	TestAmerica Tampa 6712 Benjamin Road Suite 100
)ate/Time:	DaterTime:	bate/Time:			n B Unkn				2/15/10	2/15/10	2/15/10	2/15/10	2/15/10	2/15/10	2/15/10				SOW#:	raject #: 6002941	0#	0#		AT Requested (day	ue Date Requested /24/2010		ione:	impler:		
		117	121	Date:		own R				14:50	12:50	13:50	11:40	11:00	13:30	10:10	X	ann	Sample ((s);					- - -	
	0		<u>]</u> 8]			adiological			 				*****				Preservation	-upidu) 81-	àample Type ⊐=comp, o												<u>,</u>
	mpany	mpany / /	D I I	T						Water	Water	Water	Water	Water	Water	Water	nCode; X	Fissue, A=Air) LL	Wevalar, Seedld, Elitered,	Samp	ie (Ye	s(or N	o)					E-Mail: nancy.ro	Lab PM: Roberts		ain of (
Cod	Reco	Reco	J Reco	me;	Special		<u>}</u>			×	×	×	×	×	×	×	X	1	erform MS/M 0200H/ Chlor	SD () ophy	(es or Ii-a	No)						bertson	on, Nanc		Circle
er Temper	lived by:	lived by:	lved by:		Instructi	eturn To	! 			 ×	X	×	×	×	×	×		E	80D									Dtestam	~		ndv
äture(s) °(W		ons/QC	al (Are Client				 								ALTER AND ALTER OF									Ana	ericainc			
C and Oth		Ń	1		Require	ie may i				 																	lysis F	.com			Š.
ar Remark					ments:	Disp	-		<u> </u>																		eques		Carrie	5	
<u>8</u>				Method		ssed it osal By			<u> </u>	 								2032122									sted		er Tracking	1.6-1	
3	Date/T	Dale/T	Date	of Shipme		sample: Lab		<u> </u>) No(s):	-	と
	ime:	ime	J ne	а:		s are re	-			 								Carles Area													
			S			tained I Archive				2	R)	2	2	\$	19	N.	\times		otal Number	of co Othe	ntaine	E	н.,	η m c	0.00	Pres A · F	100 Å	Page	66 00	ante. Sego	
		1212	<u>ک</u>			onger than For				0	06	So	РØ	10	50	0		special in		a	DA A	e 1 Water	Vmchior Vscorbic Acid	laHSO4	laOH n Acetate	iervation Cod	* 33863-1	9 1 of 1	No: 19157.1	LEADER IN EN	STA
	Company	Company	Company - 001			1 month) Months				2								structions/Note:			W - pn 4-5 Z - other (specify)	U - Acetone V - MCAA	S - H2SO4 T - TSP Dodecahydrate	P - Na204S Q - Na2S03 R - Na2S03	N - None O - AsNaO2	les: M - Hexane				mannental testing	merica

RECEIVED FOR LABORATORY BY. (SIGNATURE)		RECEIVED BY: (SIGNATURE)	RELINQUISHED BY: (SIGMATURE)			215110 2:00 02	12 0 10 10 B/2	2/15/10 11:00 1:	2/15/10/10:20 11	DATE TIME	COMPANY CONTRACTING THIS WORK (ii ap	CLIENT ADDRESS TIM M CI	CLIENT NAME EEC M	CLIENT (SITE) PMR. RYOT	SAMPLER'S SIGNATURE	PROJECT REFERENCE GHNS	THE LEADER IN ENVIRONMENTAL TES	TectAmeric	
DATE 11MAE	en de la constante de la consta La constante de la constante de La constante de la constante de	DATE TIME 2/10/10 2:00/	DATE TIME						A	SAMPLE IDENTIFICAT	plicable)	. .	DY ACCODS CLENT E-MAIL	01ENT PHONE 813-237-3781	P.O. NUMBER	PROJECTUP/10001	STING		
	(LABOP	M MULTUNED BY (SIGNARDER)	RELINQUISHEDET				- - 			COMF	POSITE (C) OR	impabay; Com GRAB (C	CLIENT FAX	CONTRACT NO.	The Safety Long		IN OF CUSTODY RECOR	
	NATORY USE ONLY	2/15/1	DATE Z/16/12							SOLIE AIR NONA			ID JID (OIL, JEST CP IT Merc Trate	solven hlo, vy y NIT	T) TINC S		Alternate Labora	D TestAmerica Ta 6712 Benjamin I Tampa, FL 3363	
B, O'C, 2, C)/0:30	10:30 REAMOUIST							UMBER OF CONTAINERS SUBMI		SE SE T T H	fide mo OC er bi gano	, pro	es horos	REQUIRED ANALYSIS	tory Name/Location	mpa Poad, Suite 100 4	Serial Nur
C C4-07		3Y: (SIGNATURE)	HED BY: (SIGNATURE)							TTED	PER		(SUR		DELN	PAGE	Phone: Fax:	Website: www.testame Phone: (813) 885-742 Fax: (813) 885-7049	nber
		DATE	2/15/10 3:45							REMARKS	SHIPMENT	TEN OF COOL FRANKING	VERY CHARGE	DATE DUE	VERY			ericaine.com 27	

Page 144 of 150

Serial Number

Test Amarica THE LE

LEADER I	NERVIRONMENTAL TESTING PRESERVATION CONFIRMATION FORM Tampa, FL THE LEADER IN ENVIRONMENTAL TESTING
	$\log \operatorname{NUMBER}/(30 - 33863) = \operatorname{Logged in TALS By} = (avol Wichoff)$
ں م	hole Nomiticity and Opened By (full name):
1	I. Shipper (circle one) FEDEX UPS DHL WALK-IN COURIER OTHER:
-	
2	2. Tracking #
	Degrees Celsius
2	3. Temperature of rep. sample of temp blank then open
	4. Number of H2SO4 (sulfuric acid) preserved containers: 197
	All containers pH ≤ 2 ? 1 if not please comment below:
-	
-	autor (halveshario opid) preserved containers:
	5. Number of HCL (hydrochioric acid) preserved comment below:
	All containers pH < 2 ? If not please comment below.
	6. Number of HNO3 (nitric acid) preserved containers:
	All containers pH < 2 ? If not please comment below:
	h = 7
	7. Number of NaOH (sodium hydroxide) preserved containers:
	All containers pH >12 ? If not please comment below:
-101	a 1/ 12 an / Ph=1/ 1/A 9A, 12 A
5 6	5,17,13,6A, / 1. 1. 11, 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
	1-6
	8. Number of Unpreserved containers:
	All containers pH between 6 and 8? If not please comment below:
	No. Was chlorine present in any of the unpreserved containers?
	If yes, which samples (
	pH Strip 101# Revision 2- 02/04/1

Job Number: 660-33863-1

List Source: TestAmerica Tampa

Login Number: 33863 Creator: McCaughey, Becky List Number: 1

Question	T / F/ NA	Comment
Radioactivity either was not measured or, if measured, is at or below background	N/A	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	3.0,2.6,3.0,2.0,2.0,2.4,2.0,2.0,2.0 degrees C Cu-07
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time.	True	minimal hold on nitrate,bod,chl A, turb,-will analyze asap
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	recd 8151 broken for ID#13-will use another bottle
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Is the Field Sampler's name present on COC?	True	
Sample Preservation Verified	True	
Client: Environmental Engineering Consultant

Login Number: 33863 Creator: Chea, Vanda List Number: 1		List Source: TestAmerica Pensacola List Creation: 02/18/10 03:36 PM
Question	T / F/ NA	Comment
Radioactivity either was not measured or, if measured, is at or below background	N/A	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	0.5°C
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Is the Field Sampler's name present on COC?	True	
Sample Preservation Verified	True	

Login Sample Receipt Check List

Client: Environmental Engineering Consultant

Login Number: 33863 Creator: Conner, Keaton List Number: 1			List Source: TestAmerica Savannah List Creation: 02/18/10 09:12 AM
Question	T / F/ NA	Commen	t
Radioactivity either was not measured or, if measured, is at or below background	N/A		
The cooler's custody seal, if present, is intact.	True		
The cooler or samples do not appear to have been compromised or tampered with.	True		
Samples were received on ice.	True		
Cooler Temperature is acceptable.	True		
Cooler Temperature is recorded.	True		
COC is present.	True		
COC is filled out in ink and legible.	True		
COC is filled out with all pertinent information.	True		
There are no discrepancies between the sample IDs on the containers and the COC.	True		
Samples are received within Holding Time.	True		
Sample containers have legible labels.	True		
Containers are not broken or leaking.	True		
Sample collection date/times are provided.	True		
Appropriate sample containers are used.	True		
Sample bottles are completely filled.	True		
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True		
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	N/A		
If necessary, staff have been informed of any short hold time or quick TAT needs	True		
Multiphasic samples are not present.	N/A		
Samples do not require splitting or compositing.	N/A		
Is the Field Sampler's name present on COC?	False		
Sample Preservation Verified	True		

Login Sample Receipt Check List

Client: Environmental Engineering Consultant

Login Number: 33863 Creator: Alsheimer, Carl List Number: 1		List Source: TestAmerica Tallahassee List Creation: 02/18/10 08:26 AM
Question	T / F/ NA	Comment
Radioactivity either was not measured or, if measured, is at or below background	N/A	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	N/A	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	N/A	
Samples do not require splitting or compositing.	N/A	
Is the Field Sampler's name present on COC?	True	
Sample Preservation Verified	True	

ANALYTICAL REPORT

Job Number: 660-33886-1 Job Description: GHNS Barbados

For: Environmental Engineering Consultant 5119 N. Florida Avenue Tampa, FL 33603 Attention: Mr. Richard Pryor

Approved for release. Nancy Robertson Project Manager II 4/6/2010 11:50 AM

Nancy Robertson Project Manager II nancy.robertson@testamericainc.com 04/06/2010 Revision: 1

Methods: FDEP, DOH Certification #: TestAmerica Tampa E84282, TestAmerica Tallahassee E81005, TestAmerica Orlando E83012, TestAmerica Savannah E87052, TestAmerica Pensacola E81010

These test results meet all the requirements of NELAC unless specified in the case narrative. All questions regarding this test report should be directed to the TestAmerica Project Manager who signed this test report. The estimated uncertainty associated with these reported results is available upon request. The results contained in this test report relate only to these samples included herein.

TestAmerica Laboratories, Inc. TestAmerica Tampa 6712 Benjamin Road, Suite 100, Tampa, FL 33634 Tel (813) 885-7427 Fax (813) 885-7049 www.testamericainc.com

Comments

No additional comments.

Receipt

All samples were received in good condition within temperature requirements.

GC Semi VOA

Method 8081A: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for batch 90901 and 90902 were outside of control limits. The associated laboratory control sample (LCS) recovery met acceptance criteria. The data are flagged with J3 qualifiers.

Method 8141: The laboratory control sample (LCS) for batch 640-65814 was outside of control limits for monochrotophos. The laboratories SOP allows for 3/20 analytes to recover outside of limits when a full analyte spike is run. The data are flagged with J3 qualifiers.

Method 8141: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for batch 640-65855 were outside of control limits. The associated laboratory control sample (LCS) recovery met acceptance criteria. The data are flagged with J3 qualifiers.

Method 8151A: The surrogate recovery for samples 3B, 4B and 4D were outside control limits bias high. The samples were non detect and are flagged with J1.

Method 8151A: The laboratory control sample (LCS) for batch 91293 was outside of control limits for dinoseb. The laboratories SOP allows for 3/20 analytes to recover outside of limits when a full analyte spike is run. The data are flagged with J3 qualifiers.

Method 8151A: The laboratory control sample / laboratory control sample duplicate (LCS/LCSD) for batch 90999 were outside of control limits for dalapon and MCPA. The laboratories SOP allows for 3/20 analytes to recover outside of limits when a full analyte spike is run. The data are flagged with J3 qualifiers.

Method 8151A: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for batch 91293 were outside of control limits. The associated laboratory control sample (LCS) recovery met acceptance criteria. The data are flagged with J3 qualifiers.

No other analytical or quality issues were noted.

Metals

Method 6010B: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for batch 90828 and 91336 were outside of control limits. The associated laboratory control sample (LCS) recovery met acceptance criteria. The data are flagged with J3 qualifiers.

Method 7471A: The matrix spike duplicate (MSD) recovery for batch 91390 was outside of control limits. The associated laboratory control sample (LCS) recovery met acceptance criteria. The data are flagged with J3 qualifiers.

No other analytical or quality issues were noted.

RSK-175

The Method Blank contained an estimated result between the MDL and PQL for Carbon dioxide. The samples are flagged with V.

General Chemistry

Method 353.2 Nitrate, Nitrite: The samples were received with greater than 50% of holding time expired. As such, the laboratory had insufficient time remaining to perform the analysis within holding time for sample 1. The data are flagged with Q qualifiers for this sample.

Method SM 5210B BOD: The samples were received with greater than 50% of holding time expired. As such, the laboratory had insufficient time remaining to perform the analysis within holding time. The data are flagged with Q qualifiers.

Method 10200H Chlorophyll-a: The samples were received with greater than 50% of holding time expired. As such, the laboratory had insufficient time remaining to perform the analysis within holding time. The data are flagged with Q qualifiers.

Method 350.1: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for batch 680-161811 were outside of control limits. The associated laboratory control sample (LCS) recovery met acceptance criteria. The data are flagged with J3 qualifiers.

Method 353.2: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for batch 90906 were outside control limits. The associated laboratory control sample (LCS) recovery met acceptance criteria. The data are flagged with J3 qualifiers.

Method SM 5220D: The matrix spike duplicate (MSD) recovery for batch 91132 was outside control limits. The associated laboratory

control sample (LCS) recovery met acceptance criteria. The data are flagged with J3 qualifiers.

Method SM 5220D: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for batch 91274 were outside control limits. The associated laboratory control sample (LCS) recovery met acceptance criteria. The data are flagged with J3 qualifiers.

Method SM 4500 CI- E: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for batch 91159 were outside control limits. The associated laboratory control sample (LCS) recovery met acceptance criteria. The data are flagged with J3 qualifiers.

Method SM 5550B: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for batch 680-161223 were outside control limits. The associated laboratory control sample (LCS) recovery met acceptance criteria. The data are flagged with J3 qualifiers.

No other analytical or quality issues were noted.

Client: Environmental Engineering Consultant

Lab Sample ID Analyte	Client Sample ID	Result / C	Qualifier	Reporting Limit	Units	Method	
660-33886-1	2A						
Aluminum		9100		20	mg/Kg	6010B	
Arsenic		0.78		0.49	mg/Kg	6010B	
Boron		7.5		4.9	mg/Kg	6010B	
Barium		21		0.98	mg/Kg	6010B	
Calcium		92000		490	mg/Kg	6010B	
Cadmium		0.26	I	0.49	mg/Kg	6010B	
Cobalt		2.0		0.98	mg/Kg	6010B	
Chromium		4.7		0.98	mg/Kg	6010B	
Copper		12		2.0	mg/Kg	6010B	
Iron		4900		4.9	mg/Kg	6010B	
Magnesium		2100		49	mg/Kg	6010B	
Manganese		170		0.98	mg/Kg	6010B	
Sodium		890		49	mg/Kg	6010B	
Lead		13		0.49	mg/Kg	6010B	
Strontium		2700		39	mg/Kg	6010B	
Titanium		130		0.98	mg/Kg	6010B	
Vanadium		16		0.98	mg/Kg	6010B	
Zinc		13		2.0	mg/Kg	6010B	
Mercury		0.023		0.019	mg/Kg	7471A	
Ammonia (as N)		2.1		0.30	mg/Kg	350.1	
Phosphorus		2300		91	mg/Kg	365.4	
Total Organic Carbo	on	35000		3000	mg/Kg	9060	
Percent Solids		37		0.10	%	Moisture	
Soluble							
Nitrite as N-Soluble		1.5	I	5.0	mg/Kg	353.2	
pH-Soluble		8.11	Q	1.00	SU	9045C	
Orthophosphate-So	luble	3.5		3.0	mg/L	SM 4500 P E	

Client: Environmental Engineering Consultant

Lab Sample ID Analyte	Client Sample ID	Result / C	ualifier	Reporting Limit	Units	Method	
660-33886-2	1						
Aluminum		9700		20	mg/Kg	6010B	
Arsenic		0.54		0.49	mg/Kg	6010B	
Boron		2.9	I	4.9	mg/Kg	6010B	
Barium		18		0.98	mg/Kg	6010B	
Calcium		23000		490	mg/Kg	6010B	
Cadmium		0.18	I	0.49	mg/Kg	6010B	
Cobalt		3.4		0.98	mg/Kg	6010B	
Chromium		4.1		0.98	mg/Kg	6010B	
Copper		17		2.0	mg/Kg	6010B	
Iron		6200		4.9	mg/Kg	6010B	
Magnesium		1700		49	mg/Kg	6010B	
Manganese		200		0.98	mg/Kg	6010B	
Sodium		300		49	mg/Kg	6010B	
Lead		9.9		0.49	mg/Kg	6010B	
Strontium		810		9.8	mg/Kg	6010B	
Titanium		68		0.98	mg/Kg	6010B	
Vanadium		14		0.98	mg/Kg	6010B	
Zinc		15		2.0	mg/Kg	6010B	
Mercury		0.019	I	0.020	mg/Kg	7471A	
Ammonia (as N)		65		3.0	mg/Kg	350.1	
Phosphorus		690		19	mg/Kg	365.4	
Sulfide		47		25	mg/Kg	9034	
Total Organic Carbo	on	42000		3000	mg/Kg	9060	
Percent Solids		22		0.10	%	Moisture	
Soluble							
pH-Soluble		7.89	Q	1.00	SU	9045C	
Orthophosphate-So	luble	1.6	I	3.0	mg/L	SM 4500 P E	

Client: Environmental Engineering Consultant

Lab Sample ID	Client Sample ID	Reporting					
Analyte	•	Result / Qualifier		Limit	Units	Method	
660-33886-3	3A						
Aluminum		360		20	mg/Kg	6010B	
Arsenic		0.25	I	0.50	mg/Kg	6010B	
Boron		13		5.0	mg/Kg	6010B	
Barium		3.3		0.99	mg/Kg	6010B	
Calcium		9100		50	mg/Kg	6010B	
Cobalt		0.19	I	0.99	mg/Kg	6010B	
Chromium		0.41	I	0.99	mg/Kg	6010B	
Copper		2.1		2.0	mg/Kg	6010B	
Iron		290		5.0	mg/Kg	6010B	
Magnesium		780		50	mg/Kg	6010B	
Manganese		14		0.99	mg/Kg	6010B	
Sodium		820		50	mg/Kg	6010B	
Lead		3.9		0.50	mg/Kg	6010B	
Strontium		380		9.9	mg/Kg	6010B	
Titanium		7.1		0.99	mg/Kg	6010B	
Vanadium		2.1		0.99	mg/Kg	6010B	
Zinc		6.0		2.0	mg/Kg	6010B	
Mercury		0.011	I	0.019	mg/Kg	7471A	
Ammonia (as N)		6.9		0.30	mg/Kg	350.1	
Phosphorus		240		17	mg/Kg	365.4	
Total Organic Carb	on	210000		3000	mg/Kg	9060	
Percent Solids		6.6		0.10	%	Moisture	
Soluble							
pH-Soluble		7.84	Q	1.00	SU	9045C	
Orthophosphate-Sc	bluble	0.87	I	3.0	mg/L	SM 4500 P E	

Client: Environmental Engineering Consultant

Lab Sample ID Analyte	Client Sample ID	Result / C	lualifier	Reporting Limit	Units	Method	
660-33886-4	4B						
Dieldrin		0.19	I.	1.7	ua/Ka	8081A	
Aluminum		1300	•	20	ma/Ka	6010B	
Arsenic		0.64		0.50	ma/Ka	6010B	
Boron		7.7		5.0	ma/Ka	6010B	
Barium		3.7		1.0	ma/Ka	6010B	
Calcium		14000		50	ma/Ka	6010B	
Cobalt		0.52	1	1.0	ma/Ka	6010B	
Chromium		2.2		1.0	ma/Ka	6010B	
Copper		9.2		2.0	ma/Ka	6010B	
Iron		1200		5.0	ma/Ka	6010B	
Magnesium		640		50	ma/Ka	6010B	
Manganese		17		10	ma/Ka	6010B	
Sodium		640		50	ma/Ka	6010B	
Lead		27		0.50	ma/Ka	6010B	
Strontium		260		10	mg/Kg	6010B	
Titanium		25		10	mg/Kg	6010B	
Vanadium		57		1.0	mg/Kg	6010B	
Zinc		28		2.0	mg/Kg	6010B	
Mercury		0 020		0.010	mg/Kg	74710	
Ammonia (as N)		11		0.60	mg/Kg	350 1	
Phoenhorue		140		20	mg/Kg	365.4	
Total Organic Carbo	n	150000		20	mg/Kg	9060	
Porcont Solide	ЛТ	8.6		0.10	0/	Moisturo	
		0.0		0.10	70	MOISTURE	
Soluble							
pH-Soluble		7.53	Q	1.00	SU	9045C	
Orthophosphate-Sol	luble	1.5	I	3.0	mg/L	SM 4500 P E	
660-33886-5	SB						
Ammonia (as N)		0.13		0.020	mg/L	350.1	
Nitrate as N		3.3		0.50	mg/L	353.2	
Total Organic Carbo	on	0.46	I	1.0	mg/L	SM 5310C	
Total Recoverable							
Aluminum		0.17	I	0.20	mg/L	6010B	
Boron		0.056		0.050	mg/L	6010B	
Calcium		0.68		0.50	mg/L	6010B	
Iron		0.095	I	0.20	mg/L	6010B	
Magnesium		0.051	I	0.080	mg/L	6010B	
Manganese		0.0021	I	0.0040	mg/L	6010B	
Sodium		26		0.50	mg/L	6010B	
Strontium		0.016		0.0050	mg/L	6010B	
Titanium		0.0044	I	0.010	mg/L	6010B	
Zinc		0.026		0.020	mg/L	6010B	

Client: Environmental Engineering Consultant

Lab Sample ID Analyte	Client Sample ID	Result / Q	ualifier	Reporting Limit	Units	Method	
660-33886-6	2A						
Carbon dioxide (as Dieldrin	CO2)	200 0.035	V	50 0.0098	ug/L ug/L	RSK-175 8081A	
Turbidity		4.9		0.10	NTU	180.1	
Nitrate as N		0.33	I	0.50	mg/L	353.2	
Phosphorus, Total		0.21	I	0.30	mg/L	365.4	
Biochemical Oxyge	n Demand	4.38	Q	2.00	mg/L	405.1	
Chlorophyll a		25.3	Q	2.00	ug/L	SM 10200H	
Alkalinity		340		1.0	mg/L	SM 2320B	
Total Suspended So	olids	11		1.0	mg/L	SM 2540D	
Sulfate		45		10	mg/L	SM 426C	
Chloride		89		10	mg/L	SM 4500 CI- E	
Chemical Oxygen D	Demand	15	I	20	mg/L	SM 5220D	
Tannins and Lignins	3	0.70		0.10	mg/L	SM 5550B	
Total Recoverable							
Copper		0.0034	I	0.010	mg/L	6010B	
Iron		1.2		0.20	mg/L	6010B	
Potassium		8.2		1.0	mg/L	6010B	
Magnesium		32		0.080	mg/L	6010B	
Sodium		85		0.50	mg/L	6010B	
Zinc		0.024		0.020	mg/L	6010B	
660-33886-7	1						
Carbon dioxide (as	CO2)	130	V	50	ug/L	RSK-175	
Dieldrin		0.0027	I	0.0096	ug/L	8081A	
Turbidity		11		0.10	NTU	180.1	
Phosphorus, Total		0.13	I	0.30	mg/L	365.4	
Biochemical Oxyge	n Demand	7.38	Q	2.00	mg/L	405.1	
Chlorophyll a		137	Q	2.00	ug/L	SM 10200H	
Alkalinity		210		1.0	mg/L	SM 2320B	
Total Suspended So	olids	32		1.0	mg/L	SM 2540D	
Sulfate		50		10	mg/L	SM 426C	
Chloride		140		10	mg/L	SM 4500 CI- E	
Chemical Oxygen D	Demand	44		20	mg/L	SM 5220D	
Tannins and Lignins	3	0.92		0.10	mg/L	SM 5550B	
Total Recoverable							
Copper		0.0045	I	0.010	mg/L	6010B	
Iron		1.5		0.20	mg/L	6010B	
Potassium		12		1.0	mg/L	6010B	
Magnesium		37		0.080	mg/L	6010B	
Sodium		110		1.0	mg/L	6010B	
Zinc		0.033		0.020	mg/L	6010B	

Client: Environmental Engineering Consultant

Lab Sample ID Analyte	Client Sample ID	Result / C	Qualifier	Reporting Limit	Units	Method
660-33886-8	3B					
Carbon dioxide (as	CO2)	36	IV	50	ug/L	RSK-175
Turbidity		2.9		0.10	NTU	180.1
Phosphorus, Total		0.12	I	0.30	mg/L	365.4
Biochemical Oxyge	n Demand	4.64	Q	2.00	mg/L	405.1
Chlorophyll a		22.6	Q	2.00	ug/L	SM 10200H
Alkalinity		440		1.0	mg/L	SM 2320B
Salinity		2.5		2.0	ppt	SM 2520B
Total Suspended So	olids	8.4		1.0	mg/L	SM 2540D
Sulfate		140		25	mg/L	SM 426C
Chloride		960		100	mg/L	SM 4500 CI- E
Chemical Oxygen D)emand	48		20	mg/L	SM 5220D
Tannins and Lignins	3	1.6		0.10	mg/L	SM 5550B
Total Recoverable						
Iron		0.055	I	0.20	mg/L	6010B
Potassium		32		20	mg/L	6010B
Magnesium		90		0.080	mg/L	6010B
Sodium		600		10	mg/L	6010B
Zinc		0.017	I	0.020	mg/L	6010B
660-33886-9	3A					
Carbon dioxide (as	CO2)	35	IV	50	ug/L	RSK-175
Turbidity	,	2.9		0.10	NŤU	180.1
Phosphorus, Total		0.15	I	0.30	mg/L	365.4
Biochemical Oxyge	n Demand	2.58	Q	2.00	mg/L	405.1
Chlorophyll a		21.1	Q	2.00	ug/L	SM 10200H
Alkalinity		440		1.0	mg/L	SM 2320B
Salinity		2.5		2.0	ppt	SM 2520B
Total Suspended So	olids	18		1.0	mg/L	SM 2540D
Sulfate		140		25	mg/L	SM 426C
Chloride		1000		100	mg/L	SM 4500 CI- E
Chemical Oxygen D	emand	51		20	mg/L	SM 5220D
Tannins and Lignins	3	1.5		0.10	mg/L	SM 5550B
Total Recoverable						
Iron		0.068	I	0.20	mg/L	6010B
Potassium		32		20	mg/L	6010B
Magnesium		91		0.080	mg/L	6010B
Sodium		610		10	mg/L	6010B

Client: Environmental Engineering Consultant

Lab Sample ID Analyte	Client Sample ID	Result / C	lualifier	Reporting Limit	Units	Method
660-33886-10	4B					
Carbon dioxide (as	CO2)	200	V	50	ua/L	RSK-175
Turbidity)	12		0.10	NTU	180.1
Phosphorus, Total		0.26	1	0.30	ma/L	365.4
Biochemical Oxyge	n Demand	6.55	Q	2.00	mg/L	405.1
Chlorophyll a		4.40	Q	2.00	ug/L	SM 10200H
Alkalinity		650		1.0	mg/L	SM 2320B
Salinity		2.0		2.0	ppt	SM 2520B
Total Suspended Se	olids	39		1.0	mg/L	SM 2540D
Sulfate		110		25	mg/L	SM 426C
Chloride		590		100	mg/L	SM 4500 CI- E
Sulfide		1.3		1.0	mg/L	SM 4500 S2 F
Chemical Oxygen E	Demand	270		20	mg/L	SM 5220D
Tannins and Lignins	S	4.4		0.50	mg/L	SM 5550B
Total Recoverable						
Copper		0.044		0.010	mg/L	6010B
Iron		5.1		0.20	mg/L	6010B
Potassium		49		1.0	mg/L	6010B
Magnesium		86		0.080	mg/L	6010B
Sodium		440		10	mg/L	6010B
Lead		0.095		0.010	mg/L	6010B
Zinc		0.14		0.020	mg/L	6010B
660-33886-11	5A					
Carbon dioxide (as	CO2)	13	IV	50	ua/L	RSK-175
Dieldrin	/	0.0034	I	0.011	ug/L	8081A
Turbidity		46		0.20	NŤU	180.1
Phosphorus, Total		0.23	I	0.30	mg/L	365.4
Biochemical Oxyge	n Demand	8.84	Q	2.00	mg/L	405.1
Chlorophyll a		22.0	Q	2.00	ug/L	SM 10200H
Alkalinity		210		1.0	mg/L	SM 2320B
Total Suspended Se	olids	280		4.2	mg/L	SM 2540D
Sulfate		48		20	mg/L	SM 426C
Chloride		110		10	mg/L	SM 4500 CI- E
Chemical Oxygen E	Demand	34		20	mg/L	SM 5220D
Tannins and Lignins	S	0.51		0.10	mg/L	SM 5550B
Total Recoverable						
Copper		0.012		0.010	mg/L	6010B
Iron		8.5		0.20	mg/L	6010B
Potassium		10		1.0	mg/L	6010B
Magnesium		30		0.080	mg/L	6010B
Sodium		97		0.50	mg/L	6010B
Lead		0.0099	I	0.010	mg/L	6010B
Zinc		0.049		0.020	mg/L	6010B

Client: Environmental Engineering Consultant

Lab Sample ID Client Sample ID			Reporting		
Analyte	Result / Qualifier		Limit	Units	Method
660-33886-12 4D					
Carbon dioxide (as CO2)	230	V	50	ug/L	RSK-175
Turbidity	8.0		0.10	NTU	180.1
Phosphorus, Total	0.55		0.30	mg/L	365.4
Biochemical Oxygen Demand	11.5	Q	2.00	mg/L	405.1
Chlorophyll a	40.7	Q	2.00	ug/L	SM 10200H
Alkalinity	540		1.0	mg/L	SM 2320B
Total Suspended Solids	8.0		1.0	mg/L	SM 2540D
Sulfate	69		10	mg/L	SM 426C
Chloride	500		100	mg/L	SM 4500 CI- E
Chemical Oxygen Demand	55		20	mg/L	SM 5220D
Tannins and Lignins	4.0		0.50	mg/L	SM 5550B
Total Recoverable					
Iron	0.068	I	0.20	mg/L	6010B
Potassium	33		1.0	mg/L	6010B
Magnesium	68		0.080	mg/L	6010B
Sodium	340		5.0	mg/L	6010B

METHOD SUMMARY

Client: Environmental Engineering Consultant

Job Number: 660-33886-1

Description	Lab Location	Method	Preparation Method
Matrix Solid			
Organochlorine Pesticides (GC) Ultrasonic Extraction	TAL TAM TAL TAM	SW846 8081A	SW846 3550B
Organophosphorous Pesticides (GC) Ultrasonic Extraction	TAL TAL TAL TAL	SW846 8141A	SW846 3550B
Herbicides (GC) Extraction (Herbicides)	TAL TAM TAL TAM	SW846 8151A	SW846 8151A
Metals (ICP) Preparation, Metals	TAL TAM TAL TAM	SW846 6010B	SW846 3050B
Mercury (CVAA) Preparation, Mercury	TAL TAM TAL TAM	SW846 7471A	SW846 7471A
Nitrogen, Ammonia Ammonia (Sediments)	TAL SAV TAL SAV	MCAWW 350.1	EPA 3-154
Nitrogen, Nitrate-Nitrite Deionized Water Leaching Procedure	TAL TAM TAL TAM	MCAWW 353.2	ASTM DI Leach
Phosphorus, Total Phosphorus, Total	TAL SAV TAL SAV	EPA 365.4	MCAWW 365.2/365.3/365
Sulfide, Acid Soluble and Insoluble (Titrimetric) Sulfide, Distillation (Acid Soluble and Insoluble)	TAL SAV TAL SAV	SW846 9034	SW846 9030B
Sulfate, Turbidimetric Deionized Water Leaching Procedure	TAL SAV TAL SAV	SW846 9038	ASTM DI Leach
pH Deionized Water Leaching Procedure	TAL TAM TAL TAM	SW846 9045C	ASTM DI Leach
Organic Carbon, Total (TOC)	TAL SAV	SW846 9060	
Percent Moisture	TAL TAM	EPA Moisture	
Orthophosphate Deionized Water Leaching Procedure	TAL TAM TAL TAM	SM SM 4500 P	E ASTM DI Leach
Matrix Water			
Dissolved Gases (GC)	TAL PEN	RSK RSK-175	
Organochlorine Pesticides (GC) Liquid-Liquid Extraction (Separatory Funnel)	TAL TAM TAL TAM	SW846 8081A	SW846 3510C
Organophosphorous Pesticides (GC) Liquid-Liquid Extraction (Continuous)	TAL TAL TAL TAL	SW846 8141A	SW846 3520C
Herbicides (GC) Extraction (Herbicides)	TAL TAM TAL TAM	SW846 8151A	SW846 8151A
Metals (ICP) Preparation, Total Recoverable or Dissolved Metals	TAL TAM TAL TAM	SW846 6010B	SW846 3005A
Mercury Preparation, Mercury	TAL TAM TAL TAM	SW846 7470A	SW846 7470A
Turbidity, Nephelometric	TAL TAM	MCAWW 180.1	

TestAmerica Tampa

METHOD SUMMARY

Client: Environmental Engineering Consultant

Job Number: 660-33886-1

Description	Lab Location	Method	Preparation Method
Matrix Water			
Nitrogen, Ammonia	TAL TAM	MCAWW 350.1	
Nitrite	TAL TAM	MCAWW 353.2	
Phosphorus, Ortho Sample Filtration, Field	TAL TAM TAL TAM	EPA 365.1	FIELD_FLTRD
Phosphorus, Total Phosphorus, Total	TAL TAM TAL TAM	EPA 365.4	MCAWW 365.2/365.3/365
BOD-5	TAL ORL	EPA 405.1	
Chlorophyll-a	TAL ORL	SM SM 10200H	ł
Alkalinity	TAL TAM	SM SM 2320B	
Salinity	TAL TAM	SM SM 2520B	
Solids, Total Suspended (TSS)	TAL TAM	SM SM 2540D	
Sulfate	TAL TAM	SM SM 426C	
Chloride, Total	TAL TAM	SM SM 4500 C	I- E
Sulfide, Total	TAL TAM	SM SM 4500 S	2 F
COD COD	TAL TAM TAL TAM	SM SM 5220D	SM SM 5220
тос	TAL TAL	SM SM 5310C	
Tannin and Lignin	TAL SAV	SM SM 5550B	

Lab References:

TAL PEN = TestAmerica Pensacola

TAL SAV = TestAmerica Savannah

TAL TAL = TestAmerica Tallahassee

TAL TAM = TestAmerica Tampa

Method References:

ASTM = ASTM International

EPA = US Environmental Protection Agency

MCAWW = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Subsequent Revisions.

RSK = Sample Prep And Calculations For Dissolved Gas Analysis In Water Samples Using A GC Headspace Equilibration Technique, RSKSOP-175, Rev. 0, 8/11/94, USEPA Research Lab

SM = "Standard Methods For The Examination Of Water And Wastewater",

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

METHOD / ANALYST SUMMARY

Client: Environmental Engineering Consultant

Method	Analyst	Analyst ID
RSK RSK-175	Ayers, Kim	KA
SW846 8081A	Myers, Randy	RM
SW846 8141A	Thomas, Martin L	MLT
SW846 8151A	Myers, Randy	RM
SW846 6010B	Ramos, Salvador	SR
SW846 7470A	Wieland, Kristen	KW
SW846 7471A	Wieland, Kristen	KW
MCAWW 180.1	Cerome, Saurel	SC
MCAWW 350.1 MCAWW 350.1	Ross, Jon Steward, Tiffany	JR TS
MCAWW 353.2	Steward, Tiffany	TS
EPA 365.1	Sengsouvanna, Dom	DS
EPA 365.4 EPA 365.4	Martin, Randolph Ross, Jon	RM JR
EPA 405.1	ANALYST, SUBCONTRACTED	SUB
SW846 9034	Vasquez, Juana	JV
SW846 9038	Ross, Jon	JR
SW846 9045C	Sengsouvanna, Dom	DS
SW846 9060	Blackshear, Kim	KB
EPA Moisture	Volz, Charles	CV
SM SM 10200H	ANALYST, SUBCONTRACTED	SUB
SM SM 2320B	Steward, Tiffany	TS
SM SM 2520B	Mostafavifar, Efe	EM
SM SM 2540D	Oonnoonny, Thomas	ТО
SM SM 426C	Cerome, Saurel	SC
SM SM 4500 CI- E	Mostafavifar, Efe	EM
SM SM 4500 P E	Mostafavifar, Efe	EM
SM SM 4500 S2 F	Mostafavifar, Efe	EM
SM SM 5220D	Cerome, Saurel	SC
SM SM 5310C	Frank, Michelle	MF

METHOD / ANALYST SUMMARY

Client: Environmental Engineering Consultant

Job Number: 660-33886-1

Method

SM SM 5550B

Analyst Ross, Jon

JR

SAMPLE SUMMARY

Lab Sample ID	Client Sample ID	Client Matrix	Date/Time Sampled	Date/Time Received
660-33886-1	2A	Solid	02/16/2010 1110	02/18/2010 0905
660-33886-2	1	Solid	02/16/2010 1010	02/18/2010 0905
660-33886-3	3A	Solid	02/16/2010 1300	02/18/2010 0905
660-33886-4	4B	Solid	02/16/2010 1400	02/18/2010 0905
660-33886-5	SB	Water	02/16/2010 1530	02/18/2010 0905
660-33886-6	2A	Water	02/16/2010 1100	02/18/2010 0905
660-33886-7	1	Water	02/16/2010 1000	02/18/2010 0905
660-33886-8	3B	Water	02/16/2010 1220	02/18/2010 0905
660-33886-9	3A	Water	02/16/2010 1240	02/18/2010 0905
660-33886-10	4B	Water	02/16/2010 1350	02/18/2010 0905
660-33886-11	5A	Water	02/16/2010 1330	02/18/2010 0905
660-33886-12	4D	Water	02/16/2010 1440	02/18/2010 0905

Client Sample ID	2A					
Lab Sample ID: Client Matrix:	660-33886-6 Water	386-6Date Sampled: 02/16/201Date Received: 02/18/201				
		RSK-175 Dissolved Gases	s (GC)			
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	RSK-175 N/A 1.0 02/26/2010 1013	Analysis Batch: 400-104462		Instrument ID: Lab File ID: Initial Weight/Volume: Final Weight/Volume: Injection Volume:	NOEQUIP N/A 1.0 mL 1.0 mL	
Analyte		Result (ug/L)	Qualifie	er MDL	PQL	
Carbon dioxide (as	s CO2)	200	V	7.0	50	

Client Sample ID	: 1					
Lab Sample ID: Client Matrix:	660-33886-7 Water	360-33886-7Date SampleWaterDate Receive				
		RSK-175 Dissolved Gases	s (GC)			_
Method:	RSK-175	Analysis Batch: 400-104462		Instrument ID:	NOEQUIP	
Preparation:	N/A			Lab File ID:	N/A	
Dilution:	1.0			Initial Weight/Volume:	1.0 mL	
Date Analyzed:	02/26/2010 1025			Final Weight/Volume:	1.0 mL	
Date Prepared:				Injection Volume:		
Analyte		Result (ug/L)	Qualifie	r MDL	PQL	
Carbon dioxide (as	s CO2)	130	V	7.0	50	_

Client: Environmental Engineering Consultant

Client Sample ID: 3B Lab Sample ID: 660-33886-8 Date Sampled: 02/16/2010 1220 Client Matrix: Water Date Received: 02/18/2010 0905 RSK-175 Dissolved Gases (GC) Method: RSK-175 Analysis Batch: 400-104462 Instrument ID: NOEQUIP Preparation: N/A Lab File ID: N/A Initial Weight/Volume: 1.0 mL Dilution: 1.0 Date Analyzed: 02/26/2010 1037 Final Weight/Volume: 1.0 mL Date Prepared: Injection Volume: Analyte Result (ug/L) Qualifier MDL PQL Carbon dioxide (as CO2) IV 36 7.0 50

Client Sample ID:	3 A				
Lab Sample ID: Client Matrix:	660-33886-9 Water			Date Sar Date Rec	npled: 02/16/2010 1240 ceived: 02/18/2010 0905
		RSK-175 Dissolved Gases	s (GC)		
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	RSK-175 N/A 1.0 02/26/2010 1049	Analysis Batch: 400-104462		Instrument ID: Lab File ID: Initial Weight/Volume: Final Weight/Volume: Injection Volume:	NOEQUIP N/A 1.0 mL 1.0 mL
Analyte		Result (ug/L)	Qualifie	er MDL	PQL
Carbon dioxide (as	s CO2)	35	IV	7.0	50

Client Sample ID:	4B				
Lab Sample ID: Client Matrix:	660-33886-10 Water			Date San Date Rec	npled: 02/16/2010 1350 ceived: 02/18/2010 0905
		RSK-175 Dissolved Gases	s (GC)		
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	RSK-175 N/A 1.0 02/26/2010 1101	Analysis Batch: 400-104462		Instrument ID: Lab File ID: Initial Weight/Volume: Final Weight/Volume: Injection Volume:	NOEQUIP N/A 1.0 mL 1.0 mL
Analyte		Result (ug/L)	Qualifie	er MDL	PQL
Carbon dioxide (as	s CO2)	200	V	7.0	50

Client Sample ID:	5 A				
Lab Sample ID: Client Matrix:	660-33886-11 Water			Date San Date Rec	npled: 02/16/2010 1330 ceived: 02/18/2010 0905
		RSK-175 Dissolved Gases	s (GC)		
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	RSK-175 N/A 1.0 02/26/2010 1112	Analysis Batch: 400-104462		Instrument ID: Lab File ID: Initial Weight/Volume: Final Weight/Volume: Injection Volume:	NOEQUIP N/A 1.0 mL 1.0 mL
Analyte		Result (ug/L)	Qualifie	er MDL	PQL
Carbon dioxide (as	s CO2)	13	IV	7.0	50

Client Sample ID:	4D					
Lab Sample ID: Client Matrix:	660-33886-12 Water	Date Sampled: 02/16/2010 Date Received: 02/18/2010				
		RSK-175 Dissolved Gases	s (GC)			
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	RSK-175 N/A 1.0 02/26/2010 1213	Analysis Batch: 400-104462		Instrument ID: Lab File ID: Initial Weight/Volume: Final Weight/Volume: Injection Volume:	NOEQUIP N/A 1.0 mL 1.0 mL	
Analyte		Result (ug/L)	Qualifie	r MDL	PQL	
Carbon dioxide (as	s CO2)	230	V	7.0	50	

Client Sample ID:	2 A			
Lab Sample ID: Client Matrix:	660-33886-1 Solid		Date San Date Rec	npled: 02/16/2010 1110 ceived: 02/18/2010 0905
		8081A Organochlorine Pesticide	es (GC)	
Method:	8081A	Analysis Batch: 660-91299	Instrument ID:	BSGJ
Preparation:	3550B	Prep Batch: 660-90901	Initial Weight/Volume:	30.36 g
Dilution:	1.0		Final Weight/Volume:	10 mL

Dilution:	1.0		Final	weight/volume:	IU ML
Date Analyzed:	02/25/2010 0416		Injec	tion Volume:	2 uL
Date Prepared:	02/22/2010 0654		Resu	It Type:	PRIMARY
-					
Analyte	DryWt Corrected: N	Result (ug/Kg)	Qualifier	MDL	PQL
4,4'-DDD		0.49	U	0.49	3.3
4,4'-DDE		0.49	U	0.49	3.3
4,4'-DDT		0.49	U	0.49	3.3
Aldrin		0.49	U	0.49	2.0
alpha-BHC		0.14	U	0.14	1.7
beta-BHC		0.49	U	0.49	2.0
Chlordane (technic	cal)	2.4	U	2.4	17
delta-BHC		0.49	U	0.49	2.0
Dieldrin		0.15	U	0.15	1.7
Endosulfan I		0.25	U	0.25	2.0
Endosulfan II		0.25	U	0.25	3.3
Endosulfan sulfate	9	0.25	U	0.25	3.3
Endrin		0.49	U	0.49	4.0
Endrin aldehyde		0.49	U	0.49	4.0
Endrin ketone		0.49	U	0.49	4.0
gamma-BHC (Lind	dane)	0.49	U	0.49	2.0
Heptachlor		0.49	U	0.49	2.0
Heptachlor epoxid	e	0.14	U	0.14	2.0
Methoxychlor		0.99	U	0.99	17
Toxaphene		29	U	29	170
Surrogate		%Rec	Qualifier	Accentar	nce Limits
	inhenvl	70	Qualmer	30 - 150	
		82		30 - 150	
renactiono-m-xyle		02		30 - 150	

Client: Environmental Engineering Consultant

Client Sample ID:	1					
Lab Sample ID: Client Matrix:	660-3 Solid	3886-2			Date Sar Date Rec	npled: 02/16/2010 1010 ceived: 02/18/2010 0905
		8	3081A Organochlorine Pes	ticides (G	C)	
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	8081A 3550B 1.0 02/25/20 02/22/20	10 0429 10 0654	Analysis Batch: 660-9129 Prep Batch: 660-90901	9	Instrument ID: Initial Weight/Volume: Final Weight/Volume: Injection Volume: Result Type:	BSGJ 30.00 g 10 mL 2 uL PRIMARY
Analyte		DryWt Corrected:	N Result (ug/Kg)	Qualifi	er MDL	PQL
4,4'-DDD 4 4'-DDF			0.50	U	0.50 0.50	3.3
4,4'-DDT			0.50	U	0.50	3.3
alpha-BHC			0.50	U	0.50	2.0
beta-BHC			0.50	Ŭ	0.50	2.0
Chlordane (technic	cal)		2.4	U	2.4	17
delta-BHC			0.50	U	0.50	2.0
Dieldrin			0.15	U	0.15	1.7
Endosulfan I			0.25	U	0.25	2.0
Endosulfan II			0.25	U	0.25	3.3
Endosulfan sulfate	;		0.25	U	0.25	3.3
Endrin			0.50	U	0.50	4.0
Endrin aldehyde			0.50	U	0.50	4.0
Endrin ketone			0.50	U	0.50	4.0
gamma-BHC (Lind	lane)		0.50	U	0.50	2.0
Heptachlor			0.50	U	0.50	2.0
Heptachlor epoxide	е		0.14	U	0.14	2.0
Methoxychlor			1.0	U	1.0	17
Toxaphene			29	U	29	170
Surrogate			%Rec	Qualifi	er Acceptar	nce Limits
DCB Decachlorobi	iphenyl		66		30 - 150	
Tetrachloro-m-xyle	ene		74		30 - 150	

Client: Environmental Engineering Consultant

Client Sample ID:	3A					
Lab Sample ID: Client Matrix:	660-33886-3 Solid				Date San Date Rec	npled: 02/16/2010 1300 eived: 02/18/2010 0905
		8081A Orga	nochlorine Pesticid	les (GC)		
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	8081A 3550B 1.0 02/25/2010 0443 02/22/2010 0654	Analysis E Prep Bato	3atch: 660-91299 h: 660-90901	Instrun Initial V Final V Injectic Result	nent ID: Weight/Volume: Veight/Volume: on Volume: Type:	BSGJ 29.80 g 10 mL 2 uL PRIMARY
Analyte	DryWt C	orrected: N Re	esult (ug/Kg)	Qualifier	MDL	PQL
4,4'-DDD 4,4'-DDE 4,4'-DDT		0.4 0.4 0.4	50 50 50	U U U	0.50 0.50 0.50	3.3 3.3 3.3
Aldrin alpha-BHC		0.5 0.7	50 14	U U	0.50 0.14	2.0 1.7
beta-BHC Chlordane (technic	al)	0.5 2.4	50 4	U U	0.50 2.4	2.0 17
delta-BHC Dieldrin	,	0.5	50	Ŭ	0.50	2.0
Endosulfan I		0.1	25	U	0.25	2.0
Endosulfan sulfate		0.2	25	U	0.25	3.3
Endrin aldehyde		0.9	50	U	0.50	4.0 4.0
Endrin ketone gamma-BHC (Lind	ane)	0.	50	U	0.50 0.50	4.0 2.0
Heptachlor Heptachlor epoxide	e	0.: 0.	50 14	U U	0.50 0.14	2.0 2.0
Methoxychlor Toxaphene		1.0 29)	U U	1.0 29	17 170
Surrogate		%	Rec	Qualifier	Acceptan	ce Limits
DCB Decachlorobi Tetrachloro-m-xyle	phenyl ne	54 65			30 - 150 30 - 150	

Analytical Data

Client: Environmental Engineering Consultant

Client Sample ID:	4B				
Lab Sample ID: Client Matrix:	660-33886-4 Solid			Date Sar Date Rec	npled: 02/16/2010 1400 ceived: 02/18/2010 0905
		8081A Organochlorine Pe	sticides (GC)		
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	8081A 3550B 1.0 02/25/2010 0456 02/22/2010 0654	Analysis Batch: 660-91299 Instrument ID: Prep Batch: 660-90901 Initial Weight/Volum Final Weight/Volum /2010 0456 Injection Volume: /2010 0654 Result Type:		strument ID: tial Weight/Volume: nal Weight/Volume: ection Volume: esult Type:	BSGJ 29.85 g 10 mL 2 uL PRIMARY
Analyte	DryWt Correc	ted: N Result (ug/Kg)	Qualifier	MDL	PQL
4,4'-DDD 4,4'-DDE 4,4'-DDT Aldrin alpha-BHC beta-BHC Chlordane (technic	cal)	0.50 0.50 0.50 0.50 0.14 0.50 2.4		0.50 0.50 0.50 0.50 0.14 0.50 2.4	3.3 3.3 2.0 1.7 2.0 17
delta-BHC Dieldrin Endosulfan I Endosulfan II		0.50 0.19 0.25 0.25	U I U U	0.50 0.15 0.25 0.25	2.0 1.7 2.0 3.3
Endosunan sunate Endrin Endrin ketone gamma-BHC (Lind Heptachlor	ane)	0.50 0.50 0.50 0.50 0.50		0.25 0.50 0.50 0.50 0.50	4.0 4.0 2.0 2.0
Heptachlor epoxide Methoxychlor Toxaphene	e	0.14 1.0 29	U U U	0.14 1.0 29	2.0 17 170
Surrogate		%Rec	Qualifier	Acceptar	nce Limits
Tetrachloro-m-xyle	pnenyl ene	48 59		30 - 150 30 - 150	

Client: Environmental Engineering Consultant

Client Sample ID:	4B							
Lab Sample ID: Client Matrix:	660-33886-4 Solid				[[Date Sam Date Rec	npled: 02/16/20 eived: 02/18/20	10 1400 10 0905
		8081A	Organochlorine Pest	icides (G	C)			
Method:	8081A	Anal	/sis Batch: 660-91299	1	Instrument ID:		BSGJ	
Preparation:	3550B	Prep	Batch: 660-90901		Initial Weight/\	/olume:	29.85 g	
Dilution:	1.0				Final Weight/V	olume:	10 mL	
Date Analyzed:	02/25/2010 0510				Injection Volur	ne:	2 uL	
Date Prepared:	02/22/2010 0654				Result Type:		PRIMARY	
Analyte	DryWt Correc	ted: N	Result (ug/Kg)	Qualifie	er MDL		PQL	
Endrin aldehyde			0.50	U	0.50		4.0	

Job Number:	660-33886-1

Client Sample ID: SB					
Lab Sample ID: Client Matrix:	660-33886-5 Water			Date Sar Date Rec	npled: 02/16/2010 1530 ceived: 02/18/2010 0905
		8081A Organochlorine Pestio	cides (GC	2)	
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	8081A 3510C 1.0 02/23/2010 1546 02/22/2010 0737	Analysis Batch: 660-91104 Prep Batch: 660-90902		Instrument ID: Initial Weight/Volume: Final Weight/Volume: Injection Volume: Result Type:	BSGJ 500 mL 5 mL 2 uL PRIMARY
Analyte		Result (ug/L)	Qualifie	er MDL	PQL
4,4'-DDD 4,4'-DDE 4,4'-DDT Aldrin alpha-BHC beta-BHC Chlordane (techn delta-BHC Dieldrin Endosulfan I	ical)	0.0041 0.0055 0.0032 0.0018 0.0028 0.0027 0.057 0.0028 0.0014 0.0014 0.0034		0.0041 0.0055 0.0032 0.0018 0.0028 0.0027 0.057 0.0028 0.0014 0.0014 0.0034	0.010 0.010 0.010 0.010 0.010 0.010 0.50 0.010 0.010 0.010
Endosulfan II Endosulfan sulfat Endrin Endrin aldehyde Endrin ketone gamma-BHC (Lin Heptachlor Heptachlor epoxid	e dane) de	0.0033 0.0030 0.0031 0.0032 0.0054 0.0026 0.0031 0.0031		0.0033 0.0030 0.0031 0.0032 0.0054 0.0026 0.0031 0.0031	0.010 0.010 0.010 0.010 0.10 0.010 0.010 0.010 0.010
Methoxychlor Toxaphene		0.0051 0.72	U U	0.0051 0.72	0.010 3.0
Surrogate DCB Decachlorol	piphenyl	%Rec 46	Qualifie	er Acceptar 30 - 150	nce Limits
Tetrachloro-m-xy	lene	67		30 - 150	

Analytical Data

Client: Environmental Engineering Consultant

Client Sample ID): 2A				
Lab Sample ID: Client Matrix:	660-33886-6 Water			Date Sar Date Rec	npled: 02/16/2010 1100 ceived: 02/18/2010 0905
		8081A Organochlorine Pestio	cides (GC	C)	
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	8081A 3510C 1.0 02/23/2010 1559 02/22/2010 0737	Analysis Batch: 660-91104 Prep Batch: 660-90902		Instrument ID: Initial Weight/Volume: Final Weight/Volume: Injection Volume: Result Type:	BSGJ 1020 mL 10 mL 2 uL PRIMARY
Analyte		Result (ug/L)	Qualifie	er MDL	PQL
4,4'-DDD 4,4'-DDE 4,4'-DDT Aldrin alpha-BHC beta-BHC Chlordane (techn delta-BHC Dieldrin Endosulfan I Endosulfan I	ical)	0.0040 0.0054 0.0031 0.0018 0.0027 0.0026 0.056 0.0027 0.035 0.0034 0.0032		0.0040 0.0054 0.0031 0.0018 0.0027 0.0026 0.056 0.0027 0.0014 0.0034 0.0032	0.0098 0.0098 0.0098 0.0098 0.0098 0.0098 0.49 0.0098 0.0098 0.0098 0.0098 0.0098
Endosulfan sulfat Endosulfan sulfat Endrin Endrin aldehyde Endrin ketone gamma-BHC (Lin Heptachlor Heptachlor Methoxychlor	e dane) de	0.0029 0.0031 0.0031 0.0053 0.0026 0.0030 0.0031 0.0050 0.71		0.0029 0.0031 0.0031 0.0053 0.0026 0.0030 0.0031 0.0050 0.71	0.0098 0.0098 0.0098 0.098 0.0098 0.0098 0.0098 0.0098 0.0098
Surrogate		%Rec	Qualifie	er Acceptar	2.9 nce Limits
DCB Decachlorob Tetrachloro-m-xy	piphenyl lene	57 71		30 - 150 30 - 150	

Client: Environmental Engineering Consultant

Client Sample ID	: 1				
Lab Sample ID: Client Matrix:	660-33886-7 Water			Date Sar Date Rec	npled: 02/16/2010 1000 ceived: 02/18/2010 0905
		8081A Organochlorine Pestic	cides (GC	C)	
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	8081A 3510C 1.0 02/23/2010 1613 02/22/2010 0737	Analysis Batch: 660-91104 Prep Batch: 660-90902		Instrument ID: Initial Weight/Volume: Final Weight/Volume: Injection Volume: Result Type:	BSGJ 1040 mL 10 mL 2 uL PRIMARY
Analyte		Result (ug/L)	Qualifie	er MDL	PQL
4,4'-DDD 4,4'-DDE 4,4'-DDT Aldrin alpha-BHC beta-BHC Chlordane (techni delta-BHC	ical)	0.0039 0.0053 0.0030 0.0018 0.0027 0.0026 0.055 0.0027		0.0039 0.0053 0.0030 0.0018 0.0027 0.0026 0.055 0.0027	0.0096 0.0096 0.0096 0.0096 0.0096 0.0096 0.48 0.0096
Dieldrin Endosulfan I Endosulfan II		0.0027 0.0033 0.0032	I U U	0.0013 0.0033 0.0032	0.0096 0.0096 0.0096
Endosultan sulfate Endrin Endrin aldehyde Endrin ketone	e	0.0028 0.0030 0.0031 0.0052	U U U U	0.0028 0.0030 0.0031 0.0052	0.0096 0.0096 0.0096 0.096
gamma-BHC (Lin Heptachlor Heptachlor epoxic Methoxychlor Toxaphene	dane) de	0.0025 0.0030 0.0030 0.0049 0.69	U U U U U	0.0025 0.0030 0.0030 0.0049 0.69	0.0096 0.0096 0.0096 0.0096 2.9
Surrogate		%Rec	Qualifie	er Acceptar	nce Limits
DCB Decachlorob Tetrachloro-m-xyl	oiphenyl ene	49 70		30 - 150 30 - 150	

Client: Environmental Engineering Consultant

Client Sample ID:	3B				
Lab Sample ID: Client Matrix:	660-33886-8 Water		Date Sampled: 02/16/2010 1220 Date Received: 02/18/2010 0905		
8081A Organochlorine Pesticides (GC)					

		ouo la Organochionne Pesti	sides (GC	•)	
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	8081A 3510C 1.0 02/23/2010 1626 02/22/2010 0737	Analysis Batch: 660-91104 Prep Batch: 660-90902		Instrument ID: Initial Weight/Volume: Final Weight/Volume: Injection Volume: Result Type:	BSGJ 1040 mL 10 mL 2 uL PRIMARY
Analyte		Result (ug/L)	Qualifie	r MDL	PQL
4,4'-DDD		0.0039	U	0.0039	0.0096
4,4'-DDE		0.0053	U	0.0053	0.0096
4,4'-DDT		0.0030	U	0.0030	0.0096
Aldrin		0.0018	U	0.0018	0.0096
alpha-BHC		0.0027	U	0.0027	0.0096
beta-BHC		0.0026	U	0.0026	0.0096
Chlordane (technic	cal)	0.055	U	0.055	0.48
delta-BHC		0.0027	U	0.0027	0.0096
Dieldrin		0.0013	U	0.0013	0.0096
Endosulfan I		0.0033	U	0.0033	0.0096
Endosulfan II		0.0032	U	0.0032	0.0096
Endosulfan sulfate		0.0028	U	0.0028	0.0096
Endrin		0.0030	U	0.0030	0.0096
Endrin aldehyde		0.0031	U	0.0031	0.0096
Endrin ketone		0.0052	U	0.0052	0.096
gamma-BHC (Lind	ane)	0.0025	U	0.0025	0.0096
Heptachlor		0.0030	U	0.0030	0.0096
Heptachlor epoxide	e	0.0030	U	0.0030	0.0096
Methoxychlor		0.0049	U	0.0049	0.0096
Toxaphene		0.69	U	0.69	2.9
Surrogate		%Rec	Qualifie	r Acceptan	ce Limits
DCB Decachlorobi	phenyl	54		30 - 150	
Tetrachloro-m-xyle	ne	67		30 - 150	

Client: Environmental Engineering Consultant

Client Sample ID	: 3A						
Lab Sample ID: Client Matrix:	660-33886-9 Water		Da Da	te Sampled: 02/16/2010 1240 te Received: 02/18/2010 0905			
	8081A Organochlorine Pesticides (GC)						
Method:	8081A	Analysis Batch: 660-91104	Instrument ID:	BSGJ			

Preparation: Dilution: Date Analyzed: Date Prepared:	3510C 1.0 02/23/2010 1640 02/22/2010 0737	Prep Batch: 660-90902	Initia Fina Injec Resi	I Weight/Volume: I Weight/Volume: tion Volume: ult Type:	1040 mL 10 mL 2 uL PRIMARY
Analyte		Result (ug/L)	Qualifier	MDL	PQL
4,4'-DDD		0.0039	U	0.0039	0.0096
4,4'-DDE		0.0053	U	0.0053	0.0096
4,4'-DDT		0.0030	U	0.0030	0.0096
Aldrin		0.0018	U	0.0018	0.0096
alpha-BHC		0.0027	U	0.0027	0.0096
beta-BHC		0.0026	U	0.0026	0.0096
Chlordane (technical)		0.055	U	0.055	0.48
delta-BHC		0.0027	U	0.0027	0.0096
Dieldrin		0.0013	U	0.0013	0.0096
Endosulfan I		0.0033	U	0.0033	0.0096
Endosulfan II		0.0032	U	0.0032	0.0096
Endosulfan sulfate		0.0028	U	0.0028	0.0096
Endrin		0.0030	U	0.0030	0.0096
Endrin aldehyde		0.0031	U	0.0031	0.0096
Endrin ketone		0.0052	U	0.0052	0.096
gamma-BHC (Lindane)		0.0025	U	0.0025	0.0096
Heptachlor		0.0030	U	0.0030	0.0096
Heptachlor epoxide		0.0030	U	0.0030	0.0096
Methoxychlor		0.0049	U	0.0049	0.0096
Toxaphene		0.69	U	0.69	2.9
Surrogate		%Rec	Qualifier	r Acceptance Limits	
DCB Decachlorobiphenyl		53	30 - 150		
Tetrachloro-m-xylene		69	30 - 150		
Client: Environmental Engineering Consultant

Client Sample ID:	4B				
Lab Sample ID: Client Matrix:	660-33886-10 Water		npled: 02/16/2010 1350 ceived: 02/18/2010 0905		
		8081A Organochlorine Pestic	cides (GC)		
Method:	8081A	Analysis Batch: 660-91104	Ir	strument ID:	BSGJ
Preparation:	3510C	Prep Batch: 660-90902	Ir	nitial Weight/Volume:	1050 mL
Dilution:	1.0		F	inal Weight/Volume:	10 mL
Date Analyzed:	02/23/2010 1653		Ir	ijection Volume:	2 uL
Date Prepared:	02/22/2010 0737		R	esult Type:	PRIMARY
Analyte		Result (ug/L)	Qualifier	MDL	PQL
Endrin aldehyde		0.0030	U	0.0030	0.0095

Client: Environmental Engineering Consultant

Client Sample ID:	4B				
Lab Sample ID: Client Matrix:	660-33886-10 Water			Date Sar Date Rec	npled: 02/16/2010 1350 ceived: 02/18/2010 0905
		8081A Organochlorine Pestic	cides (G	C)	
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	8081A 3510C 1.0 02/23/2010 1854 02/22/2010 0737	Analysis Batch: 660-91104 Prep Batch: 660-90902		Instrument ID: Initial Weight/Volume: Final Weight/Volume: Injection Volume: Result Type:	BSGJ 1050 mL 10 mL 2 uL PRIMARY
Analyte		Result (ug/L)	Qualifie	er MDL	PQL
4,4'-DDD		0.0039	U	0.0039	0.0095
4,4'-DDE		0.0052	U	0.0052	0.0095
4,4'-DDT		0.0030	U	0.0030	0.0095
Aldrin		0.0017	U	0.0017	0.0095
alpha-BHC		0.0027	U	0.0027	0.0095
beta-BHC		0.0025	U	0.0025	0.0095
Chlordane (technic	cal)	0.054	U	0.054	0.48
delta-BHC		0.0026	U	0.0026	0.0095
Dieldrin		0.0013	U	0.0013	0.0095
Endosulfan I		0.0033	U	0.0033	0.0095
Endosulfan II		0.0031	U	0.0031	0.0095
Endosulfan sulfate		0.0028	U	0.0028	0.0095
Endrin		0.0030	U	0.0030	0.0095
Endrin ketone		0.0051	U	0.0051	0.095
gamma-BHC (Lind	lane)	0.0025	U	0.0025	0.0095
Heptachlor		0.0029	U	0.0029	0.0095
Heptachlor epoxide	e	0.0030	U	0.0030	0.0095
Methoxychlor		0.0048	U	0.0048	0.0095
Toxaphene		0.69	U	0.69	2.9
Surrogate		%Rec	Qualifie	er Acceptar	ice Limits
DCB Decachlorobi	phenyl	68		30 - 150	
Tetrachloro-m-xyle	ene	64		30 - 150	

Job Number: 660-33886-1

Client Sample ID	: 5A				
Lab Sample ID: Client Matrix:	660-33886-11 Water			Date Sar Date Rec	npled: 02/16/2010 1330 ceived: 02/18/2010 0905
		8081A Organochlorine Pestic	ides (GC	2)	
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	8081A 3510C 1.0 02/23/2010 1707 02/22/2010 0737	Analysis Batch: 660-91104 Prep Batch: 660-90902		Instrument ID: Initial Weight/Volume: Final Weight/Volume: Injection Volume: Result Type:	BSGJ 950 mL 10 mL 2 uL PRIMARY
Analyte		Result (ug/L)	Qualifie	er MDL	PQL
4,4'-DDD 4,4'-DDE 4,4'-DDT Aldrin alpha-BHC beta-BHC Chlordane (techni delta-BHC Dieldrin	cal)	0.0043 0.0058 0.0033 0.0019 0.0029 0.0028 0.060 0.0029 0.0029 0.0034		0.0043 0.0058 0.0033 0.0019 0.0029 0.0028 0.060 0.0029 0.0015	0.011 0.011 0.011 0.011 0.011 0.011 0.53 0.011 0.011
Endosulfan I Endosulfan II Endosulfan sulfate Endrin Endrin aldehyde Endrin ketone gamma-BHC (Lind Heptachlor Heptachlor epoxid Methoxychlor Toxaphene	e dane) le	0.0036 0.0035 0.0031 0.0033 0.0034 0.0057 0.0027 0.0027 0.0032 0.0033 0.0053 0.76		0.0036 0.0035 0.0031 0.0033 0.0034 0.0057 0.0027 0.0032 0.0033 0.0053 0.76	0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 3.2
Surrogate DCB Decachlorob Tetrachloro-m-xvle	iphenyl	%Rec 50 71	Qualifie	er Acceptar 30 - 150 30 - 150	nce Limits

Job Number: 660-33886-1

Client Sample ID:	4D				
Lab Sample ID: Client Matrix:	660-33886-12 Water			Date San Date Rec	npled: 02/16/2010 1440 ceived: 02/18/2010 0905
		8081A Organochlorine Pestic	cides (GC)		
Method:	8081A	Analysis Batch: 660-91104	Ir	nstrument ID:	BSGJ
Preparation:	3510C	Prep Batch: 660-90902	Ir	nitial Weight/Volume:	1050 mL
Dilution:	1.0		F	inal Weight/Volume:	10 mL
Date Analyzed:	02/23/2010 1720		Ir	njection Volume:	2 uL
Date Prepared:	02/22/2010 0737		R	esult Type:	PRIMARY
Analyte		Result (ug/L)	Qualifier	MDL	PQL
Endrin aldehyde		0.0030	U	0.0030	0.0095

Job Number: 660-33886-1

Client Sample ID): 4D				
Lab Sample ID: Client Matrix:	660-33886-12 Water			Date Sar Date Rec	npled: 02/16/2010 1440 ceived: 02/18/2010 0905
		8081A Organochlorine Pestic	ides (GC	;)	
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	8081A 3510C 1.0 02/23/2010 1907 02/22/2010 0737	Analysis Batch: 660-91104 Prep Batch: 660-90902		Instrument ID: Initial Weight/Volume: Final Weight/Volume: Injection Volume: Result Type:	BSGJ 1050 mL 10 mL 2 uL PRIMARY
Analyte		Result (ug/L)	Qualifie	er MDL	PQL
4,4'-DDD 4,4'-DDE 4,4'-DDT Aldrin alpha-BHC beta-BHC Chlordane (techn delta-BHC	ical)	0.0039 0.0052 0.0030 0.0017 0.0027 0.0025 0.054 0.0026		0.0039 0.0052 0.0030 0.0017 0.0027 0.0025 0.054 0.0026	0.0095 0.0095 0.0095 0.0095 0.0095 0.0095 0.48 0.0095
Dieldrin Endosulfan I Endosulfan II Endosulfan sulfat Endrin	e	0.0013 0.0033 0.0031 0.0028 0.0030	U U U U	0.0013 0.0033 0.0031 0.0028 0.0030	0.0095 0.0095 0.0095 0.0095 0.0095
Endrin ketone gamma-BHC (Lin Heptachlor Heptachlor epoxid	dane) de	0.0051 0.0025 0.0029 0.0030		0.0051 0.0025 0.0029 0.0030	0.095 0.0095 0.0095 0.0095 0.0095
Methoxychlor Toxaphene		0.0048 0.69	U U	0.0048 0.69	0.0095 2.9
Surrogate		%Rec	Qualifie	er Acceptar	nce Limits
DCB Decachlorob Tetrachloro-m-xy	piphenyl lene	94 63		30 - 150 30 - 150	

Client Sample ID:	2A				
Lab Sample ID: Client Matrix:	660-33886-1 Solid			Date San Date Rec	npled: 02/16/2010 1110 eived: 02/18/2010 0905
		8141A Organophosphorous P	esticides (C	GC)	
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	8141A 3550B 1.0 02/24/2010 1657 02/22/2010 1006	Analysis Batch: 640-65935 Prep Batch: 640-65855	5 	nstrument ID: nitial Weight/Volume: Final Weight/Volume: njection Volume: Result Type:	SGF 00030.42 g 10.0 mL 1 uL PRIMARY
Analyte	DryWt Correc	ted: N Result (ug/Kg)	Qualifier	MDL	PQL
Bolstar Chlorpyrifos Coumaphos Demeton, Total Diazinon Dichlorvos Dimethoate Disulfoton EPN Ethoprop		8.4 8.3 8.5 13 8.7 17 9.9 11 9.0 15		8.4 8.3 8.5 13 8.7 17 9.9 11 9.0 15	33 330 82 33 65 65 65 65 33 17
Ethyl Parathion Fensulfothion Hexazinone Malathion		8.7 9.9 7.6 8.9		8.7 9.9 7.6 8.9	33 330 33 33 22
Methyl parathion Mevinphos Monochrotophos Naled Phorate		5.2 5.3 11 84 5.1 11		8.2 5.3 11 84 5.1 11	33 17 65 330 330 33
Ronnel Stirophos Sulfotepp Tokuthion Trichloronate		7.9 8.8 5.2 7.6 8.1		7.9 8.8 5.2 7.6 8.1	33 33 33 17 33 330
Surrogate Triphenylphosphat	e	%Rec 63	Qualifier	Acceptan 35 - 134	ce Limits

Client Sample ID	: 1						
Lab Sample ID: Client Matrix:	660-3388 Solid	86-2			Date Sa Date Re	npled: 02/16/2010 10 ceived: 02/18/2010 09	10 05
		8141	A Organophosphorous Pe	sticides	(GC)		_
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	8141A 3550B 1.0 02/24/2010 02/22/2010	1711 1006	Analysis Batch: 640-65935 Prep Batch: 640-65855		Instrument ID: Initial Weight/Volume: Final Weight/Volume: Injection Volume: Result Type:	SGF 00030.17 g 10.0 mL 1 uL PRIMARY	
Analyte	Dr	yWt Corrected: N	N Result (ug/Kg)	Qualifie	er MDL	PQL	
Azinphos-methyl		-	4.4	U	4.4	66	_
Bolstar			8.5	U	8.5	33	
Chlorpyrifos			8.4	U	8.4	33	
Coumaphos			8.6	U	8.6	330	
Demeton, Total			13	U	13	83	
Diazinon			8.8	U	8.8	33	
Dichlorvos			17	U	17	66	
Dimethoate			9.9	U	9.9	66	
Disulfoton			11	U	11	66	
EPN			9.0	U	9.0	33	
Ethoprop			15	U	15	17	
Ethyl Parathion			8.8	U	8.8	33	
Fensulfothion			9.9	U	9.9	330	
Hexazinone			7.7	U	7.7	33	
Malathion			8.9	U	8.9	33	
Merphos			8.3	U	8.3	33	
Methyl parathion			5.4	U	5.4	17	
Mevinphos			11	U	11	66	
Monochrotophos			85	U	85	330	
Naled			5.2	U	5.2	330	
Phorate			11	U	11	33	
Ronnel			8.0	U	8.0	33	
Stirophos			8.8	U	8.8	33	
Sulfotepp			5.3	U	5.3	17	
Tokuthion			7.7	U	7.7	33	
Trichloronate			8.2	U	8.2	330	
Surrogate			%Rec	Qualifie	er Acceptar	nce Limits	
Triphenylphospha	te		67		35 - 134		_

Client Sample ID:	3A					
Lab Sample ID: Client Matrix:	660-33886-3 Solid				Date Sa Date Re	mpled: 02/16/2010 1300 cceived: 02/18/2010 0905
		8141A Or	ganophosphorous Pe	sticides	(GC)	
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	8141A 3550B 1.0 02/24/2010 1740 02/22/2010 1006	Anal Prep	ysis Batch: 640-65935 9 Batch: 640-65855		Instrument ID: Initial Weight/Volume: Final Weight/Volume: Injection Volume: Result Type:	SGF 00030.11 g 10.0 mL 1 uL PRIMARY
Analyte	DryWt Corre	cted: N	Result (ug/Kg)	Qualifi	ier MDL	PQL
Azinphos-methyl			4.4	U	4.4	66
Bolstar			8.5	U	8.5	33
Chlorpyrifos			8.4	U	8.4	33
Coumaphos			8.6	U	8.6	330
Demeton, Total			13	U	13	83
Diazinon			8.8	U	8.8	33
Dichlorvos			17	U	17	66
Dimethoate			10	U	10	66
Disulfoton			11	U	11	66
EPN			9.1	U	9.1	33
Ethoprop			15	U	15	17
Ethyl Parathion			8.8	U	8.8	33
Fensulfothion			10	U	10	330
Hexazinone			7.7	U	7.7	33
Malathion			9.0	U	9.0	33
Merphos			8.3	U	8.3	33
Methyl parathion			5.4	U	5.4	17
Mevinphos			11	U	11	66
Monochrotophos			85	U	85	330
Naled			5.2	U	5.2	330
Phorate			11	U	11	33
Ronnel			8.0	U	8.0	33
Stirophos			8.9	U	8.9	33
Sulfotepp			5.3	U	5.3	17
Tokuthion			7.7	U	7.7	33
Trichloronate			8.2	U	8.2	330
Surrogate			%Rec	Qualifi	ier Accepta	nce Limits
Triphenylphosphat	te		67		35 - 134	

Client Sample ID:	4B					
Lab Sample ID: Client Matrix:	660-33886-4 Solid				Date Sa Date Re	mpled: 02/16/2010 1400 ceived: 02/18/2010 0905
		8141A Org	ganophosphorous Pe	esticides	(GC)	
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	8141A 3550B 1.0 02/24/2010 1754 02/22/2010 1006	Analy Prep	ysis Batch: 640-65935 Batch: 640-65855		Instrument ID: Initial Weight/Volume: Final Weight/Volume: Injection Volume: Result Type:	SGF 00030.49 g 10.0 mL 1 uL PRIMARY
Analyte	DryWt Corre	ected: N	Result (ug/Kg)	Qualifi	er MDL	PQL
Azinphos-methyl	-		4.3	U	4.3	65
Bolstar			8.4	U	8.4	32
Chlorpyrifos			8.3	U	8.3	32
Coumaphos			8.5	U	8.5	320
Demeton, Total			13	U	13	82
Diazinon			8.7	U	8.7	32
Dichlorvos			17	U	17	65
Dimethoate			9.8	U	9.8	65
Disulfoton			11	U	11	65
EPN			9.0	U	9.0	32
Ethoprop			15	U	15	17
Ethyl Parathion			8.7	U	8.7	32
Fensulfothion			9.8	U	9.8	320
Hexazinone			7.6	U	7.6	32
Malathion			8.9	U	8.9	32
Merphos			8.2	U	8.2	32
Methyl parathion			5.3	U	5.3	17
Mevinphos			11	U	11	65
Monochrotophos			84	U	84	320
Naled			5.1	U	5.1	320
Phorate			11	U	11	32
Ronnel			7.9	U	7.9	32
Stirophos			8.8	U	8.8	32
Sulfotepp			5.2	U	5.2	17
Tokuthion			7.6	U	7.6	32
Trichloronate			8.1	U	8.1	320
Surrogate			%Rec	Qualifi	er Accepta	nce Limits
Triphenylphosphat	e		67		35 - 134	

Client Sample ID	: SB				
Lab Sample ID: 660-33886-5 Client Matrix: Water			Date San Date Rec	Date Sampled: 02/16/2010 1530 Date Received: 02/18/2010 0905	
		8141A Organophosphorous Pe	sticides ((GC)	
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	8141A 3520C 1.0 02/23/2010 2020 02/19/2010 1415	Analysis Batch: 640-65935 Prep Batch: 640-65814		Instrument ID: Initial Weight/Volume: Final Weight/Volume: Injection Volume: Result Type:	SGF 1060 mL 5.0 mL 1 uL PRIMARY
Analyte		Result (ug/L)	Qualifie	er MDL	PQL
Azinphos-methyl		0.31	U	0.31	0.94
Bolstar		0.090	U	0.090	0.94
Chiorpyrilos		0.10	U	0.10	0.94
Cournaprios		0.076	0	0.076	0.94
Demeton, Total Diazinon		0.14	0	0.14	2.4
Diazinon		0.10	0	0.10	0.94
Hevazinone		0.25	0	0.25	1.9
Dimothoato		0.15	0	0.15	1.9
Diricultoton		0.50	0	0.30	1.9
EDN		0.067	0	0.11	0.04
Ethonron		0.30	0	0.007	0.94
Enculfothion		0.00		0.09	0. 4 7 17
Malathion		0.087	U U	0.10	<i>1</i> 0.94
Mernhos		0.12	U U	0.007	0.94
Mevinnhos		0.12	U U	0.12	1 9
Monochrotophos		25	11.13	25	9.4
Naled		0.34	U	0.34	47
Ethyl Parathion		0.075	Ŭ	0.075	0.94
Methyl parathion		0 11	Ŭ	0.11	0.47
Phorate		0.15	Ŭ	0.15	0.94
Ronnel		0.12	Ŭ	0.12	0.94
Sulfotepp		0.052	Ŭ	0.052	0.47
Stirophos		0.079	Ū	0.079	0.94
Tokuthion		0.082	Ū	0.082	0.94
Trichloronate		0.10	U	0.10	0.94
Surrogate		%Rec	Qualifie	er Acceptan	ice Limits
Triphenylphospha	te	106		37 - 139	

Client Sample ID	: 2A				
Lab Sample ID: Client Matrix:	660-33886-6 Water			Date Sar Date Rec	npled: 02/16/2010 1100 ceived: 02/18/2010 0905
		8141A Organophosphorous Pe	sticides ((GC)	
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	8141A 3520C 1.0 02/23/2010 2256 02/19/2010 1415	Analysis Batch: 640-65935 Prep Batch: 640-65814		Instrument ID: Initial Weight/Volume: Final Weight/Volume: Injection Volume: Result Type:	SGF 1040 mL 5.0 mL 1 uL PRIMARY
Analyte		Result (ug/L)	Qualifie	er MDL	PQL
Azinphos-methyl		0.32	U	0.32	0.96
Bolstar		0.091	U	0.091	0.96
Chlorpyrifos		0.11	U	0.11	0.96
Coumaphos		0.078	U	0.078	0.96
Demeton, Total		0.14	U	0.14	2.4
Diazinon		0.11	U	0.11	0.96
Dichlorvos		0.25	U	0.25	1.9
Hexazinone		0.15	U	0.15	1.9
Dimethoate		0.31	U	0.31	1.9
Disulfoton		0.12	U	0.12	1.9
EPN		0.068	U	0.068	0.96
Ethoprop		0.39	U	0.39	0.48
Fensulfothion		0.16	U	0.16	4.8
Malathion		0.088	U	0.088	0.96
Merphos		0.12	U	0.12	0.96
Mevinphos		0.14	U	0.14	1.9
Monochrotophos		2.5	U J3	2.5	9.6
Naled		0.35	U	0.35	4.8
Ethyl Parathion		0.077	U	0.077	0.96
Methyl parathion		0.12	U	0.12	0.48
Phorate		0.15	U	0.15	0.96
Ronnel		0.12	U	0.12	0.96
Sulfotepp		0.053	U	0.053	0.48
Stirophos		0.081	U	0.081	0.96
Tokuthion		0.084	U	0.084	0.96
Trichloronate		0.11	U	0.11	0.96
Surrogate		%Rec	Qualifie	er Acceptar	ice Limits
Triphenylphospha	te	99		37 - 139	

Client Sample ID	: 1				
Lab Sample ID: Client Matrix:	660-33886-7 Water			Date Sar Date Rec	npled: 02/16/2010 1000 ceived: 02/18/2010 0905
		8141A Organophosphorous Pe	sticides (GC)	
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	8141A 3520C 1.0 02/23/2010 2310 02/19/2010 1415	Analysis Batch: 640-65935 Prep Batch: 640-65814		Instrument ID: Initial Weight/Volume: Final Weight/Volume: Injection Volume: Result Type:	SGF 1000 mL 5.0 mL 1 uL PRIMARY
Analyte		Result (ug/L)	Qualifie	er MDL	PQL
Azinphos-methyl		0.33	U	0.33	1.0
Bolstar		0.095	U	0.095	1.0
Chlorpyrifos		0.11	U	0.11	1.0
Coumaphos		0.081	U	0.081	1.0
Demeton, Total		0.15	U	0.15	2.5
Diazinon		0.11	U	0.11	1.0
Dichlorvos		0.26	U	0.26	2.0
Hexazinone		0.16	U	0.16	2.0
Dimethoate		0.32	U	0.32	2.0
Disulfoton		0.12	U	0.12	2.0
EPN		0.071	U	0.071	1.0
Ethoprop		0.41	U	0.41	0.50
Fensulfothion		0.17	U	0.17	5.0
Malathion		0.092	U	0.092	1.0
Merphos		0.13	U	0.13	1.0
Mevinphos		0.15	U	0.15	2.0
Monochrotophos		2.6	U J3	2.6	10
Naled		0.36	U	0.36	5.0
Ethyl Parathion		0.080	U	0.080	1.0
Methyl parathion		0.12	U	0.12	0.50
Phorate		0.16	U	0.16	1.0
Ronnel		0.13	U	0.13	1.0
Sulfotepp		0.055	U	0.055	0.50
Stirophos		0.084	U	0.084	1.0
Tokuthion		0.087	U	0.087	1.0
Trichloronate		0.11	U	0.11	1.0
Surrogate		%Rec	Qualifie	er Acceptar	nce Limits
Triphenylphospha	te	99		37 - 139	

Client Sample ID:	3B				
Lab Sample ID: Client Matrix:	660-33886-8 Water			Date Sar Date Rec	npled: 02/16/2010 1220 ceived: 02/18/2010 0905
		8141A Organophosphorous Pe	sticides ((GC)	
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	8141A 3520C 1.0 02/23/2010 2034 02/19/2010 1415	Analysis Batch: 640-65935 Prep Batch: 640-65814		Instrument ID: Initial Weight/Volume: Final Weight/Volume: Injection Volume: Result Type:	SGF 1040 mL 5.0 mL 1 uL PRIMARY
Analyte		Result (ug/L)	Qualifie	er MDL	PQL
Azinphos-methyl Bolstar		0.32	UU	0.32	0.96
Chlorpyrifos		0.11	U	0.11	0.96
Coumaphos		0.078	U	0.078	0.96
Demeton, Total		0.14	U	0.14	2.4
Diazinon		0.11	U	0.11	0.96
Dichlorvos		0.25	U	0.25	1.9
Hexazinone		0.15	U	0.15	1.9
Dimethoate		0.31	U	0.31	1.9
Disulfoton		0.12	U	0.12	1.9
EPN		0.068	U	0.068	0.96
Ethoprop		0.39	U	0.39	0.48
Fensulfothion		0.16	U	0.16	4.8
Malathion		0.088	U	0.088	0.96
Merphos		0.12	U	0.12	0.96
Mevinphos		0.14	U	0.14	1.9
Monochrotophos		2.5	U J3	2.5	9.6
Naled		0.35	U	0.35	4.8
Ethyl Parathion		0.077	U	0.077	0.96
Methyl parathion		0.12	U	0.12	0.48
Phorate		0.15	Ŭ	0.15	0.96
Sulfotepp		0.053	U	0.053	0.48
Tokuthion		0.084	U	0.084	0.96
Trichloronate		0.11	U	0.11	0.96
Surrogate Triphenylphosphat	'e	%Rec	Qualifie	er Acceptar	ice Limits

Client Sample ID:	3A				
Lab Sample ID: Client Matrix:	660-33886-9 Water	Date Sampled: Date Received:			npled: 02/16/2010 1240 ceived: 02/18/2010 0905
		8141A Organophosphorous Pe	sticides ((GC)	
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	8141A 3520C 1.0 02/23/2010 1923 02/19/2010 1415	Analysis Batch: 640-65935 Prep Batch: 640-65814		Instrument ID: Initial Weight/Volume: Final Weight/Volume: Injection Volume: Result Type:	SGF 1040 mL 5.0 mL 1 uL PRIMARY
Analyte		Result (ug/L)	Qualifie	er MDL	PQL
Azinphos-methyl Bolstar		0.32 0.091	U U	0.32 0.091	0.96 0.96
Coumaphos		0.11 0.078 0.14	UU	0.11 0.078 0.14	0.96 0.96 2.4
Diazinon Dichlorvos		0.11 0.25	U U	0.11 0.25	0.96 1.9
Hexazinone Dimethoate		0.15 0.31	U U	0.15 0.31	1.9 1.9
Disulfoton EPN		0.12 0.068	U U	0.12 0.068	1.9 0.96
Ethoprop Fensulfothion		0.39 0.16 0.088	UUU	0.39 0.16 0.088	0.48 4.8 0.96
Merphos Mevinphos		0.12 0.14	U U	0.12 0.14	0.96 1.9
Monochrotophos Naled		2.5 0.35	U J3 U	2.5 0.35	9.6 4.8
Ethyl Parathion Methyl parathion		0.077 0.12 0.15	U U	0.077 0.12 0.15	0.96 0.48 0.96
Ronnel		0.15 0.12 0.053	UU	0.15 0.12 0.053	0.96 0.96 0.48
Stirophos Tokuthion		0.081 0.084	U U	0.081 0.084	0.96 0.96
Trichloronate		0.11	U	0.11	0.96
Surrogate Triphenylphosphate	e	%Rec 87	Qualifie	er Acceptar 37 - 139	ice Limits

Job Number: 660-33886-1

Client: Environmental Engineering Consultant

Client Sample ID: Lab Sample ID:

Client Matrix:

4B	
660-33886-10	Date Sampled: 02/16/2010 1350
Water	Date Received: 02/18/2010 0905

8141A Organophosphorous Pesticides (GC)					
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	8141A 3520C 1.0 02/23/2010 1937 02/19/2010 1415	Analysis Batch: 640-65935 Prep Batch: 640-65814		Instrument ID: Initial Weight/Volume: Final Weight/Volume: Injection Volume: Result Type:	SGF 1060 mL 5.0 mL 1 uL PRIMARY
Analyte		Result (ug/L)	Qualifie	er MDL	PQL
Azinphos-methyl		0.31	U	0.31	0.94
Bolstar		0.090	U	0.090	0.94
Chlorpyrifos		0.10	U	0.10	0.94
Coumaphos		0.076	U	0.076	0.94
Demeton, Total		0.14	U	0.14	2.4
Diazinon		0.10	U	0.10	0.94
Dichlorvos		0.25	U	0.25	1.9
Hexazinone		0.15	U	0.15	1.9
Dimethoate		0.30	U	0.30	1.9
Disulfoton		0.11	U	0.11	1.9
EPN		0.067	U	0.067	0.94
Ethoprop		0.39	U	0.39	0.47
Fensulfothion		0.16	U	0.16	4.7
Malathion		0.087	U	0.087	0.94
Merphos		0.12	U	0.12	0.94
Mevinphos		0.14	U	0.14	1.9
Monochrotophos		2.5	U J3	2.5	9.4
Naled		0.34	U	0.34	4.7
Ethyl Parathion		0.075	U	0.075	0.94
Methyl parathion		0.11	U	0.11	0.47
Phorate		0.15	U	0.15	0.94
Ronnel		0.12	U	0.12	0.94
Sulfotepp		0.052	U	0.052	0.47
Stirophos		0.079	U	0.079	0.94
Tokuthion		0.082	U	0.082	0.94
Trichloronate		0.10	U	0.10	0.94
Surrogate		%Rec	Qualifie	er Acceptan	ce Limits
Triphenylphosphat	e	90		37 - 139	

Job Number: 660-33886-1

Client: Environmental Engineering Consultant

5A

Client Sample ID:

Lab Sample ID: Client Matrix:	660-33886-11 Water			Date San Date Rec	npled: 02/16/2010 1330 ceived: 02/18/2010 0905
		8141A Organophosphorous Pe	sticides (G	C)	
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	8141A 3520C 1.0 02/23/2010 1951 02/19/2010 1415	Analysis Batch: 640-65935 Prep Batch: 640-65814	35 Instrument ID: Initial Weight/Volume Final Weight/Volume Injection Volume: Result Type:		SGF 1000 mL 5.0 mL 1 uL PRIMARY
Analyte		Result (ug/L)	Qualifier	MDL	PQL
Azinphos-methyl Bolstar Chlorpyrifos		0.33 0.095 0.11	U U	0.33 0.095 0.11	1.0 1.0 1.0
Coumaphos Demeton, Total		0.081 0.15	U U	0.081 0.15	1.0 2.5
Diazinon Dichlorvos Hexazinone		0.11 0.26 0.16	U U	0.11 0.26 0.16	1.0 2.0 2.0
Dimethoate Disulfoton		0.32 0.12	U U	0.32 0.12	2.0 2.0 2.0
EPN Ethoprop Eensulfothion		0.071 0.41 0.17	U U	0.071 0.41 0.17	1.0 0.50 5.0
Malathion Merphos		0.092 0.13	U U	0.092 0.13	1.0 1.0
Mevinphos Monochrotophos		0.15 2.6 0.26	U U J3	0.15 2.6 0.26	2.0 10
Ethyl Parathion Methyl parathion		0.36 0.080 0.12	U U	0.36 0.080 0.12	5.0 1.0 0.50
Phorate Ronnel		0.16 0.13	U U	0.16 0.13	1.0 1.0
Sulfotepp Stirophos		0.055 0.084	U U	0.055 0.084	0.50 1.0
Trichloronate		0.087 0.11	U	0.087 0.11	1.0 1.0
Surrogate		%Rec	Qualifier	Acceptan	ice Limits
Triphenylphospha	te	96		37 - 139	

Job Number:	660-33886-1

Client Sample ID	: 4D				
Lab Sample ID: Client Matrix:	660-33886-12 Water			Date San Date Rec	npled: 02/16/2010 1440 ceived: 02/18/2010 0905
		8141A Organophosphorous Pe	sticides (GC)	
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	8141A 3520C 1.0 02/23/2010 2005 02/19/2010 1415	Analysis Batch: 640-65935 Prep Batch: 640-65814		Instrument ID: Initial Weight/Volume: Final Weight/Volume: Injection Volume: Result Type:	SGF 1060 mL 5.0 mL 1 uL PRIMARY
Analyte		Result (ug/L)	Qualifie	er MDL	PQL
Azinphos-methyl		0.31	U	0.31	0.94
Bolstar		0.090	U	0.090	0.94
Chlorpyrifos		0.10	U	0.10	0.94
Coumaphos		0.076	U	0.076	0.94
Demeton, Total		0.14	U	0.14	2.4
Diazinon		0.10	U	0.10	0.94
Dichlorvos		0.25	U	0.25	1.9
Hexazinone		0.15	U	0.15	1.9
Dimethoate		0.30	U	0.30	1.9
Disulfoton		0.11	U	0.11	1.9
EPN		0.067	U	0.067	0.94
Ethoprop		0.39	U	0.39	0.47
Fensulfothion		0.16	U	0.16	4.7
Malathion		0.087	U	0.087	0.94
Merphos		0.12	U	0.12	0.94
Mevinphos		0.14	U	0.14	1.9
Monochrotophos		2.5	U J3	2.5	9.4
Naled		0.34	U	0.34	4.7
Ethyl Parathion		0.075	U	0.075	0.94
Methyl parathion		0.11	U	0.11	0.47
Phorate		0.15	U	0.15	0.94
Ronnel		0.12	U	0.12	0.94
Sulfotepp		0.052	U	0.052	0.47
Stirophos		0.079	U	0.079	0.94
Tokuthion		0.082	U	0.082	0.94
Trichloronate		0.10	U	0.10	0.94
Surrogate		%Rec	Qualifie	er Acceptan	ice Limits
Triphenylphospha	ite	92		37 - 139	

Client: Environmental Engineering Consultant

Client Sample ID:	2A					
Lab Sample ID: Client Matrix:	660-33886-1 Solid			Date San Date Rec	Sampled: 02/16/2010 1110 Received: 02/18/2010 0905	
		8151A Herbicides (GC)			
Method:	8151A	Analysis Batch: 660-91563	3	Instrument ID:	BSGJ	
Preparation:	8151A	Prep Batch: 660-91293		Initial Weight/Volume:	29.52 g	
Dilution:	1.0			Final Weight/Volume:	10 mL	
Date Analyzed:	03/08/2010 2030			Injection Volume:	2 uL	
Date Prepared:	03/02/2010 1410			Result Type:	PRIMARY	
Analyte	DryWt Corrected	d: N Result (ug/Kg)	Qualifie	r MDL	PQL	
2,4,5-T		10	U	10	51	
2,4-D		1.6	U	1.6	8.4	
2,4-DB		6.5	U	6.5	8.4	
Dalapon		23	U	23	2000	
Dicamba		12	U	12	51	
Dichlorprop		25	U	25	100	
Dinoseb		8.4	U J3	8.4	30	
MCPA		750	U	750	2000	
MCPP		410	U	410	2000	
Pentachlorophenol		5.1	U	5.1	17	
Picloram		1.2	U	1.2	3.4	
Silvex (2,4,5-TP)		10	U	10	51	
Surrogate		%Rec	Qualifie	r Acceptan	ce Limits	
2,4-Dichlorophenyl	acetic acid	42		10 - 135		

Job Number: 660-33886-1

Client Sample ID:	1	
Lab Sample ID:	660-33886-2	Date Sampled: 02/16/2010 1010
Client Matrix:	Solid	Date Received: 02/18/2010 0905

8151A Herbicides (GC)						
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	8151A 8151A 1.0 03/08/201 03/02/201	0 2047 0 1410	Analysis Batch: 660-9156 Prep Batch: 660-91293	33	Instrument ID: Initial Weight/Volume: Final Weight/Volume: Injection Volume: Result Type:	BSGJ 29.99 g 10 mL 2 uL PRIMARY
Analyte	C	DryWt Corrected: N	Result (ug/Kg)	Qualifi	er MDL	PQL
2,4,5-T			10	U	10	50
2,4-D			1.6	U	1.6	8.3
2,4-DB			6.4	U	6.4	8.3
Dalapon			23	U	23	2000
Dicamba			12	U	12	50
Dichlorprop			25	U	25	100
Dinoseb			8.3	U J3	8.3	30
MCPA			740	U	740	2000
MCPP			400	U	400	2000
Pentachloropheno	1		5.0	U	5.0	17
Picloram			1.2	U	1.2	3.3
Silvex (2,4,5-TP)			10	U	10	50
Surrogate %Rec Qualifier Acceptance Limits					nce Limits	
2,4-Dichlorophenylacetic acid 55 10 - 135						

Client Sample ID:	3A						
Lab Sample ID: Client Matrix:	660-33886-3 Solid				Date Sa Date Re	Date Sampled: 02/16/2010 1300 Date Received: 02/18/2010 0905	
			8151A Herbicides (G	C)			
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	8151A 8151A 1.0 03/07/2010 03/02/2010	1812 1410	Analysis Batch: 660-91563 Prep Batch: 660-91293		Instrument ID: Initial Weight/Volume: Final Weight/Volume: Injection Volume: Result Type:	BSGJ : 30.40 g 10 mL 2 uL PRIMARY	
Analyte	Dr	yWt Corrected: N	N Result (ug/Kg)	Qualifi	er MDL	PQL	
2,4,5-T		·	9.9	U	9.9	49	
2,4-D			1.6	U	1.6	8.2	
2,4-DB			6.3	U	6.3	8.2	
Dalapon			23	U	23	2000	
Dicamba			12	U	12	49	
Dichlorprop			25	U	25	99	
Dinoseb			8.2	U J3	8.2	30	
MCPA			730	U	730	2000	
MCPP			390	U	390	2000	
Pentachlorophenol			4.9	U	4.9	17	
Picloram			1.2	U	1.2	3.3	
Silvex (2,4,5-TP)			9.9	U	9.9	49	
Surrogate			%Rec	Qualifi	er Accepta	ince Limits	

87

2,4-Dichlorophenylacetic acid

10 - 135

Client: Environmental Engineering Consultant

Client Sample ID:	4B					
Lab Sample ID: Client Matrix:	660-33886-4 Solid				Date Sa Date Re	mpled: 02/16/2010 1400 ceived: 02/18/2010 0905
			8151A Herbicides (G	C)		
Method:	8151A	Analy	sis Batch: 660-91563		Instrument ID:	BSGJ
Preparation:	8151A	Prep	Batch: 660-91293		Initial Weight/Volume:	30.08 g
Dilution:	1.0	•			Final Weight/Volume:	10 mL
Date Analyzed:	03/08/2010 210)5			Injection Volume:	2 uL
Date Prepared:	03/02/2010 141	0			Result Type:	PRIMARY
Analyte	DryWt	Corrected: N	Result (ug/Kg)	Qualifie	er MDL	PQL
2,4,5-T			10	U	10	50
2,4-D			1.6	U	1.6	8.3
2,4-DB			6.4	U	6.4	8.3
Dalapon			23	U	23	2000
Dicamba			12	U	12	50
Dichlorprop			25	U	25	100
Dinoseb			8.3	U J3	8.3	30
MCPA			740	U	740	2000
MCPP			400	U	400	2000
Pentachlorophenol			5.0	U	5.0	17
Picloram			1.2	U	1.2	3.3
Silvex (2,4,5-TP)			10	U	10	50
Surrogate			%Rec	Qualifie	er Accepta	nce Limits
2,4-Dichlorophenyl	acetic acid		66		10 - 135	

Job Number: 660-33886-1

1.2

6.0

6.0

120

120

1.0

5.0

5.0

Acceptance Limits

33 - 120

Client: Environmental Engineering Consultant

Client Sample ID	: SB				
Lab Sample ID: Client Matrix:	660-33886-5 Water		Date Sar Date Rec	mpled: 02/16/2010 1530 ceived: 02/18/2010 0905	
		8151A Herbicides (G	C)		
Method:	8151A	Analysis Batch: 660-91479	Inst	rument ID:	BSGJ
Preparation:	8151A	Prep Batch: 660-90999	Initia	al Weight/Volume:	500 mL
Dilution:	1.0		Fina	al Weight/Volume:	5 mL
Date Analyzed:	03/05/2010 0236		Inje	ction Volume:	2 uL
Date Prepared:	02/23/2010 1625		Res	ult Type:	PRIMARY
Analyte		Result (ug/L)	Qualifier	MDL	PQL
2,4,5-T		1.0	U	1.0	5.0
2,4-D		1.0	U	1.0	5.0
2,4-DB		1.0	U	1.0	5.0
Dalapon		25	U J3	25	120

U

U

U

U

U

U

U

Qualifier

U J3

0.25

1.0

1.0

34

35

1.0

1.0

0.085

0.25

1.0

1.0

34

35

1.0

1.0

0.085

%Rec

115

Dicamba

Dinoseb

MCPA

MCPP

Picloram

Surrogate

Dichlorprop

Pentachlorophenol

Silvex (2,4,5-TP)

2,4-Dichlorophenylacetic acid

Client: Environmental Engineering Consultant

Client Sample ID:	2A				
Lab Sample ID: Client Matrix:	660-33886-6 Water			Date Sar Date Rec	npled: 02/16/2010 1100 ceived: 02/18/2010 0905
		8151A Herbicides (G	C)		
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	8151A 8151A 1.0 03/05/2010 0253 02/23/2010 1625	Analysis Batch: 660-91479 Prep Batch: 660-90999		Instrument ID: Initial Weight/Volume: Final Weight/Volume: Injection Volume: Result Type:	BSGJ 970 mL 10 mL 2 uL PRIMARY
Analyte		Result (ug/L)	Qualifie	er MDL	PQL
2,4,5-T		1.0	U	1.0	5.2
2,4-D		1.0	U	1.0	5.2
2,4-DB		1.0	U	1.0	5.2
Dalapon		26	U J3	26	120
Dicamba		0.26	U	0.26	1.2
Dichlorprop		1.0	U	1.0	6.2
Dinoseb		1.0	U	1.0	6.2
MCPA		35	U J3	35	120
MCPP		36	U	36	120
Pentachloropheno	l	0.088	U	0.088	1.0
Picloram		1.0	U	1.0	5.2
Silvex (2,4,5-TP)		1.0	U	1.0	5.2
Surrogate		%Rec	Qualifie	er Acceptar	ice Limits
2,4-Dichloropheny	lacetic acid	113		33 - 120	

Client: Environmental Engineering Consultant

Client Sample ID	: 1				
Lab Sample ID: Client Matrix:	660-33886-7 Water			Date Sar Date Rec	npled: 02/16/2010 1000 ceived: 02/18/2010 0905
		8151A Herbicides (G	C)		
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	8151A 8151A 1.0 03/05/2010 0311 02/23/2010 1625	Analysis Batch: 660-91479 Prep Batch: 660-90999		Instrument ID: Initial Weight/Volume: Final Weight/Volume: Injection Volume: Result Type:	BSGJ 1000 mL 10 mL 2 uL PRIMARY
Analyte		Result (ug/L)	Qualifie	er MDL	PQL
2,4,5-T		1.0	U	1.0	5.0
2,4-D		1.0	U	1.0	5.0
2,4-DB		1.0	U	1.0	5.0
Dalapon		25	U J3	25	120
Dicamba		0.25	U	0.25	1.2
Dichlorprop		1.0	U	1.0	6.0
Dinoseb		1.0	U	1.0	6.0
MCPA		34	U J3	34	120
MCPP		35	U	35	120
Pentachloropheno	bl	0.085	U	0.085	1.0
Picloram		1.0	U	1.0	5.0
Silvex (2,4,5-TP)		1.0	U	1.0	5.0
Surrogate		%Rec	Qualifie	er Acceptar	nce Limits
2,4-Dichloropheny	lacetic acid	89		33 - 120	

Client: Environmental Engineering Consultant

Client Sample ID:	3B				
Lab Sample ID: Client Matrix:	660-33886-8 Water			Date Sar Date Rec	npled: 02/16/2010 1220 ceived: 02/18/2010 0905
		8151A Herbicides (G	C)		
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	8151A 8151A 1.0 03/05/2010 032 02/23/2010 162	Analysis Batch: 660-91479 Prep Batch: 660-90999		Instrument ID: Initial Weight/Volume: Final Weight/Volume: Injection Volume: Result Type:	BSGJ 980 mL 10 mL 2 uL PRIMARY
Analyte		Result (ug/L)	Qualifie	er MDL	PQL
2,4,5-T		1.0	U	1.0	5.1
2,4-D		1.0	U	1.0	5.1
2,4-DB		1.0	U	1.0	5.1
Dalapon		26	U J3	26	120
Dicamba		0.26	U	0.26	1.2
Dichlorprop		1.0	U	1.0	6.1
Dinoseb		1.0	U	1.0	6.1
MCPA		35	U J3	35	120
MCPP		36	U	36	120
Pentachlorophenol		0.087	U	0.087	1.0
Picloram		1.0	U	1.0	5.1
Silvex (2,4,5-TP)		1.0	U	1.0	5.1
Surrogate		%Rec	Qualifie	er Acceptar	ice Limits

Surrogate	%Rec	Qualifier	Acceptance Limit
2,4-Dichlorophenylacetic acid	138	J1	33 - 120

Client: Environmental Engineering Consultant

Client Sample ID:	3A				
Lab Sample ID: Client Matrix:	660-33886-9 Water			Date Sar Date Rec	npled: 02/16/2010 1240 ceived: 02/18/2010 0905
		8151A Herbicides (G	C)		
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	8151A 8151A 1.0 03/05/2010 0345 02/23/2010 1625	Analysis Batch: 660-91479 Prep Batch: 660-90999		Instrument ID: Initial Weight/Volume: Final Weight/Volume: Injection Volume: Result Type:	BSGJ 1050 mL 10 mL 2 uL PRIMARY
Analyte		Result (ug/L)	Qualifie	er MDL	PQL
2,4,5-T		0.95	U	0.95	4.8
2,4-D		0.95	U	0.95	4.8
2,4-DB		0.95	U	0.95	4.8
Dalapon		24	U J3	24	110
Dicamba		0.24	U	0.24	1.1
Dichlorprop		0.95	U	0.95	5.7
Dinoseb		0.95	U	0.95	5.7
MCPA		32	U J3	32	110
MCPP		33	U	33	110
Pentachloropheno	l	0.081	U	0.081	0.95
Picloram		0.95	U	0.95	4.8
Silvex (2,4,5-TP)		0.95	U	0.95	4.8
Surrogate		%Rec	Qualifie	er Acceptar	nce Limits
2,4-Dichloropheny	lacetic acid	107		33 - 120	

Client: Environmental Engineering Consultant

Client Sample ID:	4B				
Lab Sample ID: Client Matrix:	660-33886-10 Water			Date Sar Date Rec	npled: 02/16/2010 1350 ceived: 02/18/2010 0905
		8151A Herbicides (G	C)		
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	8151A 8151A 1.0 03/05/2010 0401 02/23/2010 1625	Analysis Batch: 660-91479 Prep Batch: 660-90999		Instrument ID: Initial Weight/Volume: Final Weight/Volume: Injection Volume: Result Type:	BSGJ 1055 mL 10 mL 2 uL PRIMARY
Analyte		Result (ua/L)	Qualifie	er MDL	PQL
2.4.5-T		0.95	U	0.95	4.7
2.4-D		0.95	Ū	0.95	4.7
2,4-DB		0.95	U	0.95	4.7
Dalapon		24	U J3	24	110
Dicamba		0.24	U	0.24	1.1
Dichlorprop		0.95	U	0.95	5.7
Dinoseb		0.95	U	0.95	5.7
MCPA		32	U J3	32	110
MCPP		33	U	33	110
Pentachlorophenol		0.081	U	0.081	0.95
Picloram		0.95	U	0.95	4.7
Silvex (2,4,5-TP)		0.95	U	0.95	4.7
Surrogate		%Rec	Qualifie	er Acceptar	nce Limits
2,4-Dichloropheny	acetic acid	131	J1	33 - 120	

Job Number: 660-33886-1

Client Sample ID	: 5A				
Lab Sample ID: Client Matrix:	660-33886-11 Water			Date Sar Date Rec	npled: 02/16/2010 1330 ceived: 02/18/2010 0905
		8151A Herbicides (G	C)		
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	8151A 8151A 1.0 03/05/2010 0418 02/23/2010 1625	Analysis Batch: 660-91479 Prep Batch: 660-90999		Instrument ID: Initial Weight/Volume: Final Weight/Volume: Injection Volume: Result Type:	BSGJ 970 mL 10 mL 2 uL PRIMARY
Analyte		Result (ug/L)	Qualifie	er MDL	PQL
2,4,5-T		1.0	U	1.0	5.2
2,4-D		1.0	U	1.0	5.2
2,4-DB		1.0	U	1.0	5.2
Dalapon		26	U J3	26	120
Dicamba		0.26	U	0.26	1.2
Dichlorprop		1.0	U	1.0	6.2
Dinoseb		1.0	U	1.0	6.2
MCPA		35	U J3	35	120
MCPP		36	U	36	120
Pentachloropheno	bl	0.088	U	0.088	1.0
Picloram		1.0	U	1.0	5.2
Silvex (2,4,5-TP)		1.0	U	1.0	5.2
Surrogate		%Rec	Qualifie	er Acceptar	nce Limits
2,4-Dichloropheny	/lacetic acid	82		33 - 120	

Job Number: 660-33886-1

Client Sample ID:	: 4D				
Lab Sample ID: Client Matrix:	660-33886-12 Water			Date Sar Date Rec	npled: 02/16/2010 1440 ceived: 02/18/2010 0905
		8151A Herbicides (G	C)		
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	8151A 8151A 1.0 03/05/2010 0434 02/23/2010 1625	Analysis Batch: 660-91479 Prep Batch: 660-90999		Instrument ID: Initial Weight/Volume: Final Weight/Volume: Injection Volume: Result Type:	BSGJ 1040 mL 10 mL 2 uL PRIMARY
Analvte		Result (uɑ/L)	Qualifie	er MDL	PQL
2.4.5-T		0.96	U	0.96	4.8
2.4-D		0.96	Ŭ	0.96	4.8
2,4-DB		0.96	Ū	0.96	4.8
Dalapon		24	U J3	24	120
Dicamba		0.24	U	0.24	1.2
Dichlorprop		0.96	U	0.96	5.8
Dinoseb		0.96	U	0.96	5.8
MCPA		33	U J3	33	120
MCPP		34	U	34	120
Pentachloropheno	l	0.082	U	0.082	0.96
Picloram		0.96	U	0.96	4.8
Silvex (2,4,5-TP)		0.96	U	0.96	4.8
Surrogate		%Rec	Qualifie	er Acceptar	nce Limits
2,4-Dichloropheny	lacetic acid	130	J1	33 - 120	

Client: Environmental Engineering Consultant

Client Sample I	D: 2A								
Lab Sample ID: Client Matrix:	660-3 Solid	3886-1					Date Sar Date Rec	npled: 02/16/2010 eived: 02/18/2010	1110 0905
				6010B Metals (IC	P)				
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	6010B 3050B 1.0 02/19/2010 02/18/2010	0 1638 0 1533	Analysis Prep Ba	s Batch: 660-90852 atch: 660-90828		Instrument Lab File ID Initial Weig Final Weig	ID: : ht/Volume: ht/Volume:	ICPA 10B19A 1.02 g 50 mL	
	02/10/2010		·N	Posult (ma/Ka)	Qualif	ior M	וח	POI	
Analyte		Drywi Corrected	. IN		Qualii		DL 7		
Arsonic				9100		J. 0	23	20	
Poron				0.70 7 E		0.	2J 59	0.49	
DOION				7.0		0.	00 10	4.9	
Dallull				21		0.	10	0.98	
Caumium				0.26	I	0.	085	0.49	
Cobalt				2.0		0.	19	0.98	
Chromium				4.7		0.	17	0.98	
Copper				12		0.	49	2.0	
Iron				4900		2.	9	4.9	
Magnesium				2100		6.	1	49	
Manganese				170		0.	21	0.98	
Sodium				890		18	3	49	
Lead				13		0.	15	0.49	
litanium				130		0.	29	0.98	
Zinc				13		0. 0.	49	2.0	
Method:	6010B		Analysis	s Batch: 660-90852		Instrument	ID:	ICPA	
Preparation:	3050B		Prep Ba	atch: 660-90828		Lab File ID	:	10B19A	
Dilution:	10		•			Initial Weig	ht/Volume:	1.02 g	
Date Analyzed:	02/19/2010	0 1741				Final Weig	, ht/Volume:	50 mL	
Date Prepared:	02/18/2010	0 1533							
Analyte		DryWt Corrected	: N	Result (mg/Kg)	Qualif	ïer M	DL	PQL	
Calcium				92000		1	50	490	
Method:	6010B		Analysis	s Batch: 660-90964		Instrument	ID:	ICPA	
Preparation:	3050B		Prep Ba	atch: 660-90828		Lab File ID	1	10B22A	
Dilution:	40					Initial Weig	ht/Volume:	1.02 g	
Date Analyzed:	02/22/2010	0 1230				Final Weig	ht/Volume:	50 mL	
Date Prepared:	02/18/2010	0 1533							
Analyte		DryWt Corrected	: N	Result (mg/Kg)	Qualif	ier M	DL	PQL	
Strontium				2700		3.	8	39	
			-	7471A Mercury (CV	AA)				
Method:	74710		Analysi	Batch: 660_01/12		Instrument	יחו	P\$20011	
Bronorotion:	74741		Drop D-	s Daton. 000-91412			ישר.		
	141 IA		гер ва	aton. 000-91390				IN/A	
	1.0						nt/volume:	∪.3∠ g	
Date Analyzed:	03/04/2010	0 1504				⊢inal Weig	nt/Volume:	50 mL	
Date Prepared:	03/04/2010	0 1100							

Client Sample ID:	2A								
Lab Sample ID: Client Matrix:	660-33886-1 Solid			Date Sa Date Re	mpled: 02/16/2010 1 ceived: 02/18/2010 (1110 0905			
	7471A Mercury (CVAA)								
Analyte	DryWt Corrected: N	Result (mg/Kg)	Qualifier	MDL	PQL				
Mercury		0.023		0.0070	0.019				

Client Sample I	D: 1							
Lab Sample ID:	660-33886-2					Date San	npled: 02/16/20	010 1010
Client Matrix:	Solid					Date Rec	eived: 02/18/20	010 0905
			6010B Metals (ICP)				
Method:	6010B	Analysi	s Batch: 660-90852		Instrument ID	:	ICPA	
Preparation:	3050B	Prep Ba	atch: 660-90828		Lab File ID:		10B19A	
Dilution:	1.0	·			Initial Weight/	Volume:	1.02 g	
Date Analyzed:	02/19/2010 1647				Final Weight/	Volume:	50 mL	
Date Prepared:	02/18/2010 1533							
Analyte	DryWt Corrected	d: N	Result (mg/Kg)	Qualifi	er MDL		PQL	
Aluminum			9700		5.7		20	
Arsenic			0.54		0.23		0.49	
Boron			2.9	Ι	0.58		4.9	
Barium			18		0.16		0.98	
Cadmium			0.18	1	0.08	5	0.49	
Cobalt			3.4	•	0.19	•	0.98	
Chromium			4 1		0.10		0.98	
Conner			17		0.17		2.0	
Iron			6200		2 0		2.0 4 Q	
Magnesium			1700		6.7		4.5	
Manganese			200		0.7			
Sodium			200		10		40	
Lood			300		0.15		49	
			9.9		0.15		0.49	
Nanum			08		0.29		0.98	
vanadium			14		0.11		0.98	
Zinc			15		0.49		2.0	
Method:	6010B	Analysi	s Batch: 660-90852		Instrument ID	:	ICPA	
Preparation:	3050B	Prep Ba	atch: 660-90828		Lab File ID:		10B19A	
Dilution:	10	•			Initial Weight/	Volume:	1.02 α	
Date Analyzed	02/19/2010 1747				Final Weight/	Volume:	50 ml	
Date Prepared:	02/18/2010 1533				i indi Weight	volume.		
Analyte	DrvWt Correcte	1: N	Result (ma/Ka)	Qualifi	er MDI		POI	
Calcium	2.9.11.001.000		23000		150		490	
Strontium			810		0.96		9.8	
		.	7471A Mercury (CVA	A)			Doogou	
iviethod:	(4/1A	Analysi	s Batch: 660-91412		Instrument ID	:	PS200II	
Preparation:	7471A	Prep Ba	atch: 660-91390		Lab File ID:		N/A	
Dilution:	1.0				Initial Weight/	Volume:	0.30 g	
Date Analyzed:	03/04/2010 1506				Final Weight/	Volume:	50 mL	
Date Prepared:	03/04/2010 1100				-			
Analyte	DryWt Corrected	d: N	Result (mg/Kg)	Qualifi	er MDL		PQL	
Mercury			0.019	I	0.00	75	0.020	

Client Sample II	D: 3A					
Lab Sample ID: Client Matrix:	660-33886-3 Solid				Date San Date Rec	npled: 02/16/2010 1300 ceived: 02/18/2010 0905
			6010B Metals (ICP	')		
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	6010B 3050B 1.0 02/19/2010 1653 02/18/2010 1533	Analy Prep	Analysis Batch: 660-90852 Prep Batch: 660-90828		nstrument ID: ab File ID: nitial Weight/Volume: inal Weight/Volume:	ICPA 10B19A 1.01 g 50 mL
Analyte	DryWt Correc	ted: N	Result (mg/Kg)	Qualifier	MDL	PQL
Aluminum Arsenic Boron Barium Calcium Cadmium Cobalt Chromium Copper Iron Magnesium Manganese Sodium Lead Titanium Vanadium Zinc			360 0.25 13 3.3 9100 0.086 0.19 0.41 2.1 290 780 14 820 3.9 7.1 2.1 6.0	I U I	5.7 0.23 0.58 0.16 15 0.086 0.19 0.17 0.50 3.0 6.7 0.21 18 0.15 0.30 0.11 0.50	20 0.50 5.0 0.99 50 0.50 0.99 2.0 5.0 50 0.99 50 0.50 0.99 50 0.99 2.0
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	6010B 3050B 10 02/19/2010 1753 02/18/2010 1533	Analy Prep	rsis Batch: 660-90852 Batch: 660-90828	lr L F	nstrument ID: ab File ID: nitial Weight/Volume: inal Weight/Volume:	ICPA 10B19A 1.01 g 50 mL
Analyte Strontium	DryWt Correc	ted: N	Result (mg/Kg) 380	Qualifier	0.97	9.9
Method: Preparation: Dilution: Date Analyzed:	7471A 7471A 1.0 03/04/2010 1513 02/04/2010 1100	Analy Prep	7471A Mercury (CVA vsis Batch: 660-91412 Batch: 660-91390	AA) Ir Ir F	nstrument ID: ab File ID: nitial Weight/Volume: inal Weight/Volume:	PS200II N/A 0.32 g 50 mL
Date Prepared:	03/04/2010 1100					
Analyte Mercury	DryWt Correc	ted: N	Result (mg/Kg) 0.011	Qualifier I	MDL 0.0070	PQL 0.019

Client: Environmental Engineering Consultant

Client Sample I	D: 4B					
Lab Sample ID: Client Matrix:	660-33886-4 Solid				Date Sar Date Rec	npled: 02/16/2010 1400 ceived: 02/18/2010 0905
			6010B Metals (ICP))		
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	6010B 3050B 1.0 02/19/2010 1659 02/18/2010 1533	Analy Prep	Analysis Batch: 660-90852 Prep Batch: 660-90828		strument ID: lb File ID: tial Weight/Volume: nal Weight/Volume:	ICPA 10B19A 1.00 g 50 mL
Analyte	DryWt Correc	ted: N	Result (mg/Kg)	Qualifier	MDL	PQL
Aluminum Arsenic Boron Barium Calcium Cadmium Cobalt Chromium Copper Iron Magnesium Manganese Sodium Lead Titanium Vanadium Zinc			1300 0.64 7.7 3.7 14000 0.087 0.52 2.2 9.2 1200 640 17 640 27 25 5.7 28	U I	5.8 0.23 0.59 0.16 15 0.087 0.19 0.17 0.50 3.0 6.8 0.21 18 0.15 0.30 0.11 0.50	20 0.50 5.0 1.0 50 0.50 1.0 1.0 2.0 5.0 50 1.0 50 0.50 1.0 1.0 2.0
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	6010B 3050B 10 02/19/2010 1759 02/18/2010 1533	Analy Prep	rsis Batch: 660-90852 Batch: 660-90828	In: La Ini Fir	strument ID: lb File ID: tial Weight/Volume: nal Weight/Volume:	ICPA 10B19A 1.00 g 50 mL
Analyte Strontium	DryWt Correc	ted: N	Result (mg/Kg) 260	Qualifier	MDL 0.98	PQL 10
			7471A Mercury (CVA	A)		
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	7471A 7471A 1.0 03/04/2010 1515 03/04/2010 1100	Analy Prep	rsis Batch: 660-91412 Batch: 660-91390	In: La Ini Fii	strument ID: b File ID: itial Weight/Volume: nal Weight/Volume:	PS200II N/A 0.31 g 50 mL
Analyte Mercury	DryWt Correc	ted: N	Result (mg/Kg) 0.029	Qualifier	MDL 0.0073	PQL 0.019
mercury			0.023		0.0075	0.013

Client Sample I	D: SB					
Lab Sample ID: Client Matrix:	660-33886-5 Water			Date Sar Date Rec	npled: 02/16/2010 1530 ceived: 02/18/2010 0905	
		6010B Metals (ICP)-Total Re	coverable			
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	6010B 3005A 1.0 03/04/2010 1515 03/03/2010 1132	Analysis Batch: 660-91401 Prep Batch: 660-91336	Analysis Batch: 660-91401 Instrument ID: Prep Batch: 660-91336 Lab File ID: Initial Weight/Volume: Final Weight/Volume:		ICPA 10C04A 50 mL 50 mL	
Analyte		Result (ma/L)	Qualifie	r MDL	PQL	
Aluminum		0.17		0.050	0.20	
Arsenic		0.0040	U.	0.0040	0.010	
Boron		0.056	•	0.010	0.050	
Barium		0.0020	U	0.0020	0.010	
Calcium		0.68	-	0.10	0.50	
Cadmium		0.0010	U	0.0010	0.0040	
Cobalt		0.0020	U	0.0020	0.010	
Chromium		0.0020	U	0.0020	0.010	
Copper		0.0029	U	0.0029	0.010	
Iron		0.095	I	0.050	0.20	
Magnesium		0.051	I	0.020	0.080	
Manganese		0.0021	I	0.0010	0.0040	
Sodium		26		0.31	0.50	
Lead		0.0020	U	0.0020	0.010	
Strontium		0.016		0.0010	0.0050	
Titanium		0.0044	I	0.0020	0.010	
Vanadium		0.0025	U	0.0025	0.010	
Zinc		0.026		0.0050	0.020	
		7470A Mercury				
Method:	7470A	Analysis Batch: 660-91291		nstrument ID:	PS20011	
Preparation:	7470A	Prep Batch: 660-91270	Lab File ID:		N/A	
Dilution:	1.0	······································		nitial Weight/Volume	25 ml	
Date Analyzed	03/02/2010 1305			Final Weight/Volume	25 ml	
Date Prepared:	03/02/2010 0900					
Analyte		Result (mg/L)	Qualifie	r MDL	PQL	
Mercury		0.000072	U	0.000072	0.00020	

Client Sample I	D: 2A					
Lab Sample ID: Client Matrix:	660-33886-6 Water			Date San Date Rec	npled: 02/16/2010 1 eived: 02/18/2010 (1100)905
		6010B Metals (ICP)-Total Re	coverable			
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	6010B 3005A 1.0 03/04/2010 1521 03/03/2010 1132	Analysis Batch: 660-91401 Prep Batch: 660-91336	nalysis Batch: 660-91401 Instrument ID: rep Batch: 660-91336 Lab File ID: Initial Weight/Volume Final Weight/Volume:		ICPA 10C04A 50 mL 50 mL	
Analyte		Result (mg/L)	Qualifier	MDL	PQL	
Copper Iron Potassium Magnesium Sodium Lead Zinc		0.0034 1.2 8.2 32 85 0.0020 0.024	U	0.0029 0.050 0.19 0.020 0.31 0.0020 0.0050	0.010 0.20 1.0 0.080 0.50 0.010 0.020	
		7470A Mercury				
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	7470A 7470A 1.0 03/02/2010 1254 03/02/2010 0900	Analysis Batch: 660-91291 Prep Batch: 660-91270	Instrument ID: Lab File ID: Initial Weight/Volum Final Weight/Volum		PS200II N/A 25 mL 25 mL	
Analyte		Result (mg/L)	Qualifier	MDL	PQL	
Mercury		0.000072	U	0.000072	0.00020	
Client Sample I	D: 1					
--	---	--	---------------------	--	--	
Lab Sample ID: Client Matrix:	660-33886-7 Water			Date San Date Rec	npled: 02/16/2010 1000 eived: 02/18/2010 0905	
		6010B Metals (ICP)-Total Re	coverable			
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	6010B 3005A 1.0 03/04/2010 1527 03/03/2010 1132	Analysis Batch: 660-91401 Prep Batch: 660-91336	Ir Li Ir F	nstrument ID: ab File ID: nitial Weight/Volume: inal Weight/Volume:	ICPA 10C04A 50 mL 50 mL	
Analyte		Result (mg/L)	Qualifier	MDL	PQL	
Copper Iron Potassium Magnesium Lead Zinc		0.0045 1.5 12 37 0.0020 0.033	U	0.0029 0.050 0.19 0.020 0.0020 0.0050	0.010 0.20 1.0 0.080 0.010 0.020	
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	6010B 3005A 2.0 03/04/2010 1658 03/03/2010 1132	Analysis Batch: 660-91401 Prep Batch: 660-91336	lr Li Ir F	nstrument ID: ab File ID: nitial Weight/Volume: inal Weight/Volume:	ICPA 10C04A 50 mL 50 mL	
Analyte		Result (mg/L)	Qualifier	MDL	PQL	
Sodium		110		0.62	1.0	
		7470A Mercury				
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	7470A 7470A 1.0 03/02/2010 1307 03/02/2010 0900	Analysis Batch: 660-91291 Prep Batch: 660-91270	lr L Ir F	nstrument ID: ab File ID: nitial Weight/Volume: inal Weight/Volume:	PS200II N/A 25 mL 25 mL	
Analyte		Result (mg/L)	Qualifier	MDL	PQL	
Mercury		0.000072	U	0.000072	0.00020	

Client Sample I	D: 3B				
Lab Sample ID: Client Matrix:	660-33886-8 Water			Date San Date Rec	npled: 02/16/2010 1220 evived: 02/18/2010 0905
		6010B Metals (ICP)-Total Re	coverable		
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	6010B 3005A 1.0 03/04/2010 1554 03/03/2010 1132	Analysis Batch: 660-91401 Prep Batch: 660-91336	l L F	nstrument ID: .ab File ID: nitial Weight/Volume: ⁻ inal Weight/Volume:	ICPA 10C04A 50 mL 50 mL
Analyte		Result (mg/L)	Qualifier	MDL	PQL
Copper Iron Magnesium Lead Zinc		0.0029 0.055 90 0.0020 0.017	U I U I	0.0029 0.050 0.020 0.0020 0.0050	0.010 0.20 0.080 0.010 0.020
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	6010B 3005A 20 03/04/2010 1704 03/03/2010 1132	Analysis Batch: 660-91401 Prep Batch: 660-91336	l L I F	nstrument ID: .ab File ID: nitial Weight/Volume: ⁻ inal Weight/Volume:	ICPA 10C04A 50 mL 50 mL
Analyte		Result (mg/L)	Qualifier	MDL	PQL
Potassium Sodium		32 600		3.8 6.2	20 10
		7470A Mercury			
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	7470A 7470A 1.0 03/02/2010 1309 03/02/2010 0900	Analysis Batch: 660-91291 Prep Batch: 660-91270	l L F	nstrument ID: .ab File ID: nitial Weight/Volume: ⁻ inal Weight/Volume:	PS200II N/A 25 mL 25 mL
Analyte		Result (mg/L)	Qualifier	MDL	PQL
Mercury		0.000072	U	0.000072	0.00020

Client Sample II	D: 3A					
Lab Sample ID: Client Matrix:	Sample ID: 660-33886-9 t Matrix: Water		Date San Date Rec	Date Sampled: 02/16/2010 1240 Date Received: 02/18/2010 0905		
		6010B Metals (ICP)-Total Re	coverable	1		
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	6010B 3005A 1.0 03/04/2010 1600 03/03/2010 1132	Analysis Batch: 660-91401 Prep Batch: 660-91336	 	nstrument ID: _ab File ID: nitial Weight/Volume: ⁻ inal Weight/Volume:	ICPA 10C04A 50 mL 50 mL	
Analyte		Result (mg/L)	Qualifie	MDL	PQL	
Copper Iron Magnesium Lead Zinc		0.0029 0.068 91 0.0020 0.0050	U I U U	0.0029 0.050 0.020 0.0020 0.0050	0.010 0.20 0.080 0.010 0.020	
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	6010B 3005A 20 03/04/2010 1710 03/03/2010 1132	Analysis Batch: 660-91401 Prep Batch: 660-91336		nstrument ID: _ab File ID: nitial Weight/Volume: Final Weight/Volume:	ICPA 10C04A 50 mL 50 mL	
Analyte		Result (mg/L)	Qualifie	MDL	PQL	
Potassium Sodium		32 610		3.8 6.2	20 10	
		7470A Mercury				
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	7470A 7470A 1.0 03/02/2010 1311 03/02/2010 0900	Analysis Batch: 660-91291 Prep Batch: 660-91270		nstrument ID: _ab File ID: nitial Weight/Volume: [_] inal Weight/Volume:	PS200II N/A 25 mL 25 mL	
Analyte		Result (mg/L)	Qualifie	MDL	PQL	
Mercury		0.000072	U	0.000072	0.00020	

Client Sample I	D: 4B				
Lab Sample ID: Client Matrix:	660-33886-10 Water			Date Sar Date Rec	npled: 02/16/2010 1350 ceived: 02/18/2010 0905
		6010B Metals (ICP)-Total Re	coverable		
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	6010B 3005A 1.0 03/04/2010 1606 03/03/2010 1132	Analysis Batch: 660-91401 Prep Batch: 660-91336	Instr Lab Initia Fina	ument ID: File ID: I Weight/Volume: I Weight/Volume:	ICPA 10C04A 50 mL 50 mL
Analyte		Result (mg/L)	Qualifier	MDL	PQL
Copper Iron Potassium Magnesium Lead Zinc		0.044 5.1 49 86 0.095 0.14		0.0029 0.050 0.19 0.020 0.0020 0.0050	0.010 0.20 1.0 0.080 0.010 0.020
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	6010B 3005A 20 03/04/2010 1716 03/03/2010 1132	Analysis Batch: 660-91401 Prep Batch: 660-91336	Instr Lab Initia Fina	ument ID: File ID: I Weight/Volume: I Weight/Volume:	ICPA 10C04A 50 mL 50 mL
Analyte Sodium		Result (mg/L) 440	Qualifier	MDL 6.2	PQL 10
		7470A Mercury			
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	7470A 7470A 1.0 03/02/2010 1313 03/02/2010 0900	Analysis Batch: 660-91291 Prep Batch: 660-91270	Instr Lab Initia Fina	ument ID: File ID: I Weight/Volume: I Weight/Volume:	PS200II N/A 25 mL 25 mL
Analyte		Result (mg/L)	Qualifier	MDL	PQL
Mercury		0.000072	U	0.000072	0.00020

Client Sample I	D: 5A				
Lab Sample ID: Client Matrix:	660-33886-11 Water			Date San Date Rec	npled: 02/16/2010 133 eived: 02/18/2010 090
		6010B Metals (ICP)-Total Re	coverable		
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	6010B 3005A 1.0 03/04/2010 1612 03/03/2010 1132	Analysis Batch: 660-91401 Prep Batch: 660-91336	lr L Ir F	nstrument ID: ab File ID: nitial Weight/Volume: ïnal Weight/Volume:	ICPA 10C04A 50 mL 50 mL
Analyte		Result (mg/L)	Qualifier	MDL	PQL
Copper Iron Potassium Magnesium Sodium Lead Zinc		0.012 8.5 10 30 97 0.0099 0.049	I	0.0029 0.050 0.19 0.020 0.31 0.0020 0.0050	0.010 0.20 1.0 0.080 0.50 0.010 0.020
		7470A Mercury			
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	7470A 7470A 1.0 03/02/2010 1316 03/02/2010 0900	Analysis Batch: 660-91291 Prep Batch: 660-91270	Ir L Ir F	nstrument ID: ab File ID: nitial Weight/Volume: ïnal Weight/Volume:	PS200II N/A 25 mL 25 mL
Analyte		Result (mg/L)	Qualifier	MDL	PQL
Mercury		0.000072	U	0.000072	0.00020

Client Sample I	D: 4D				
Lab Sample ID: Client Matrix:	660-33886-12 Water			Date San Date Rec	npled: 02/16/2010 1440 eived: 02/18/2010 0905
		6010B Metals (ICP)-Total Re	coverable		
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	6010B 3005A 1.0 03/04/2010 1618 03/03/2010 1132	Analysis Batch: 660-91401 Prep Batch: 660-91336	l L F	nstrument ID: .ab File ID: nitial Weight/Volume: ⁻ inal Weight/Volume:	ICPA 10C04A 50 mL 50 mL
Analyte		Result (mg/L)	Qualifier	MDL	PQL
Copper Iron Potassium Magnesium Lead Zinc		0.0029 0.068 33 68 0.0020 0.0050	U I U U	0.0029 0.050 0.19 0.020 0.0020 0.0050	0.010 0.20 1.0 0.080 0.010 0.020
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	6010B 3005A 10 03/04/2010 1722 03/03/2010 1132	Analysis Batch: 660-91401 Prep Batch: 660-91336	l L I F	nstrument ID: .ab File ID: nitial Weight/Volume: ⁻ inal Weight/Volume:	ICPA 10C04A 50 mL 50 mL
Analyte Sodium		Result (mg/L) 340	Qualifier	MDL 3.1	PQL 5.0
		7470A Mercury			
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	7470A 7470A 1.0 03/02/2010 1318 03/02/2010 0900	Analysis Batch: 660-91291 Prep Batch: 660-91270	l L I F	nstrument ID: .ab File ID: nitial Weight/Volume: ⁻ inal Weight/Volume:	PS200II N/A 25 mL 25 mL
Analyte		Result (mg/L)	Qualifier	MDL	PQL
Mercury		0.000072	U	0.000072	0.00020

Client Sample ID: 24

Lab Sample ID: Client Matrix:	660-33886- Solid	1				Date Date	Sampled: Received:	02/16/2010 1110 02/18/2010 0905
Analyte		Result	Qual	Units	MDL	PQL	Dil	Method
Ammonia (as N)		2.1		mg/Kg	0.13	0.30	1.0	350.1
	Analysis Batch: 6	680-161811	Date Analyzed	d: 02/26/2	2010 1112		Dr	yWt Corrected: N
	Prep Batch:	680-161659	Date Prep	pared: 02	/25/2010 1234			
Nitrite as N-Solul	ole	1.5	I	mg/Kg	1.0	5.0	1.0	353.2
	Analysis Batch: 6	60-91352	Date Analyzed	d: 03/03/2	2010 0939		Dr	yWt Corrected: N
Nitrate as N-Solu	ıble	1.0	U	mg/Kg	1.0	5.0	1.0	353.2
	Analysis Batch: 6	60-91352	Date Analyzed	d: 03/03/2	2010 0939		Dr	yWt Corrected: N
Phosphorus		2300		mg/Kg	50	91	5.0	365.4
	Analysis Batch: 6	680-161565	Date Analyzed	d: 02/24/2	2010 1446		Dr	yWt Corrected: N
	Prep Batch:	680-161349	Date Pre	pared: 02	/22/2010 1258			
Total Organic Ca	rbon	35000		mg/Kg	1000	3000	1.0	9060
	Analysis Batch: 6	680-161519	Date Analyzed	d: 02/23/2	2010 1035		Dr	yWt Corrected: N
Orthophosphate-	Soluble	3.5		mg/L	0.75	3.0	1.0	SM 4500 P E
	Analysis Batch: 6	660-91342	Date Analyzed	d: 03/02/2	2010 1600		Dr	yWt Corrected: N
Analyte		Result	Qual	Units	PQL	PQL	Dil	Method
Sulfide		25	U	mg/Kg	25	25	1.0	9034
	Analysis Batch: 6	680-161436	Date Analyzed	d: 02/23/2	2010 1430		Dr	yWt Corrected: N
	Prep Batch:	680-161395	Date Prep	pared: 02	/23/2010 1144			
Sulfate-Soluble		100	U	mg/Kg	100	100	1.0	9038
	Analysis Batch: 6	680-162106	Date Analyzed	d: 03/02/2	2010 1718		Dr	yWt Corrected: N
pH-Soluble		8.11	Q	SU	1.00	1.00	1.0	9045C
	Analysis Batch: 6	660-90922	Date Analyzed	d: 02/18/2	2010 2145		Dr	yWt Corrected: N
Percent Solids		37		%	0.10	0.10	1.0	Moisture
	Analysis Batch: 6	660-90835	Date Analyzed	d: 02/18/2	2010 1421		Dr	yWt Corrected: N

General Chemistry

Client Sample ID: 1

Lab Sample ID:	660-33886-2					Date	e Sampled:	02/16/2010 1010
Client Matrix:	Solid					Date	Received:	02/18/2010 0905
Analyte		Result	Qual	Units	MDL	PQL	Dil	Method
Ammonia (as N)		65		mg/Kg	1.3	3.0	10	350.1
	Analysis Batch: 680	D-161811	Date Analyze	d: 02/26/2	010 1159		Dr	ryWt Corrected: N
	Prep Batch: 68	80-161659	Date Pre	pared: 02/	25/2010 1234			
Nitrite as N-Solu	ble	1.0	U	mg/Kg	1.0	5.0	1.0	353.2
	Analysis Batch: 660	0-91352	Date Analyze	d: 03/03/2	010 0939		Dr	ryWt Corrected: N
Nitrate as N-Solu	ıble	1.0	U	mg/Kg	1.0	5.0	1.0	353.2
	Analysis Batch: 660	0-91352	Date Analyze	d: 03/03/2	010 0939		Dr	ryWt Corrected: N
Phosphorus		690		mg/Kg	10	19	1.0	365.4
	Analysis Batch: 680	0-161565	Date Analyze	d: 02/24/2	010 1410		Dr	ryWt Corrected: N
	Prep Batch: 68	80-161349	Date Pre	pared: 02/	22/2010 1258			
Total Organic Ca	arbon	42000		mg/Kg	1000	3000	1.0	9060
	Analysis Batch: 680	0-161519	Date Analyze	d: 02/23/2	010 1035		Dr	ryWt Corrected: N
Orthophosphate-	Soluble	1.6	I	mg/L	0.75	3.0	1.0	SM 4500 P E
	Analysis Batch: 660	0-91342	Date Analyze	d: 03/02/2	010 1600		Dr	ryWt Corrected: N
Analyte		Result	Qual	Units	PQL	PQL	Dil	Method
Sulfide		47		mg/Kg	25	25	1.0	9034
	Analysis Batch: 680	0-161436	Date Analyze	d: 02/23/2	010 1430		Dr	ryWt Corrected: N
	Prep Batch: 68	80-161395	Date Pre	pared: 02/	23/2010 1144			
Sulfate-Soluble		100	U	mg/Kg	100	100	1.0	9038
	Analysis Batch: 680	0-162106	Date Analyze	d: 03/02/2	010 1718		Dr	ryWt Corrected: N
pH-Soluble		7.89	Q	SU	1.00	1.00	1.0	9045C
	Analysis Batch: 660)-90922	Date Analyze	d: 02/18/2	010 2145		Dr	ryWt Corrected: N
Percent Solids		22		%	0.10	0.10	1.0	Moisture
	Analysis Batch: 660)-90835	Date Analyze	d: 02/18/2	010 1416		Dr	ryWt Corrected: N

	Client	Sam	ple ID:	3A
--	--------	-----	---------	----

Lab Sample ID: Client Matrix:	660-33886-3 Solid					Date Date	• Sampled: • Received:	02/16/2010 1300 02/18/2010 0905
Analyte		Result	Qual	Units	MDL	PQL	Dil	Method
Ammonia (as N)		6.9		mg/Kg	0.13	0.30	1.0	350.1
	Analysis Batch: 68	0-161811	Date Analyzed	d: 02/26/2	2010 1120		Dr	yWt Corrected: N
	Prep Batch: 68	30-161659	Date Prep	bared: 02	2/25/2010 1234			
Nitrite as N-Solul	ble	1.0	U	mg/Kg	1.0	5.0	1.0	353.2
	Analysis Batch: 66	0-91352	Date Analyzed	d: 03/03/2	2010 0939		Dr	yWt Corrected: N
Nitrate as N-Solu	ble	1.0	U	mg/Kg	1.0	5.0	1.0	353.2
	Analysis Batch: 66	0-91352	Date Analyzed	d: 03/03/2	2010 0939		Dr	yWt Corrected: N
Phosphorus		240		mg/Kg	9.3	17	1.0	365.4
	Analysis Batch: 68	0-161565	Date Analyzed	d: 02/24/2	2010 1410		Dr	yWt Corrected: N
	Prep Batch: 68	30-161349	Date Prep	bared: 02	2/22/2010 1258			
Total Organic Ca	rbon	210000		mg/Kg	1000	3000	1.0	9060
	Analysis Batch: 68	0-161519	Date Analyzed	d: 02/23/2	2010 1035		Dr	yWt Corrected: N
Orthophosphate-	Soluble	0.87	I	mg/L	0.75	3.0	1.0	SM 4500 P E
	Analysis Batch: 66	0-91342	Date Analyzed	d: 03/02/2	2010 1600		Dr	ryWt Corrected: N
Analyte		Result	Qual	Units	PQL	PQL	Dil	Method
Sulfide		25	U	mg/Kg	25	25	1.0	9034
	Analysis Batch: 68	0-161436	Date Analyzed	d: 02/23/2	2010 1430		Dr	yWt Corrected: N
	Prep Batch: 68	30-161395	Date Prep	bared: 02	2/23/2010 1354			
Sulfate-Soluble		98	U	mg/Kg	98	98	1.0	9038
	Analysis Batch: 68	0-162106	Date Analyzed	d: 03/02/2	2010 1718		Dr	yWt Corrected: N
pH-Soluble		7.84	Q	SU	1.00	1.00	1.0	9045C
	Analysis Batch: 66	0-90922	Date Analyzed	d: 02/18/2	2010 2145		Dr	wWt Corrected: N
Percent Solids		6.6		%	0.10	0.10	1.0	Moisture
	Analysis Batch: 66	0-90835	Date Analyzed	d: 02/18/2	2010 1356		Dr	yWt Corrected: N

Client	Sam	ole	ID:	4B
0110110	oun			

Lab Sample ID: Client Matrix:	660-33886-4 Solid					Date Date	Sampled: Received:	02/16/2010 1400 02/18/2010 0905
Analyte		Result	Qual	Units	MDL	PQL	Dil	Method
Ammonia (as N)		11		mg/Kg	0.26	0.60	2.0	350.1
	Analysis Batch: 68	0-161811	Date Analyzed	d: 02/26/2	2010 1159		Dr	yWt Corrected: N
	Prep Batch: 68	80-161659	Date Prep	bared: 02	/25/2010 1234			
Nitrite as N-Solul	ole	1.0	U	mg/Kg	1.0	5.0	1.0	353.2
	Analysis Batch: 66	0-91352	Date Analyzed	d: 03/03/2	2010 0939		Dr	yWt Corrected: N
Nitrate as N-Solu	ıble	1.0	U	mg/Kg	1.0	5.0	1.0	353.2
	Analysis Batch: 66	0-91352	Date Analyzed	d: 03/03/2	2010 0939		Dr	yWt Corrected: N
Phosphorus		140		mg/Kg	11	20	1.0	365.4
	Analysis Batch: 68	0-161565	Date Analyzed	d: 02/24/2	2010 1410		Dr	yWt Corrected: N
	Prep Batch: 68	80-161349	Date Prep	bared: 02	/22/2010 1258			
Total Organic Ca	rbon	150000		mg/Kg	1000	3000	1.0	9060
	Analysis Batch: 68	0-161519	Date Analyzed	d: 02/23/2	2010 1035		Dr	yWt Corrected: N
Orthophosphate-	Soluble	1.5	I	mg/L	0.75	3.0	1.0	SM 4500 P E
	Analysis Batch: 66	0-91342	Date Analyzed	d: 03/02/2	2010 1600		Dr	yWt Corrected: N
Analyte		Result	Qual	Units	PQL	PQL	Dil	Method
Sulfide		25	U	mg/Kg	25	25	1.0	9034
	Analysis Batch: 68	0-161436	Date Analyzed	d: 02/23/2	2010 1430		Dr	yWt Corrected: N
	Prep Batch: 68	80-161395	Date Prep	bared: 02	/23/2010 1354			
Sulfate-Soluble		97	U	mg/Kg	97	97	1.0	9038
	Analysis Batch: 68	0-162106	Date Analyzed	d: 03/02/2	2010 1720		Dr	yWt Corrected: N
pH-Soluble		7.53	Q	SU	1.00	1.00	1.0	9045C
	Analysis Batch: 66	0-90922	Date Analyzed	d: 02/18/2	2010 2145		Dr	yWt Corrected: N
Percent Solids		8.6		%	0.10	0.10	1.0	Moisture
	Analysis Batch: 66	0-90835	Date Analyzed	d: 02/18/2	2010 1348		Dr	yWt Corrected: N

Job Number: 660-33886-1

General Chemistry

Client Sample ID: SB

Lab Sample ID: Client Matrix:	660-33886-5 Water					Date Date	Sampled: Received:	02/16/2010 1530 02/18/2010 0905
Analyte		Result	Qual	Units	MDL	PQL	Dil	Method
Ammonia (as N)		0.13		mg/L	0.010	0.020	1.0	350.1
	Analysis Batch: 660	0-91191	Date Analyze	d: 02/26/2	2010 1452			
Nitrite as N		0.10	U	mg/L	0.10	0.50	1.0	353.2
	Analysis Batch: 660	0-90906	Date Analyze	d: 02/18/2	2010 1002			
Nitrate as N		3.3		mg/L	0.10	0.50	1.0	353.2
	Analysis Batch: 660	0-90906	Date Analyze	d: 02/18/2	2010 1002			
Orthophosphate	-Dissolved	0.010	U	mg/L	0.010	0.040	1.0	365.1
	Analysis Batch: 660	0-91108	Date Analyze	d: 02/18/2	2010 1328			
Phosphorus, Tot	al	0.10	U	mg/L	0.10	0.30	1.0	365.4
•	Analysis Batch: 660	0-91349	Date Analyze	d: 03/03/2	2010 1113			
	Prep Batch: 66	60-91250	Date Pre	pared: 03	8/01/2010 1700			
Sulfate		2.0	U	mg/L	2.0	5.0	1.0	SM 426C
	Analysis Batch: 660	0-91434	Date Analyze	d: 03/04/2	2010 1100			
Total Organic Ca	arbon	0.46	1	mg/L	0.35	1.0	1.0	SM 5310C
-	Analysis Batch: 640	0-65864	Date Analyze	d: 02/19/2	2010 1514			
Analyte		Result	Qual	Units	PQL	PQL	Dil	Method
Sulfide		1.0	U	mg/L	1.0	1.0	1.0	SM 4500 S2 F
	Analysis Batch: 660	0-90918	Date Analyze	d: 02/19/2	2010 1600			

Job Number: 660-33886-1

Client Sample ID): 2A							
Lab Sample ID:	660-33886-6	3				Date	e Sampled:	02/16/2010 1100
Client Matrix:	Water					Dat	e Received:	02/18/2010 0905
Analyte		Result	Qual	Units	MDL	PQL	Dil	Method
Nitrite as N		0.10	U	mg/L	0.10	0.50	1.0	353.2
	Analysis Batch: 6	60-90906	Date Analyze	d: 02/18/	2010 1002			
Nitrate as N		0.33	I	mg/L	0.10	0.50	1.0	353.2
	Analysis Batch: 6	60-90906	Date Analyze	d: 02/18/	2010 1002			
Phosphorus, Tota	al	0.21	I	mg/L	0.10	0.30	1.0	365.4
	Analysis Batch: 6	60-91349	Date Analyze	d: 03/03/	2010 1113			
	Prep Batch:	660-91250	Date Pre	pared: 03	3/01/2010 1700			
Sulfate		45		mg/L	4.0	10	2.0	SM 426C
	Analysis Batch: 6	60-91248	Date Analyze	d: 03/01/	2010 1350			
Chloride		89		mg/L	6.0	10	2.0	SM 4500 CI- E
	Analysis Batch: 6	60-91159	Date Analyze	d: 02/25/	2010 1400			
Chemical Oxyger	Demand	15	I	mg/L	10	20	1.0	SM 5220D
	Analysis Batch: 6	60-91132	Date Analyze	d: 02/25/	2010 1557			
	Prep Batch:	660-91131	Date Pre	pared: 02	2/25/2010 1333			
Tannins and Lign	ins	0.70		mg/L	0.037	0.10	1.0	SM 5550B
	Analysis Batch: 6	680-161223	Date Analyze	d: 02/19/	2010 1126			
Analyte		Result	Qual	Units	PQL	PQL	Dil	Method
Turbidity		4.9		NTU	0.10	0.10	1.0	180.1
	Analysis Batch: 6	60-90879	Date Analyze	d: 02/18/	2010 0930			
Biochemical Oxyg	gen Demand	4.38	Q	mg/L	2.00	2.00	1.0	405.1
	Analysis Batch: 6	60-91308	Date Analyze	d: 02/23/	2010 0830			
Chlorophyll a		25.3	Q	ug/L	2.00	2.00	1.0	SM 10200H
	Analysis Batch: 6	60-91277	Date Analyze	d: 02/23/	2010 1020			
Alkalinity		340		mg/L	1.0	1.0	1.0	SM 2320B
	Analysis Batch: 6	60-90996	Date Analyze	d: 02/23/	2010 1205			
Salinity		2.0	U	ppt	2.0	2.0	1.0	SM 2520B
	Analysis Batch: 6	60-91136	Date Analyze	d: 02/25/	2010 1200			
Total Suspended	Solids	11		mg/L	1.0	1.0	1.0	SM 2540D
	Analysis Batch: 6	60-90872	Date Analyze	d: 02/19/	2010 1459			
Sulfide		1.0	U	mg/L	1.0	1.0	1.0	SM 4500 S2 F
	Analysis Batch: 6	60-90918	Date Analyze	d: 02/19/	2010 1600			

Client Sample ID: 1

Job Number: 660-33886-1

Lab Sample ID: Client Matrix:	660-33886-7 Water					Da Da	te Sampled: te Received:	02/16/2010 1000 02/18/2010 0905
Analyte		Result	Qual	Units	MDL	PQL	Dil	Method
Nitrite as N		0.10	UQ	mg/L	0.10	0.50	1.0	353.2
	Analysis Batch: 660	-90906	Date Analyze	d: 02/18/	2010 1002			
Nitrate as N		0.10	UQ	mg/L	0.10	0.50	1.0	353.2
	Analysis Batch: 660	-90906	Date Analyze	d: 02/18/	2010 1002			
Phosphorus, Tota	al	0.13	I	mg/L	0.10	0.30	1.0	365.4
•	Analysis Batch: 660	-91349	Date Analyze	d: 03/03/	2010 1113			
	Prep Batch: 66	0-91250	Date Pre	pared: 0	3/01/2010 1700			
Sulfate	·	50		mg/L	4.0	10	2.0	SM 426C
	Analysis Batch: 660	-91248	Date Analyze	d: 03/01/	2010 1350			
Chloride		140		mg/L	6.0	10	2.0	SM 4500 CI- E
	Analysis Batch: 660	-91159	Date Analyze	d: 02/25/	2010 1400			
Chemical Oxyger	n Demand	44	-	mg/L	10	20	1.0	SM 5220D
	Analysis Batch: 660	-91132	Date Analyze	d: 02/25/	2010 1557			
	Prep Batch: 66	0-91131	Date Pre	pared: 0	2/25/2010 1333			
Tannins and Lign	ins	0.92		mg/L	0.037	0.10	1.0	SM 5550B
· ·	Analysis Batch: 680	-161223	Date Analyze	d: 02/19/	2010 1130			
Analyte		Result	Qual	Units	PQL	PQL	Dil	Method
Turbidity		11		NTU	0.10	0.10	1.0	180.1
	Analysis Batch: 660	-90879	Date Analyze	d: 02/18/	2010 0930			
Biochemical Oxy	gen Demand	7.38	Q	mg/L	2.00	2.00	1.0	405.1
	Analysis Batch: 660	-91308	Date Analyze	d: 02/23/	2010 0830			
Chlorophyll a		137	Q	ug/L	2.00	2.00	1.0	SM 10200H
	Analysis Batch: 660	-91277	Date Analyze	d: 02/23	2010 1022			
Alkalinity		210		mg/L	1.0	1.0	1.0	SM 2320B
-	Analysis Batch: 660	-90996	Date Analyze	d: 02/23/	2010 1211			
Salinity		2.0	U	ppt	2.0	2.0	1.0	SM 2520B
	Analysis Batch: 660	-91136	Date Analyze	d: 02/25/	2010 1200			
Total Suspended	Solids	32	-	mg/L	1.0	1.0	1.0	SM 2540D
-	Analysis Batch: 660	-90872	Date Analyze	d: 02/19/	2010 1459			
Sulfide	-	1.0	U	mg/L	1.0	1.0	1.0	SM 4500 S2 F
	Analysis Batch: 660	-90918	Date Analyze	d: 02/19/	2010 1600			

Job Number: 660-33886-1

Client Sample ID): 3B							
Lab Sample ID:	660-33886-8					Dat	e Sampled:	02/16/2010 1220
Client Matrix:	Water					Dat	e Received:	02/18/2010 0905
Analyte		Result	Qual	Units	MDL	PQL	Dil	Method
Nitrite as N		0.10	U	mg/L	0.10	0.50	1.0	353.2
	Analysis Batch: 66	60-90906	Date Analyze	d: 02/18/	2010 1002			
Nitrate as N		0.10	U	mg/L	0.10	0.50	1.0	353.2
	Analysis Batch: 66	60-90906	Date Analyze	d: 02/18/	2010 1002			
Phosphorus, Tota	l	0.12	I	mg/L	0.10	0.30	1.0	365.4
	Analysis Batch: 66	60-91349	Date Analyzed	d: 03/03/	2010 1113			
	Prep Batch: 6	60-91250	Date Pre	pared: 03	3/01/2010 1700			
Sulfate		140		mg/L	10	25	5.0	SM 426C
	Analysis Batch: 66	60-91248	Date Analyzed	d: 03/01/	2010 1350			
Chloride		960		mg/L	60	100	20	SM 4500 CI- E
	Analysis Batch: 66	60-91159	Date Analyzed	d: 02/25/	2010 1400			
Chemical Oxyger	Demand	48		mg/L	10	20	1.0	SM 5220D
	Analysis Batch: 66	60-91132	Date Analyze	d: 02/25/	2010 1557			
	Prep Batch: 6	60-91131	Date Pre	pared: 02	2/25/2010 1333			
Tannins and Lign	ins	1.6		mg/L	0.037	0.10	1.0	SM 5550B
	Analysis Batch: 68	80-161223	Date Analyze	d: 02/19/	2010 1130			
Analyte		Result	Qual	Units	PQL	PQL	Dil	Method
Turbidity		2.9		NTU	0.10	0.10	1.0	180.1
	Analysis Batch: 66	60-90879	Date Analyzed	d: 02/18/	2010 0930			
Biochemical Oxyg	gen Demand	4.64	Q	mg/L	2.00	2.00	1.0	405.1
	Analysis Batch: 66	60-91308	Date Analyzed	d: 02/23/	2010 0830			
Chlorophyll a		22.6	Q	ug/L	2.00	2.00	1.0	SM 10200H
	Analysis Batch: 66	60-91277	Date Analyze	d: 02/23/	2010 1023			
Alkalinity		440		mg/L	1.0	1.0	1.0	SM 2320B
	Analysis Batch: 66	60-90996	Date Analyzed	d: 02/23/	2010 1219			
Salinity		2.5		ppt	2.0	2.0	1.0	SM 2520B
	Analysis Batch: 66	60-91136	Date Analyzed	d: 02/25/	2010 1200			
Total Suspended	Solids	8.4		mg/L	1.0	1.0	1.0	SM 2540D
	Analysis Batch: 66	60-90872	Date Analyzed	d: 02/19/	2010 1459			
Sulfide		1.0	U	mg/L	1.0	1.0	1.0	SM 4500 S2 F
	Analysis Batch: 66	60-90918	Date Analyzed	d: 02/19/	2010 1600			

Job Number: 660-33886-1

Client Sample ID): 3A							
Lab Sample ID:	660-33886-9	1				Date	e Sampled:	02/16/2010 1240
Client Matrix:	Water					Dat	e Received:	02/18/2010 0905
Analyte		Result	Qual	Units	MDL	PQL	Dil	Method
Nitrite as N		0.10	U	mg/L	0.10	0.50	1.0	353.2
	Analysis Batch: 6	60-90906	Date Analyze	d: 02/18/	2010 1002			
Nitrate as N		0.10	U	mg/L	0.10	0.50	1.0	353.2
	Analysis Batch: 6	60-90906	Date Analyze	d: 02/18/	2010 1002			
Phosphorus, Tota	l	0.15	I	mg/L	0.10	0.30	1.0	365.4
	Analysis Batch: 6	60-91349	Date Analyzed	d: 03/03/	2010 1113			
	Prep Batch:	660-91250	Date Pre	pared: 03	3/01/2010 1700			
Sulfate		140		mg/L	10	25	5.0	SM 426C
	Analysis Batch: 6	60-91248	Date Analyzed	d: 03/01/	2010 1350			
Chloride		1000		mg/L	60	100	20	SM 4500 CI- E
	Analysis Batch: 6	60-91159	Date Analyzed	d: 02/25/	2010 1400			
Chemical Oxyger	Demand	51		mg/L	10	20	1.0	SM 5220D
	Analysis Batch: 6	60-91132	Date Analyzed	d: 02/25/	2010 1557			
	Prep Batch:	660-91131	Date Pre	pared: 02	2/25/2010 1333			
Tannins and Lign	ins	1.5		mg/L	0.037	0.10	1.0	SM 5550B
	Analysis Batch: 6	80-161223	Date Analyzed	d: 02/19/	2010 1130			
Analyte		Result	Qual	Units	PQL	PQL	Dil	Method
Turbidity		2.9		NTU	0.10	0.10	1.0	180.1
	Analysis Batch: 6	60-90879	Date Analyzed	d: 02/18/	2010 0930			
Biochemical Oxyg	gen Demand	2.58	Q	mg/L	2.00	2.00	1.0	405.1
	Analysis Batch: 6	60-91308	Date Analyzed	d: 02/23/	2010 0830			
Chlorophyll a		21.1	Q	ug/L	2.00	2.00	1.0	SM 10200H
	Analysis Batch: 6	60-91277	Date Analyzed	d: 02/23/	2010 1024			
Alkalinity		440		mg/L	1.0	1.0	1.0	SM 2320B
	Analysis Batch: 6	60-90996	Date Analyzed	d: 02/23/	2010 1226			
Salinity		2.5		ppt	2.0	2.0	1.0	SM 2520B
	Analysis Batch: 6	60-91136	Date Analyzed	d: 02/25/	2010 1200			
Total Suspended	Solids	18		mg/L	1.0	1.0	1.0	SM 2540D
	Analysis Batch: 6	60-90872	Date Analyzed	d: 02/19/	2010 1459			
Sulfide		1.0	U	mg/L	1.0	1.0	1.0	SM 4500 S2 F
	Analysis Batch: 6	60-90918	Date Analyzed	d: 02/19/	2010 1600			

Job Number: 660-33886-1

Client Sample ID): 4B							
Lab Sample ID:	660-33886-10)				C	ate Sampled:	02/16/2010 1350
Client Matrix:	Water					Ε	Date Received:	02/18/2010 0905
Analyte		Result	Qual	Units	MDL	PQL	Dil	Method
Nitrite as N		0.10	U	mg/L	0.10	0.50	1.0	353.2
	Analysis Batch: 66	0-90906	Date Analyze	d: 02/18/	2010 1002			
Nitrate as N		0.10	U	mg/L	0.10	0.50	1.0	353.2
	Analysis Batch: 66	0-90906	Date Analyze	d: 02/18/	2010 1002			
Phosphorus, Tota	al	0.26	I	mg/L	0.10	0.30	1.0	365.4
	Analysis Batch: 66	0-91349	Date Analyze	d: 03/03/	2010 1113			
	Prep Batch: 6	60-91250	Date Pre	pared: 0	3/01/2010 1700			
Sulfate		110		mg/L	10	25	5.0	SM 426C
	Analysis Batch: 66	0-91248	Date Analyze	d: 03/01/	2010 1350			
Chloride		590		mg/L	60	100	20	SM 4500 CI- E
	Analysis Batch: 66	0-91159	Date Analyzed	d: 02/25/	2010 1400			
Chemical Oxyger	n Demand	270		mg/L	10	20	1.0	SM 5220D
	Analysis Batch: 66	0-91274	Date Analyze	d: 03/02/	2010 1021			
	Prep Batch: 6	60-91273	Date Pre	pared: 0	3/01/2010 1230			
Tannins and Lign	ins	4.4		mg/L	0.18	0.50	5.0	SM 5550B
	Analysis Batch: 68	0-161223	Date Analyzed	d: 02/19/	2010 1158			
Analyte		Result	Qual	Units	PQL	PQL	Dil	Method
Turbidity		12		NTU	0.10	0.10	1.0	180.1
	Analysis Batch: 66	0-90879	Date Analyze	d: 02/18/	2010 0930			
Biochemical Oxy	gen Demand	6.55	Q	mg/L	2.00	2.00	1.0	405.1
	Analysis Batch: 66	0-91308	Date Analyze	d: 02/23/	2010 0830			
Chlorophyll a		4.40	Q	ug/L	2.00	2.00	1.0	SM 10200H
	Analysis Batch: 66	0-91277	Date Analyze	d: 02/23/	2010 1025			
Alkalinity		650		mg/L	1.0	1.0	1.0	SM 2320B
	Analysis Batch: 66	0-90996	Date Analyze	d: 02/23/	2010 1235			
Salinity		2.0		ppt	2.0	2.0	1.0	SM 2520B
	Analysis Batch: 66	0-91136	Date Analyze	d: 02/25/	2010 1200			
Total Suspended	Solids	39		mg/L	1.0	1.0	1.0	SM 2540D
	Analysis Batch: 66	0-90872	Date Analyzed	d: 02/19/	2010 1459			
Sulfide		1.3		mg/L	1.0	1.0	1.0	SM 4500 S2 F
	Analysis Batch: 66	0-90918	Date Analyzed	d: 02/19/	2010 1600			

Job Number: 660-33886-1

Client Sample ID): 5A							
Lab Sample ID:	660-33886-1 ⁻	1				Date	e Sampled:	02/16/2010 1330
Client Matrix:	Water					Date	e Received:	02/18/2010 0905
Analyte		Result	Qual	Units	MDL	PQL	Dil	Method
Nitrite as N		0.10	U	mg/L	0.10	0.50	1.0	353.2
	Analysis Batch: 66	60-90906	Date Analyze	d: 02/18/	2010 1002			
Nitrate as N		0.10	U	mg/L	0.10	0.50	1.0	353.2
	Analysis Batch: 66	60-90906	Date Analyzed	d: 02/18/	2010 1002			
Phosphorus, Tota	al	0.23	I	mg/L	0.10	0.30	1.0	365.4
	Analysis Batch: 66	60-91349	Date Analyzed	d: 03/03/	2010 1113			
	Prep Batch: 6	60-91250	Date Prep	pared: 0	3/01/2010 1700			
Sulfate		48		mg/L	8.0	20	4.0	SM 426C
	Analysis Batch: 66	60-91248	Date Analyzed	d: 03/01/	2010 1350			
Chloride		110		mg/L	6.0	10	2.0	SM 4500 CI- E
	Analysis Batch: 66	60-91159	Date Analyzed	d: 02/25/	2010 1400			
Chemical Oxyger	Demand	34		mg/L	10	20	1.0	SM 5220D
	Analysis Batch: 66	60-91132	Date Analyzed	d: 02/25/	2010 1557			
	Prep Batch: 6	60-91131	Date Pre	pared: 02	2/25/2010 1333			
Tannins and Lign	ins	0.51		mg/L	0.037	0.10	1.0	SM 5550B
	Analysis Batch: 68	80-161223	Date Analyzed	d: 02/19/	2010 1130			
Analyte		Result	Qual	Units	PQL	PQL	Dil	Method
Turbidity		46		NTU	0.20	0.20	2.0	180.1
	Analysis Batch: 66	60-90879	Date Analyzed	d: 02/18/	2010 0930			
Biochemical Oxyg	gen Demand	8.84	Q	mg/L	2.00	2.00	1.0	405.1
	Analysis Batch: 66	60-91308	Date Analyzed	d: 02/23/	2010 0830			
Chlorophyll a		22.0	Q	ug/L	2.00	2.00	1.0	SM 10200H
	Analysis Batch: 66	60-91277	Date Analyze	d: 02/23/	2010 1027			
Alkalinity		210		mg/L	1.0	1.0	1.0	SM 2320B
	Analysis Batch: 66	60-90996	Date Analyze	d: 02/23/	2010 1241			
Salinity		2.0	U	ppt	2.0	2.0	1.0	SM 2520B
	Analysis Batch: 66	60-91136	Date Analyzed	d: 02/25/	2010 1200			
Total Suspended	Solids	280		mg/L	4.2	4.2	1.0	SM 2540D
	Analysis Batch: 66	60-90872	Date Analyzed	d: 02/19/	2010 1500			
Sulfide		1.0	U	mg/L	1.0	1.0	1.0	SM 4500 S2 F
	Analysis Batch: 66	60-90918	Date Analyzed	d: 02/19/	2010 1600			

Job Number: 660-33886-1

Client Sample ID): 4D							
Lab Sample ID:	660-33886-12	2				Dat	e Sampled:	02/16/2010 1440
Client Matrix:	Water					Dat	e Received:	02/18/2010 0905
Analyte		Result	Qual	Units	MDL	PQL	Dil	Method
Nitrite as N		0.10	U	mg/L	0.10	0.50	1.0	353.2
	Analysis Batch: 66	0-90906	Date Analyzed	d: 02/18/	2010 1002			
Nitrate as N		0.10	U	mg/L	0.10	0.50	1.0	353.2
	Analysis Batch: 66	0-90906	Date Analyze	d: 02/18/	2010 1002			
Phosphorus, Tota	al	0.55		mg/L	0.10	0.30	1.0	365.4
	Analysis Batch: 66	0-91349	Date Analyzed	d: 03/03/	2010 1113			
	Prep Batch: 6	60-91250	Date Pre	pared: 0	3/01/2010 1700			
Sulfate		69		mg/L	4.0	10	2.0	SM 426C
	Analysis Batch: 66	0-91248	Date Analyzed	d: 03/01/	2010 1350			
Chloride		500		mg/L	60	100	20	SM 4500 CI- E
	Analysis Batch: 66	0-91159	Date Analyzed	d: 02/25/	2010 1400			
Chemical Oxyger	n Demand	55		mg/L	10	20	1.0	SM 5220D
	Analysis Batch: 66	0-91132	Date Analyze	d: 02/25/	2010 1557			
	Prep Batch: 6	60-91131	Date Pre	pared: 0	2/25/2010 1333			
Tannins and Lign	ins	4.0		mg/L	0.18	0.50	5.0	SM 5550B
	Analysis Batch: 68	0-161223	Date Analyzed	d: 02/19/	2010 1158			
Analyte		Result	Qual	Units	PQL	PQL	Dil	Method
Turbidity		8.0		NTU	0.10	0.10	1.0	180.1
	Analysis Batch: 66	0-90879	Date Analyze	d: 02/18/	2010 0930			
Biochemical Oxy	gen Demand	11.5	Q	mg/L	2.00	2.00	1.0	405.1
	Analysis Batch: 66	0-91308	Date Analyze	d: 02/23/	2010 0830			
Chlorophyll a		40.7	Q	ug/L	2.00	2.00	1.0	SM 10200H
	Analysis Batch: 66	0-91277	Date Analyze	d: 02/23/	2010 1028			
Alkalinity		540		mg/L	1.0	1.0	1.0	SM 2320B
	Analysis Batch: 66	0-90996	Date Analyze	d: 02/23/	2010 1249			
Salinity		2.0	U	ppt	2.0	2.0	1.0	SM 2520B
	Analysis Batch: 66	0-91136	Date Analyze	d: 02/25/	2010 1200			
Total Suspended	Solids	8.0		mg/L	1.0	1.0	1.0	SM 2540D
	Analysis Batch: 66	0-90872	Date Analyzed	d: 02/19/	2010 1500			
Sulfide		1.0	U	mg/L	1.0	1.0	1.0	SM 4500 S2 F
	Analysis Batch: 66	0-90918	Date Analyzed	d: 02/19/	2010 1600			

DATA REPORTING QUALIFIERS

Client: Environmental Engineering Consultant

Lab Section	Qualifier	Description
GC VOA		
	V	Indicates the analyte was detected in both the sample and the associated method blank.
	I	The reported value is between the laboratory method detection limit and the laboratory practical quantitation limit.
GC Semi VOA		
	J3	Estimated value; value may not be accurate. Spike recovery or RPD outside of criteria.
	J1	Estimated value; value may not be accurate. Surrogate recovery outside of criteria.
	U	Indicates that the compound was analyzed for but not detected.
	I	The reported value is between the laboratory method detection limit and the laboratory practical quantitation limit.
Metals		
	J3	Estimated value; value may not be accurate. Spike recovery or RPD outside of criteria.
	U	Indicates that the compound was analyzed for but not detected.
	I	The reported value is between the laboratory method detection limit and the laboratory practical quantitation limit.
General Chemistry		
	J3	Estimated value; value may not be accurate. Spike recovery or RPD outside of criteria.
	U	Indicates that the compound was analyzed for but not detected.
	Q	Sample held beyond the accepted holding time.
	1	The reported value is between the laboratory method detection limit and the laboratory practical quantitation limit.

Method Blank - Batch: 400-104462

Job Number: 660-33886-1

Method: RSK-175 Preparation: N/A

Lab Sample ID: Client Matrix: Dilution: Date Analyzed: Date Prepared:	MB 400-104462/1 Water 1.0 02/26/2010 0808 N/A	Analysis Batch: Prep Batch: N/A Units: ug/L	400-104462 A	 	nstrument ID: No _ab File ID: N/. nitial Weight/Volu Final Weight/Volu njection Volume:	e Equipment Assigned A ume: 1.0 mL ume: 1.0 mL
Analyte		Resu	ult (Qual	MDL	PQL
Carbon dioxide	(as CO2)	8.00		I	7.0	50
Lab Control S Lab Control S	Sample/ Sample Duplicate Recove	ry Report - Bat	ch: 400-10446	5 2	Method: RSK-1 Preparation: N	175 /A
LCS Lab Sampl Client Matrix: Dilution: Date Analyzed: Date Prepared:	e ID: LCS 400-104462/2 Water 1.0 02/26/2010 0743 N/A	Analysis Batc Prep Batch: N Units: ug/L	h: 400-104462 I/A	In La In Fi In	strument ID: No ab File ID: N/A itial Weight/Volur nal Weight/Volun jection Volume:	D Equipment Assigned ne: 1.0 mL ne: 1.0 mL
LCSD Lab Sam Client Matrix: Dilution: Date Analyzed: Date Prepared:	ple ID: LCSD 400-104462/3 Water 1.0 02/26/2010 0755 N/A	Analysis Batc Prep Batch: N Units: ug/L	h: 400-104462 I/A	In La In Fi	strument ID: N ab File ID: N/A itial Weight/Volur nal Weight/Volun jection Volume:	No Equipment Assigned me: 1.0 mL ne: 1.0 mL
Analyte	(LCS LCS	D Limit	RPD	RPD Limit	LCS Qual LCSD Qual
Carbon dioxide	(as CO2)	104 108	80 - 120	4	50	

Method Blank - Batch: 660-90901

Lab Sample ID: MB 660-90901/1-A Client Matrix: Solid Dilution: 1.0 Date Analyzed: 02/25/2010 0349

Date Prepared: 02/22/2010 0654

Quality Control Results

Job Number: 660-33886-1

Method: 8081A Preparation: 3550B

Instrument ID: BSGJ Lab File ID: 1B24J035.D Initial Weight/Volume: 30.00 g Final Weight/Volume: 10 mL Injection Volume: 2 uL Column ID: PRIMARY

Analyte	Result	Qual	MDL	PQL
4,4'-DDD	0.50	U	0.50	3.3
4,4'-DDE	0.50	U	0.50	3.3
4,4'-DDT	0.50	U	0.50	3.3
Aldrin	0.50	U	0.50	2.0
alpha-BHC	0.14	U	0.14	1.7
beta-BHC	0.50	U	0.50	2.0
Chlordane (technical)	2.4	U	2.4	17
delta-BHC	0.50	U	0.50	2.0
Dieldrin	0.15	U	0.15	1.7
Endosulfan I	0.25	U	0.25	2.0
Endosulfan II	0.25	U	0.25	3.3
Endosulfan sulfate	0.25	U	0.25	3.3
Endrin	0.50	U	0.50	4.0
Endrin aldehyde	0.50	U	0.50	4.0
Endrin ketone	0.50	U	0.50	4.0
gamma-BHC (Lindane)	0.50	U	0.50	2.0
Heptachlor	0.50	U	0.50	2.0
Heptachlor epoxide	0.14	U	0.14	2.0
Methoxychlor	1.0	U	1.0	17
Toxaphene	29	U	29	170
Surrogate	% Rec		Acceptance Limits	
DCB Decachlorobiphenyl	81		30 - 150	
Tetrachloro-m-xylene	82		30 - 150	

Analysis Batch: 660-91299

Prep Batch: 660-90901

Units: ug/Kg

La

Lab Sample ID: LCS 660-90901/2-A

1.0

Date Analyzed: 02/25/2010 0403

Date Prepared: 02/22/2010 0654

Client Matrix: Solid

Dilution:

ab	Control	Sample -	Batch:	660-90901
----	---------	----------	--------	-----------

	Preparation: 3550B
Analysis Batch: 660-91299	Instrument ID: BSGJ
Prep Batch: 660-90901	Lab File ID: 1B24J036.D
Units: ug/Kg	Initial Weight/Volume: 30.00
	Final Weight/Volume: 10 mL
	Injection Volume: 2 uL
	Column ID: PRIMARY

Method: 8081A

Analyte	Spike Amount	Result	% Rec.	Limit	Qual
4.4'-DDD	16.7	15.1	91	62 - 130	
4,4'-DDE	16.7	14.5	87	60 - 130	
4,4'-DDT	16.7	15.2	91	35 - 142	
Aldrin	16.7	14.7	88	52 - 130	
alpha-BHC	16.7	14.8	89	58 - 130	
beta-BHC	16.7	14.9	89	56 - 130	
delta-BHC	16.7	15.8	95	48 - 130	
Dieldrin	16.7	14.3	86	60 - 130	
Endosulfan I	16.7	13.9	83	59 - 130	
Endosulfan II	16.7	14.2	85	60 - 130	
Endosulfan sulfate	16.7	15.5	93	49 - 130	
Endrin	16.7	14.5	87	57 - 130	
Endrin aldehyde	16.7	14.6	88	57 - 130	
Endrin ketone	16.7	16.4	98	42 - 136	
gamma-BHC (Lindane)	16.7	15.0	90	58 - 130	
Heptachlor	16.7	15.4	92	55 - 130	
Heptachlor epoxide	16.7	14.4	87	59 - 130	
Methoxychlor	16.7	16.4	98	37 - 133	I
Surrogate	% R	ec	Ac	ceptance Limits	
DCB Decachlorobiphenyl	83				

04/06/2010

Quality Control Results

Job Number: 660-33886-1

g

Quality Control Results

Job Number: 660-33886-1

Client: Environmental Engineering Consultant

Matrix Spike/ Matrix Spike Duplicate Recovery Report - Batch: 660-90901

Method: 8081A Preparation: 3550B

MS Lab Sample ID: Client Matrix: Dilution: Date Analyzed: Date Prepared:	660-33914-A-11-B MS Solid 1.0 02/25/2010 0657 02/22/2010 0654	Analysis Batch: 660-91299 Prep Batch: 660-90901	Instrument ID: BSGJ Lab File ID: 1B24J049.D Initial Weight/Volume: 30.20 g Final Weight/Volume: 10 mL Injection Volume: 2 uL Column ID: PRIMARY
MSD Lab Sample ID: Client Matrix: Dilution: Date Analyzed: Date Prepared:	660-33914-A-11-C MSD Solid 1.0 02/25/2010 0710 02/22/2010 0654	Analysis Batch: 660-91299 Prep Batch: 660-90901	Instrument ID: BSGJ Lab File ID: 1B24J050.D Initial Weight/Volume: 30.20 g Final Weight/Volume: 10 mL Injection Volume: 2 uL Column ID: PRIMARY

	<u>%</u> F	Rec.					
Analyte	MS	MSD	Limit	RPD	RPD Limit	MS Qual	MSD Qual
4,4'-DDD	69	75	62 - 130	9	50		
4,4'-DDE	58	62	60 - 130	6	25	J3	
4,4'-DDT	4	4	35 - 142	0	26	J3	J3
Aldrin	58	64	52 - 130	9	38		
alpha-BHC	70	73	58 - 130	3	40		
beta-BHC	57	72	56 - 130	23	40		
delta-BHC	81	90	48 - 130	10	47		
Dieldrin	70	72	60 - 130	2	30		
Endosulfan I	62	63	59 - 130	2	40		
Endosulfan II	52	55	60 - 130	5	65	J3	J3
Endosulfan sulfate	52	55	49 - 130	6	50		
Endrin	28	31	57 - 130	11	32	J3	J3
Endrin aldehyde	56	57	57 - 130	3	86	J3	
Endrin ketone	17	19	42 - 136	15	31	J3	J3
gamma-BHC (Lindane)	45	53	58 - 130	16	37	J3	J3
Heptachlor	34	51	55 - 130	42	38	J3	J3
Heptachlor epoxide	57	58	59 - 130	2	40	J3	J3
Methoxychlor	0	7	37 - 133	NC	40	J3	J3
Surrogate		MS % Rec	MSD %	Rec	Acce	ptance Limit	S
DCB Decachlorobiphenyl		43	50		3	0 - 150	

Method Blank - Batch: 660-90902

Lab Sample ID:	MB 660-90902/1-A
Client Matrix:	Water
Dilution:	1.0
Date Analyzed:	02/23/2010 1225
Date Prepared:	02/22/2010 0737

Quality Control Results

Job Number: 660-33886-1

Method: 8081A Preparation: 3510C

Instrument ID: BSGJ Lab File ID: 1B23J016.D Initial Weight/Volume: 1000 mL Final Weight/Volume: 10 mL Injection Volume: 2 uL Column ID: PRIMARY

Analyte	Result	Qual	MDL	PQL
4,4'-DDD	0.0041	U	0.0041	0.010
4,4'-DDE	0.0055	U	0.0055	0.010
4,4'-DDT	0.0032	U	0.0032	0.010
Aldrin	0.0018	U	0.0018	0.010
alpha-BHC	0.0028	U	0.0028	0.010
beta-BHC	0.0027	U	0.0027	0.010
Chlordane (technical)	0.057	U	0.057	0.50
delta-BHC	0.0028	U	0.0028	0.010
Dieldrin	0.0014	U	0.0014	0.010
Endosulfan I	0.0034	U	0.0034	0.010
Endosulfan II	0.0033	U	0.0033	0.010
Endosulfan sulfate	0.0030	U	0.0030	0.010
Endrin	0.0031	U	0.0031	0.010
Endrin aldehyde	0.0032	U	0.0032	0.010
Endrin ketone	0.0054	U	0.0054	0.10
gamma-BHC (Lindane)	0.0026	U	0.0026	0.010
Heptachlor	0.0031	U	0.0031	0.010
Heptachlor epoxide	0.0031	U	0.0031	0.010
Methoxychlor	0.0051	U	0.0051	0.010
Toxaphene	0.72	U	0.72	3.0
Surrogate	% Rec		Acceptance Limits	
DCB Decachlorobiphenyl	73		30 - 150	
i etrachioro-m-xyiene	58		30 - 150	

Analysis Batch: 660-91104

Prep Batch: 660-90902

Units: ug/L

Lab Sample ID: LCS 660-90902/2-A

Water

Client Matrix:

Lab Control Sample - Batch: 660-90902

Dilution: 1.0 Date Analyzed: 02/23/2010 1238 Date Prepared: 02/22/2010 0737	Units: ug/L		Initial Weig Final Weig Injection V Column ID	Initial Weight/Volume: 1000 mL Final Weight/Volume: 10 mL Injection Volume: 2 uL Column ID: PRIMARY		
Analyte	Spike Amount	Result	% Rec.	Limit	Qual	
4,4'-DDD	0.500	0.407	81	37 - 139		
4,4'-DDE	0.500	0.407	81	39 - 130		
4,4'-DDT	0.500	0.400	80	46 - 130		
Aldrin	0.500	0.332	66	31 - 130		
alpha-BHC	0.500	0.396	79	48 - 130		
beta-BHC	0.500	0.401	80	41 - 130		
delta-BHC	0.500	0.338	68	42 - 130		
Dieldrin	0.500	0.391	78	51 - 130		
Endosulfan I	0.500	0.383	77	40 - 130		
Endosulfan II	0.500	0.387	77	41 - 130		
Endosulfan sulfate	0.500	0.377	75	33 - 142		
Endrin	0.500	0.376	75	49 - 130		
Endrin aldehyde	0.500	0.367	73	34 - 132		
Endrin ketone	0.500	0.401	80	26 - 144		
gamma-BHC (Lindane)	0.500	0.390	78	53 - 130		
Heptachlor	0.500	0.349	70	36 - 130		
Heptachlor epoxide	0.500	0.381	76	41 - 130		
Methoxychlor	0.500	0.397	79	45 - 130		

Analysis Batch: 660-91104

Prep Batch: 660-90902

Methoxychlor	0.500	0.397	79	45 - 130	
Surrogate	%	Rec		Acceptance Limits	
DCB Decachlorobiphenyl	74			30 - 150	

Quality Control Results

Job Number: 660-33886-1

Method: 8081A Preparation: 3510C

Instrument ID: BSGJ Lab File ID: 1B23J017.D Initial Weight/Volume: 1000 mL

Client: Environmental Engineering Consultant

Matrix Spike/ Matrix Spike Duplicate Recovery Report - Batch: 660-90902

Method: 8081A Preparation: 3510C

MS Lab Sample ID: Client Matrix: Dilution: Date Analyzed: Date Prepared:	660-33904-A-2-B MS Water 1.0 02/23/2010 1318 02/22/2010 0737	Analysis Batch: 660-91104 Prep Batch: 660-90902	Instrument ID: BSGJ Lab File ID: 1B23J020.D Initial Weight/Volume: 1040 mL Final Weight/Volume: 10 mL Injection Volume: 2 uL Column ID: PRIMARY
MSD Lab Sample ID: Client Matrix: Dilution: Date Analyzed: Date Prepared:	660-33904-A-2-C MSD Water 1.0 02/23/2010 1332 02/22/2010 0737	Analysis Batch: 660-91104 Prep Batch: 660-90902	Instrument ID: BSGJ Lab File ID: 1B23J021.D Initial Weight/Volume: 1040 mL Final Weight/Volume: 10 mL Injection Volume: 2 uL Column ID: PRIMARY

	<u>%</u> F	<u>Rec.</u>					
Analyte	MS	MSD	Limit	RPD	RPD Limit	t MS Qual	MSD Qual
4,4'-DDD	88	82	37 - 139	7	39		
4,4'-DDE	82	77	39 - 130	6	18		
4,4'-DDT	236	218	46 - 130	8	27	J3	J3
Aldrin	63	58	31 - 130	8	25		
alpha-BHC	77	70	48 - 130	7	30		
beta-BHC	77	71	41 - 130	6	35		
delta-BHC	69	65	42 - 130	5	41		
Dieldrin	77	72	51 - 130	7	42		
Endosulfan I	73	68	40 - 130	8	24		
Endosulfan II	76	71	41 - 130	7	22		
Endosulfan sulfate	72	68	33 - 142	5	28		
Endrin	108	102	49 - 130	6	25		
Endrin aldehyde	69	64	34 - 132	8	34		
Endrin ketone	78	74	26 - 144	5	25		
gamma-BHC (Lindane)	72	67	53 - 130	7	26		
Heptachlor	69	65	36 - 130	6	26		
Heptachlor epoxide	70	64	41 - 130	7	31		
Methoxychlor	101	89	45 - 130	12	43		
Surrogate		MS % Rec	MSD %	Rec	Ac	ceptance Limit	S
DCB Decachlorobiphenyl		54	50			30 - 150	

Method Blank - Batch: 640-65814

Lab Sample ID: MB 640-65814/1-A Client Matrix: Water Dilution: 1.0 Date Analyzed: 02/23/2010 1715 Date Prepared: 02/19/2010 1415

Analysis Bate	ch: 640-65935
Prep Batch:	640-65814
Units: ug/L	

Quality Control Results

Job Number: 660-33886-1

Method: 8141A Preparation: 3520C

Instrument ID: SGF Lab File ID: 1B23F36.d Initial Weight/Volume: 1000 mL Final Weight/Volume: 5.0 mL Injection Volume: 1 uL Column ID: PRIMARY

Analyte	Result	Qual	MDL	PQL
Azinphos-methyl	0.33	U	0.33	1.0
Bolstar	0.095	U	0.095	1.0
Chlorpyrifos	0.11	U	0.11	1.0
Coumaphos	0.081	U	0.081	1.0
Demeton, Total	0.15	U	0.15	2.5
Diazinon	0.11	U	0.11	1.0
Dichlorvos	0.26	U	0.26	2.0
Dimethoate	0.32	U	0.32	2.0
Disulfoton	0.12	U	0.12	2.0
EPN	0.071	U	0.071	1.0
Ethoprop	0.41	U	0.41	0.50
Fensulfothion	0.17	U	0.17	5.0
Hexazinone	0.16	U	0.16	2.0
Hexazinone	0.16	U	0.16	2.0
Malathion	0.092	U	0.092	1.0
Merphos	0.13	U	0.13	1.0
Mevinphos	0.15	U	0.15	2.0
Ethyl Parathion	0.080	U	0.080	1.0
Monochrotophos	2.6	U	2.6	10
Methyl parathion	0.12	U	0.12	0.50
Naled	0.36	U	0.36	5.0
Phorate	0.16	U	0.16	1.0
Ronnel	0.13	U	0.13	1.0
Stirophos	0.084	U	0.084	1.0
Sulfotepp	0.055	Ū	0.055	0.50
Tokuthion	0.087	U	0.087	1.0
Trichloronate	0.11	U	0.11	1.0
Surrogate	% Rec		Acceptance Limits	
Triphenylphosphate	105		37 - 139	

Lab Control Sample - Batch: 640-65814

Lab Sample ID: LCS 640-65814/2-A

Client Matrix: Water

pie - Datch.	040-03014	

Dilution:1.0Date Analyzed:02/23/20102130Date Prepared:02/19/20101415	Units: ug/L		Initial Weig Final Weigl Injection Vo Column ID:	ht/Volume: 1000 ml nt/Volume: 5.0 mL plume: 1 uL PRIMARY	-
Analyte	Spike Amount	Result	% Rec.	Limit	Qual
Azinphos-methyl	2.50	2.33	93	50 - 130	
Bolstar	2.50	2.36	94	50 - 130	
Chlorpyrifos	2.50	2.53	101	50 - 130	
Coumaphos	2.50	2.82	113	50 - 130	
Demeton, Total	5.00	3.66	73		
Diazinon	2.50	2.61	105	42 - 132	
Dichlorvos	2.50	2.77	111	50 - 130	
EPN	2.50	2.94	118	50 - 130	
Ethoprop	2.50	2.64	106	50 - 130	
Fensulfothion	2.50	2.59	104	50 - 130	I I
Malathion	2.50	2.60	104	50 - 130	
Mevinphos	2.50	2.64	106	50 - 130	
Ethyl Parathion	2.50	2.70	108	49 - 134	
Monochrotophos	10.0	4.15	41	50 - 130	I J3
Methyl parathion	2.50	2.70	108	43 - 140	
Naled	10.0	8.84	88	50 - 130	
Phorate	2.50	2.37	95	50 - 130	
Ronnel	2.50	2.28	91	38 - 124	
Stirophos	2.50	2.60	104	50 - 130	
Tokuthion	2.50	2.53	101	50 - 130	
Trichloronate	2.50	2.62	105	50 - 130	

Analysis Batch: 640-65935

Prep Batch: 640-65814

Quality Control Results

Method: 8141A Preparation: 3520C

Instrument ID: SGF

Lab File ID: 2B23F54.d

Method Blank - Batch: 640-65855

Lab Sample ID:	MB 640-65855/1-A
Client Matrix:	Solid
Dilution:	1.0
Date Analyzed:	02/24/2010 0831
Date Prepared:	02/22/2010 1006

Quality	Control	Results
---------	---------	---------

Job Number: 660-33886-1

Method: 8141A Preparation: 3550B

Instrument ID: SGF Lab File ID: 1B23F63.d Initial Weight/Volume: 00030.24 g Final Weight/Volume: 10.0 mL 1 uL Injection Volume: Column ID: PRIMARY

Analyte	Result	Qual	MDL	PQL
Azinphos-methyl	4.4	U	4.4	65
Bolstar	8.4	U	8.4	33
Chlorpyrifos	8.3	U	8.3	33
Coumaphos	8.5	U	8.5	330
Demeton, Total	13	U	13	82
Diazinon	8.7	U	8.7	33
Dichlorvos	17	U	17	65
Dimethoate	9.9	U	9.9	65
Disulfoton	11	U	11	65
EPN	9.0	U	9.0	33
Ethoprop	15	U	15	17
Fensulfothion	9.9	U	9.9	330
Hexazinone	7.6	U	7.6	33
Hexazinone	7.6	U	7.6	33
Malathion	8.9	U	8.9	33
Merphos	8.2	U	8.2	33
Mevinphos	11	U	11	65
Ethyl Parathion	8.7	Ū	8.7	33
Monochrotophos	84	U	84	330
Methyl parathion	5.4	U	5.4	17
Naled	5.2	Ū	5.2	330
Phorate	11	U	11	33
Ronnel	7.9	Ū	7.9	33
Stirophos	8.8	U	8.8	33
Sulfotepp	5.3	Ū	5.3	17
Tokuthion	7.6	U	7.6	33
Trichloronate	8.1	U	8.1	330
Surrogate	% Rec		Acceptance Limit	S
Triphenylphosphate	94		35 - 134	

Analysis Batch: 640-65935

Prep Batch: 640-65855

Units: ug/Kg

Lab Control Sample/ Lab Control Sample Duplicate Recovery Report - Batch: 640-65855

Method: 8141A Preparation: 3550B

LCS Lab Sample II Client Matrix: Dilution: Date Analyzed: Date Prepared:	D: LCS 640-65855/2-A Solid 1.0 02/24/2010 1004 02/22/2010 1006	Analysis Batch: 640-65935 Prep Batch: 640-65855 Units: ug/Kg	Instrument ID: SGF Lab File ID: 1B23F69.d Initial Weight/Volume: 00030.07 g Final Weight/Volume: 10.0 mL Injection Volume: 1 uL Column ID: PRIMARY
LCSD Lab Sample Client Matrix: Dilution: Date Analyzed: Date Prepared:	ID: LCSD 640-65855/3-A Solid 1.0 02/24/2010 1018 02/22/2010 1006	Analysis Batch: 640-65935 Prep Batch: 640-65855 Units: ug/Kg	Instrument ID: SGF Lab File ID: 1B23F70.d Initial Weight/Volume: 00030.36 g Final Weight/Volume: 10.0 mL Injection Volume: 1 uL Column ID: PRIMARY

		<u>% Rec.</u>					
Analyte	LCS	LCSD	Limit	RPD	RPD Limit	LCS Qual	LCSD Qual
Azinphos-methyl	102	105	50 - 130	2	50		
Bolstar	74	80	50 - 130	1	50		
Chlorpyrifos	70	76	31 - 130	7	50		
Coumaphos	87	88	50 - 130	1	50	I	I
Demeton, Total	65	70		7			
Diazinon	68	73	20 - 100	6	50		
Dichlorvos	76	82	50 - 130	7	50		
EPN	103	109	50 - 130	4	50		
Ethoprop	68	75	50 - 130	8	50		
Fensulfothion	102	107	50 - 130	4	50	I	I
Malathion	72	77	50 - 130	6	50		
Mevinphos	72	78	50 - 130	4	50		
Ethyl Parathion	80	87	22 - 116	8	50		
Monochrotophos	70	76	50 - 130	8	50		
Methyl parathion	79	84	20 - 107	3	50		
Naled	53	53	50 - 130	1	50		
Phorate	66	72	50 - 130	0	50		
Ronnel	69	74	38 - 130	6	50		
Stirophos	79	85	50 - 130	2	50		
Tokuthion	71	78	50 - 130	9	50		
Trichloronate	68	75	50 - 130	1	50	I	I

Matrix Spike Duplicate Recovery Report - Batch: 640-65855

Matrix Spike/

Method: 8141A Preparation: 3550B

MS Lab Sample ID: Client Matrix: Dilution: Date Analyzed: Date Prepared:	400-45631-C-1-A MS Solid 1.0 02/24/2010 0936 02/22/2010 1006	Analysis Batch: 640-65935 Prep Batch: 640-65855	Instrument ID: SGF Lab File ID: 1B23F67.d Initial Weight/Volume: 00030.26 g Final Weight/Volume: 10.0 mL Injection Volume: 1 uL Column ID: PRIMARY
MSD Lab Sample ID: Client Matrix: Dilution: Date Analyzed: Date Prepared:	400-45631-C-1-B MSD Solid 1.0 02/24/2010 0950 02/22/2010 1006	Analysis Batch: 640-65935 Prep Batch: 640-65855	Instrument ID: SGF Lab File ID: 1B23F68.d Initial Weight/Volume: 00030.25 g Final Weight/Volume: 10.0 mL Injection Volume: 1 uL Column ID: PRIMARY

<u>% Rec.</u>							
Analyte	MS	MSD	Limit	RPD	RPD Limit	MS Qual	MSD Qual
Azinphos-methyl	94	61	50 - 130	42	50		
Bolstar	74	58	50 - 130	34	50		
Chlorpyrifos	70	55	31 - 130	23	50		
Coumaphos	93	64	50 - 130	37	50	I	T
Demeton, Total	52	35	50 - 130	38			J3
Diazinon	62	46	20 - 100	29	50		
Dichlorvos	56	36	50 - 130	44	50		I J3
EPN	106	78	50 - 130	31	50		
Ethoprop	57	40	50 - 130	35	50		J3
Fensulfothion	58	55	50 - 130	6	50	I	T
Malathion	69	46	50 - 130	40	50		J3
Mevinphos	23	24	50 - 130	4	50	I J3	I J3
Ethyl Parathion	80	56	22 - 116	35	50		
Monochrotophos	0	0	50 - 130	NC	50	U J3	U J3
Methyl parathion	72	49	20 - 107	43	50		
Naled	36	20	50 - 130	63	50	I J3	I J3
Phorate	56	40	50 - 130	40	50		J3
Ronnel	67	51	38 - 130	26	50		
Stirophos	76	52	50 - 130	38	50		
Tokuthion	70	58	50 - 130	18	50		
Trichloronate	67	55	50 - 130	25	50	I	I

Me

Lab Sample ID: MB 660-90999/1-A

1.0 Date Analyzed: 03/05/2010 0144 Date Prepared: 02/23/2010 1625

Client Matrix: Water

Dilution:

ethod Blank - Batch: 660-90999	
--------------------------------	--

Method: 8151A Preparation: 8151A

: BSGJ
1C04J031.D
Volume: 1000 mL
/olume: 10 mL
me: 2 uL
PRIMARY

Analyte	Result	Qual	MDL	PQL
2,4,5-T	1.0	U	1.0	5.0
2,4-D	1.0	U	1.0	5.0
2,4-DB	1.0	U	1.0	5.0
Dalapon	25	U	25	120
Dicamba	0.25	U	0.25	1.2
Dichlorprop	1.0	U	1.0	6.0
Dinoseb	1.0	U	1.0	6.0
MCPA	34	U	34	120
MCPP	35	U	35	120
Pentachlorophenol	0.085	U	0.085	1.0
Picloram	1.0	U	1.0	5.0
Silvex (2,4,5-TP)	1.0	U	1.0	5.0
Surrogate	% Rec		Acceptance Limits	;
2,4-Dichlorophenylacetic acid	59		33 - 120	

Analysis Batch: 660-91479

Prep Batch: 660-90999

Units: ug/L

Quality Control Results

Job Number: 660-33886-1

Lab Control Sample/ Lab Control Sample Duplicate Recovery Report - Batch: 660-90999

Method: 8151A Preparation: 8151A

LCS Lab Sample II	D: LCS 660-90999/2-A	Analysis Batch: 660-91479	Instrument ID: BSGJ
Client Matrix:	Water	Prep Batch: 660-90999	Lab File ID: 1C04J032.D
Dilution:	1.0	Units: ug/L	Initial Weight/Volume: 1000 mL
Date Analyzed:	03/05/2010 0202	-	Final Weight/Volume: 10 mL
Date Prepared:	02/23/2010 1625		Injection Volume: 2 uL
			Column ID: PRIMARY
LCSD Lab Sample	ID: LCSD 660-90999/3-A	Analysis Batch: 660-91479	Instrument ID: BSGJ
Client Matrix:	Water	Prep Batch: 660-90999	Lab File ID: 1C04J033.D
Dilution:	1.0	Units: ug/L	Initial Weight/Volume: 1000 mL
Date Analyzed:	03/05/2010 0219	-	Final Weight/Volume: 10 mL
Date Prepared:	02/23/2010 1625		Injection Volume: 2 uL
-			Column ID: PRIMARY
		% Rec	

<u>/// Nec.</u>							
Analyte	LCS	LCSD	Limit	RPD	RPD Limit	LCS Qual	LCSD Qual
2,4,5-T	106	101	50 - 130	5	48		
2,4-D	114	104	60 - 130	9	78		
2,4-DB	153	141	10 - 181	8	43		
Dalapon	21	70	10 - 228	107	68		J3
Dicamba	88	85	24 - 150	4	46		
Dichlorprop	84	78	13 - 130	7	95		
Dinoseb	37	14	10 - 130	94	115		
MCPA	458	369	10 - 158	21	28	J3	J3
MCPP	88	78	10 - 214	12	78		
Pentachlorophenol	67	64	25 - 134	6	34		
Picloram	112	105	10 - 150	7	56		
Silvex (2,4,5-TP)	100	96	33 - 130	5	66		

Method Blank - Batch: 660-91293

Lab Sample ID: MB 660-91293/1-A Client Matrix: Solid Dilution: 1.0 Date Analyzed: 03/07/2010 1518 Date Prepared: 03/02/2010 1410

Quality Control Results

Job Number: 660-33886-1

Method: 8151A Preparation: 8151A

Instrument ID: BSGJ Lab File ID: 1C07J012.D Initial Weight/Volume: 30.00 g Final Weight/Volume: 10 mL Injection Volume: 2 uL Column ID: PRIMARY

Analyte	Result	Qual	MDL	PQL
2,4,5-T	10	U	10	50
2,4-D	1.6	U	1.6	8.3
2,4-DB	6.4	U	6.4	8.3
Dalapon	23	U	23	2000
Dicamba	12	U	12	50
Dichlorprop	25	U	25	100
Dinoseb	8.3	U	8.3	30
MCPA	740	U	740	2000
MCPP	400	U	400	2000
Pentachlorophenol	5.0	U	5.0	17
Picloram	1.2	U	1.2	3.3
Silvex (2,4,5-TP)	10	U	10	50
Surrogate	% Rec		Acceptance Limit	S
2 4-Dichlorophenylacetic acid	59		10 - 135	

Analysis Batch: 660-91563

Prep Batch: 660-91293

Units: ug/Kg

2,4-Dichlorophenylacetic acid

Lab Control Sample - Batch: 660-91293

Lab Sample ID: LCS 660-91293/2-A Analysis Batch: 660-91563 Instrument ID: BSGJ Client Matrix: Solid Prep Batch: 660-91293 Lab File ID: 1C07J013.D Dilution: 1.0 Units: ug/Kg Initial Weight/Volume: 30.00 g Date Analyzed: 03/07/2010 1535 Final Weight/Volume: 10 mL Date Prepared: 03/02/2010 1410 Injection Volume: 2 uL Column ID: PRIMARY

Analyte	Spike Amount	Result	% Rec.	Limit	Qual
2,4,5-T	83.3	41.4	50	27 - 168	
2,4-D	83.3	31.7	38	26 - 159	
2,4-DB	83.3	57.9	69	10 - 181	
Dalapon	83.3	90.3	108	10 - 213	
Dicamba	83.3	78.2	94	29 - 145	
Dichlorprop	83.3	58.9	71	28 - 130	
Dinoseb	83.3	8.3	5	10 - 130	J3
MCPA	8330	3190	38	29 - 134	
MCPP	8330	4830	58	13 - 157	
Pentachlorophenol	83.3	51.5	62	16 - 132	
Picloram	83.3	72.9	88	10 - 150	
Silvex (2,4,5-TP)	83.3	54.5	65	32 - 134	

10 - 135

Method: 8151A Preparation: 8151A

Quality Control Results

Job Number: 660-33886-1

Client: Environmental Engineering Consultant

Matrix Spike/ Matrix Spike Duplicate Recovery Report - Batch: 660-91293

Method: 8151A Preparation: 8151A

MS Lab Sample ID: Client Matrix: Dilution: Date Analyzed: Date Prepared:	660-33914-A-11-F MS Solid 1.0 03/08/2010 2215 03/02/2010 1410	Analysis Batch: 660-91563 Prep Batch: 660-91293	Instrument ID: BSGJ Lab File ID: 1C08J020.D Initial Weight/Volume: 29.58 g Final Weight/Volume: 10 mL Injection Volume: 2 uL Column ID: PRIMARY
MSD Lab Sample ID: Client Matrix: Dilution: Date Analyzed: Date Prepared:	660-33914-A-11-G MSD Solid 1.0 03/08/2010 2233 03/02/2010 1410	Analysis Batch: 660-91563 Prep Batch: 660-91293	Instrument ID: BSGJ Lab File ID: 1C08J021.D Initial Weight/Volume: 29.58 g Final Weight/Volume: 10 mL Injection Volume: 2 uL Column ID: PRIMARY

	<u>% Re</u>	<u>ec.</u>					
Analyte	MS	MSD	Limit	RPD	RPD Limit	MS Qual	MSD Qual
2,4,5-T	110	110	27 - 168	0	59		
2,4-D	93	91	26 - 159	3	47		
2,4-DB	175	191	10 - 181	9	40		J3
Dalapon	0	0	10 - 213	NC	40	J3	J3
Dicamba	99	106	29 - 145	7	40		
Dichlorprop	103	117	28 - 130	12	40		
Dinoseb	117	143	10 - 130	20	50		J3
MCPA	102	107	29 - 134	5	50		
MCPP	111	134	13 - 157	19	50		
Pentachlorophenol	118	147	16 - 132	22	40		J3
Picloram	18	17	10 - 150	10	40		
Silvex (2,4,5-TP)	154	178	32 - 134	14	51	J3	J3

Method Blank - Batch: 660-90828

Lab Sample ID: MB 660-90828/1-A

1.0

Date Analyzed: 02/19/2010 1520

Date Prepared: 02/18/2010 1533

Client Matrix: Solid

Dilution:

ch: 660-90828

Method:	601	0B
Preparat	ion:	3050B

Instrument ID: ICPA Lab File ID: 10B19A Initial Weight/Volume: 1.00 g Final Weight/Volume: 50 mL

Analyte	Result	Qual	MDL	PQL
Aluminum	5.8	U	5.8	20
Arsenic	0.23	U	0.23	0.50
Boron	0.59	U	0.59	5.0
Barium	0.16	U	0.16	1.0
Calcium	15	U	15	50
Cadmium	0.087	U	0.087	0.50
Cobalt	0.19	U	0.19	1.0
Chromium	0.17	U	0.17	1.0
Copper	0.50	U	0.50	2.0
Iron	3.0	U	3.0	5.0
Magnesium	6.8	U	6.8	50
Manganese	0.21	U	0.21	1.0
Sodium	18	U	18	50
Lead	0.15	U	0.15	0.50
Strontium	0.098	U	0.098	1.0
Titanium	0.30	U	0.30	1.0
Vanadium	0.11	U	0.11	1.0
Zinc	0.50	U	0.50	2.0

Analysis Batch: 660-90852

Prep Batch: 660-90828

Units: mg/Kg

Quality Control Results
Lab Control Sample - Batch: 660-90828

Lab Sample ID: LCS 660-90828/2-A Client Matrix: Solid Dilution: 1.0 Date Analyzed: 02/19/2010 1526 Date Prepared: 02/18/2010 1533

4	Analysis Batch: 660-90852
	Prep Batch: 660-90828
	Units: mg/Kg

Quality Control Results

Job Number: 660-33886-1

Method: 6010B Preparation: 3050B

Instrument ID: ICPA Lab File ID: 10B19A Initial Weight/Volume: 1.00 g Final Weight/Volume: 50 mL

Analyte	Spike Amount	Result	% Rec.	Limit	Qual
Aluminum	50.0	48.6	97	75 - 125	
Arsenic	50.0	50.1	100	75 - 125	
Boron	50.0	48.5	97	75 - 125	
Barium	50.0	50.1	100	75 - 125	
Calcium	50.0	53.2	106	75 - 125	
Cadmium	50.0	52.8	106	75 - 125	
Cobalt	50.0	49.6	99	75 - 125	
Chromium	49.5	49.8	101	75 - 125	
Copper	50.0	49.8	100	75 - 125	
Iron	50.0	51.0	102	75 - 125	
Magnesium	50.0	48.9	98	75 - 125	
Manganese	50.0	51.9	104	75 - 125	
Sodium	500	495	99	75 - 125	
Lead	50.0	52.1	104	75 - 125	
Strontium	50.0	51.5	103	75 - 125	
Titanium	50.0	50.7	101	75 - 125	
Vanadium	50.0	49.9	100	75 - 125	
Zinc	50.0	51.5	103	75 - 125	

Job Number: 660-33886-1

Client: Environmental Engineering Consultant

Matrix Spike/ Matrix Spike Duplicate Recovery Report - Batch: 660-90828

Method: 6010B Preparation: 3050B

MS Lab Sample ID: Client Matrix: Dilution: Date Analyzed: Date Prepared:	660-33889-B-1-B MS Solid 1.0 02/19/2010 1544 02/18/2010 1533	Analysis Batch: 660-90852 Prep Batch: 660-90828	Instrument ID: ICPA Lab File ID: 10B19A Initial Weight/Volume: 1.03 g Final Weight/Volume: 50 mL
MSD Lab Sample ID:	660-33889-B-1-C MSD	Analysis Batch: 660-90852	Instrument ID: ICPA
Client Matrix:	Solid	Prep Batch: 660-90828	Lab File ID: 10B19A
Dilution:	1.0		Initial Weight/Volume: 1.00 g
Date Analyzed:	02/19/2010 1550		Final Weight/Volume: 50 mL
Date Prepared:	02/18/2010 1533		

<u>% Rec.</u>							
Analyte	MS	MSD	Limit	RPD	RPD Limit	MS Qual	MSD Qual
Aluminum	153	490	75 - 125	8	20	J3	J3
Arsenic	78	76	75 - 125	1	20		
Boron	76	75	75 - 125	2	20		
Barium	78	79	75 - 125	3	20		
Calcium	-2840	1750	75 - 125	8	20	J3	J3
Cadmium	77	75	75 - 125	0	20		
Cobalt	73	71	75 - 125	0	20	J3	J3
Chromium	73	73	75 - 125	2	20	J3	J3
Copper	79	78	75 - 125	2	20		
Iron	-91	107	75 - 125	10	20	J3	
Magnesium	53	62	75 - 125	3	20	J3	J3
Manganese	75	76	75 - 125	3	20		
Sodium	81	86	75 - 125	5	20		
Lead	77	76	75 - 125	1	20		
Strontium	71	80	75 - 125	5	20	J3	
Titanium	74	78	75 - 125	5	20	J3	
Vanadium	75	75	75 - 125	2	20		
Zinc	72	71	75 - 125	2	20	J3	J3

Zinc

Client: Environmental Engineering Consultant

Method Blank - Batch: 660-91336

Lab Sample ID:	MB 660-913	36/1-A
Client Matrix:	Water	
Dilution:	1.0	
Date Analyzed:	03/04/2010	1433
Date Prepared:	03/03/2010	1132

Date Prepared: 03/03/2010 1132				
Analyte	Result	Qual	MDL	PQL
Aluminum	0.050	U	0.050	0.20
Arsenic	0.0040	U	0.0040	0.010
Boron	0.010	U	0.010	0.050
Potassium	0.19	U	0.19	1.0
Barium	0.0020	U	0.0020	0.010
Calcium	0.10	U	0.10	0.50
Cadmium	0.0010	U	0.0010	0.0040
Cobalt	0.0020	U	0.0020	0.010
Chromium	0.0020	U	0.0020	0.010
Copper	0.0029	U	0.0029	0.010
ron	0.050	U	0.050	0.20
Vagnesium	0.020	U	0.020	0.080
Manganese	0.0010	U	0.0010	0.0040
Sodium	0.31	U	0.31	0.50
₋ead	0.0020	U	0.0020	0.010
Strontium	0.0010	U	0.0010	0.0050
Titanium	0.0020	U	0.0020	0.010
Vanadium	0.0025	U	0.0025	0.010

0.0050

Ū

Analysis Batch: 660-91401

Prep Batch: 660-91336

Units: mg/L

Job Number: 660-33886-1

Method: 6010B Preparation: 3005A **Total Recoverable**

Instrument ID: ICPA Lab File ID: 10C04A Initial Weight/Volume: 50 mL Final Weight/Volume: 50 mL

0.0050

0.020

Lab Control Sample - Batch: 660-91336

Lab Sample ID: LCS 660-91336/2-A Client Matrix: Water Dilution: 1.0 Date Analyzed: 03/04/2010 1439 Date Prepared: 03/03/2010 1132

Analysis Batch: 660-91401 Prep Batch: 660-91336 Units: mg/L

Quality Control Results

Job Number: 660-33886-1

Method: 6010B Preparation: 3005A **Total Recoverable**

Instrument ID: ICPA Lab File ID: 10C04A Initial Weight/Volume: 50 mL Final Weight/Volume: 50 mL

Analyte	Spike Amount	Result	% Rec.	Limit	Qual
Aluminum	1.00	0.966	97	75 - 125	
Arsenic	1.00	0.969	97	75 - 125	
Boron	1.00	0.963	96	75 - 125	
Potassium	10.0	9.38	94	75 - 125	
Barium	1.00	1.00	100	75 - 125	
Calcium	1.00	0.968	97	75 - 125	
Cadmium	1.00	0.969	97	75 - 125	
Cobalt	1.00	0.926	93	75 - 125	
Chromium	0.990	0.945	95	75 - 125	
Copper	1.00	1.01	101	75 - 125	
Iron	1.00	0.969	97	75 - 125	
Magnesium	1.00	0.939	94	75 - 125	
Manganese	1.00	0.982	98	75 - 125	
Sodium	10.0	10.3	103	75 - 125	
Lead	1.00	0.969	97	75 - 125	
Strontium	1.00	1.02	102	75 - 125	
Titanium	1.00	0.999	100	75 - 125	
Vanadium	1.00	0.970	97	75 - 125	
Zinc	1.00	0.926	93	75 - 125	

Job Number: 660-33886-1

Client: Environmental Engineering Consultant

Matrix Spike/ Matrix Spike Duplicate Recovery Report - Batch: 660-91336

Method: 6010B Preparation: 3005A Total Recoverable

MS Lab Sample ID: Client Matrix:	660-33998-F-1-B MS Water	Analysis Batch: 660-91401 Prep Batch: 660-91336	Instrument ID: ICPA Lab File ID: 10C04A
Dilution:	1.0		Initial Weight/Volume: 50 mL
Date Analyzed:	03/04/2010 1457		Final Weight/Volume: 50 mL
Date Prepared:	03/03/2010 1132		
MSD Lab Sample ID:	660-33998-F-1-C MSD	Analysis Batch: 660-91401	Instrument ID: ICPA
Client Matrix:	Water	Prep Batch: 660-91336	Lab File ID: 10C04A
Dilution:	1.0		Initial Weight/Volume: 50 mL
Date Analyzed:	03/04/2010 1503		Final Weight/Volume: 50 mL
Date Prepared:	03/03/2010 1132		

	<u>%</u>	Rec.					
Analyte	MS	MSD	Limit	RPD	RPD Limit	MS Qual	MSD Qual
Aluminum	154	154	75 - 125	0	20	J3	J3
Arsenic	96	96	75 - 125	1	20		
Boron	96	96	75 - 125	1	20		
Potassium	101	102	75 - 125	1	20		
Barium	99	99	75 - 125	1	20		
Calcium	88	33	75 - 125	1	20		J3
Cadmium	93	93	75 - 125	0	20		
Cobalt	89	89	75 - 125	0	20		
Chromium	92	92	75 - 125	0	20		
Copper	101	101	75 - 125	1	20		
Iron	98	98	75 - 125	0	20		
Magnesium	91	89	75 - 125	1	20		
Manganese	95	95	75 - 125	0	20		
Sodium	107	108	75 - 125	0	20		
Lead	94	94	75 - 125	0	20		
Strontium	100	101	75 - 125	1	20		
Titanium	98	98	75 - 125	0	20		
Vanadium	95	95	75 - 125	0	20		
Zinc	88	88	75 - 125	0	20		

TestAmerica Tampa

Quality Control Results

Method: 7470A

Lab File ID:

Preparation: 7470A

Instrument ID: PS200II

N/A

Initial Weight/Volume: 25 mL

Job Number: 660-33886-1

mL

Client: Environmental Engineering Consultant

Method Blank - Batch: 660-91270

Lab Sample ID: MB 660-91270/1-A

1.0

Water

Client Matrix:

Dilution:

Date

Date Analyzed: 03/02/2010 1243 Date Prepared: 03/02/2010 0900					F	Final Weight/Volume: 25 mL			
Analyte			Result	t	Qual	MDL	PQL		
Mercury			0.0000	072	U	0.000072	0.00020		
Lab Control Samp	le - Batch: 660-912	270			N F	/lethod: 7470A Preparation: 7470/	A		
Lab Sample ID: LCS Client Matrix: Wate Dilution: 1.0 Date Analyzed: 03/02 Date Prepared: 03/02	660-91270/2-A er 2/2010 1246 2/2010 0900	Analy Prep Units:	rsis Batch: Batch: 660 : mg/L	660-91291 D-91270	lı L F	nstrument ID: PS200 .ab File ID: N/A nitial Weight/Volume: ⁻ inal Weight/Volume:	II 25 mL 25 mL		
Analyte		Spike	Amount	Result	% Rec.	. Limit	Qual		
Mercury		0.001	00	0.000948	95	80 - 120			
Matrix Spike/ Matrix Spike Dupli	icate Recovery Rep	oort - Bat	ch: 660-9	91270	N F	/lethod: 7470A Preparation: 7470/	A		
MS Lab Sample ID: Client Matrix: Dilution: Date Analyzed: Date Prepared:	660-33886-6 Water 1.0 03/02/2010 1256 03/02/2010 0900	Analy Prep	sis Batch: Batch: 660	660-91291 0-91270	lı L II F	nstrument ID: PS20 .ab File ID: N/A nitial Weight/Volume: inal Weight/Volume:	0II 25 mL 25 mL		
MSD Lab Sample ID: Client Matrix: Dilution: Date Analyzed: Date Prepared:	660-33886-6 Water 1.0 03/02/2010 1258 03/02/2010 0900	Analy Prep	sis Batch: Batch: 660	660-91291 D-91270	lı L F	nstrument ID: PS200 ab File ID: N/A nitial Weight/Volume: inal Weight/Volume:	ll 25 mL 25 mL		
Analyte		<u>%</u> MS	<u>Rec.</u> MSD	Limit	RPD	RPD Limit MS	S Qual MSD Qual		
Mercury		96	94	80 - 120	2	20			

Analysis Batch: 660-91291

Prep Batch: 660-91270

Units: mg/L

TestAmerica Tampa

Quality Control Results

Job Number: 660-33886-1

Method: 7471A Preparation: 7471A

Instrument ID: PS200II

Client: Environmental Engineering Consultant

Lab Sample ID: MB 660-91390/1-A

Client Matrix: Solic Dilution: 1.0 Date Analyzed: 03/0 Date Prepared: 03/0	4/2010 1357 4/2010 1100	Prep Batch: 660-91390 Units: mg/Kg				Lab File ID: N/A Initial Weight/Volume: 0.30 Final Weight/Volume: 50 m		
Analyte			Result		Qual	MDL	PQ	L
Mercury			0.0075		U	0.0075	0.02	20
Lab Control Samp	ble - Batch: 660-9139	0				Method: 7471 Preparation: 7	A 471A	
Lab Sample ID: LCS Client Matrix: Solic Dilution: 1.0 Date Analyzed: 03/0 Date Prepared: 03/0	660-91390/2-A 1 4/2010 1400 4/2010 1100	Analysis Prep Bate Units: m	Batch: 6 ch: 660- g/Kg	60-91412 91390		Instrument ID: P Lab File ID: N/ Initial Weight/Vol Final Weight/Volu	S200II /A ume: 0.30 ume: 50 mi	9 L
Analyte		Spike Arr	nount	Result	% Re	ec. Limit		Qual
Mercury		0.167		0.188	113	80 - 1	120	
Matrix Spike/ Matrix Spike Dupl	icate Recovery Repo	rt - Batch:	660-91	390		Method: 7471 Preparation: 7	A 471A	
NS Lab Sample ID: Client Matrix: Dilution: Date Analyzed: Date Prepared:	660-34106-A-2-B MS Solid 1.0 03/04/2010 1449 03/04/2010 1100	Analysis Prep Bate	Analysis Batch: 660-91412 Prep Batch: 660-91390			Instrument ID: PS200II Lab File ID: N/A Initial Weight/Volume: 0.30 g Final Weight/Volume: 50 mL		g nL
MSD Lab Sample ID: Client Matrix: Dilution: Date Analyzed: Date Prepared:	660-34106-A-2-C MSD Solid 1.0 03/04/2010 1451 03/04/2010 1100	Analysis Batch: 660-91412 Prep Batch: 660-91390			Instrument ID: P Lab File ID: N Initial Weight/Vol Final Weight/Vol	S200II /A ume: 0.30 ume: 50 ml	g L	
		<u>% Rec</u>	<u>).</u>					
Analyte		MS	MSD	Limit	RPI	J RPD Limit	MS Qual	MSD Qual
vici cui y		109	130	00 - 120	14	20		00

Analysis Batch: 660-91412

Method Blank - Batch: 660-91390

Method Blank - Batch: 660-90879

Client: Environmental Engineering Consultant

Quality Control Results

Job Number: 660-33886-1

Method: 180.1 Preparation: N/A

Lab Sample ID: Client Matrix: Dilution: Date Analyzed: Date Prepared:	MB 660-90879/3 Water 1.0 02/18/2010 0930 N/A	Analysis Batch: Prep Batch: N/A Units: NTU	660-90879		Instrument ID: Lab File ID: Initial Weight/V Final Weight/V	No Equipm N/A /olume: /olume: 30	nent Assigned mL
Analyte		Result		Qual	PQL		PQL
Turbidity		0.10		U	0.10	(0.10
Lab Control S	Sample - Batch: 660-	90879			Method: 180 Preparation).1 : N/A	
Lab Sample ID: Client Matrix: Dilution: Date Analyzed: Date Prepared:	LCS 660-90879/4 Water 1.0 02/18/2010 0930 N/A	Analysis Batch: Prep Batch: N/A Units: NTU	660-90879		Instrument ID: Lab File ID: Initial Weight/\ Final Weight/\	No Equipm N/A /olume: /olume: 30	nent Assigned mL
Analyte		Spike Amount	Result	% Re	ec. Lii	nit	Qual
Turbidity		40.0	39.9	100	90) - 110	
Duplicate - B	atch: 660-90879				Method: 180 Preparation).1 : N/A	
Lab Sample ID: Client Matrix: Dilution: Date Analyzed: Date Prepared:	660-33886-6 Water 1.0 02/18/2010 0930 N/A	Analysis Batch: 66 Prep Batch: N/A Units: NTU	0-90879		Instrument ID: Lab File ID: Initial Weight/\ Final Weight/\	No Equipm N/A /olume: /olume: 30	nent Assigned mL
Analyte		Sample Result/Q	ual R	esult	RPD	Limit	Qual
Turbidity		4.9	4.	.77	3	20	

Job Number: 660-33886-1

Client: Environmental Engineering Consultant

Method Blank - Batch: 680-161659

Lab Sample ID: MB 680-161659/1-A

1.0

Date Analyzed: 02/26/2010 1111

Date Prepared: 02/25/2010 1234

Client Matrix: Solid

Dilution:

Instrume	nt ID:	KONEL	AB1	
Lab File	ID:	N/A		
Initial We	eight/\	/olume:	20.05	5 g
Final We	ight/V	'olume:	100	mL

Method: 350.1 Preparation: 3-154

Analyte	Result	Qual	MDL	PQL
Ammonia (as N)	0.13	U	0.13	0.30

Analysis Batch: 680-161811

Prep Batch: 680-161659

Units: mg/Kg

Lab Control Sample - Batch: 680-161659

Method: 350.1 Preparation: 3-154

Lab Sample ID:	LCS 680-161659/2-A	Analysis Batch: 680-161811	Instrument ID: KONELAB1
Client Matrix:	Solid	Prep Batch: 680-161659	Lab File ID: N/A
Dilution:	1.0	Units: mg/Kg	Initial Weight/Volume: 19.95 g
Date Analyzed:	02/26/2010 1111		Final Weight/Volume: 100 mL
Date Prepared:	02/25/2010 1234		

Analyte	Spike Amount	Result	% Rec.	Limit	Qual
Ammonia (as N)	5.01	4.94	99	75 - 125	
Matrix Spike/ Matrix Spike Duplicate Recovery Repo	61659	Method: Preparat	350.1 ion: 3-154		

Matrix Spike Duplicate Recovery Report - Batch: 680-161659

MS Lab Sample ID: Client Matrix: Dilution: Date Analyzed: Date Prepared:	660-33863-D-2-B MS Solid 10 02/26/2010 1159 02/25/2010 1234	Analysis Batch: 680-161811 Prep Batch: 680-161659	Instrument ID: KONELAB1 Lab File ID: N/A Initial Weight/Volume: 19.99 g Final Weight/Volume: 100 mL
MSD Lab Sample ID:	660-33863-D-2-C MSD	Analysis Batch: 680-161811 Pren Batch: 680-161659	Instrument ID: KONELAB1

Client Matrix:	Solid	Prep Batch: 680-1616	659	Lab File ID: N/A
Dilution:	10			Initial Weight/Volume: 20.00 g
Date Analyzed:	02/26/2010 1159			Final Weight/Volume: 100 mL
Date Prepared:	02/25/2010 1234			

	<u>% Re</u>	<u>ec.</u>					
Analyte	MS	MSD	Limit	RPD	RPD Limit	MS Qual	MSD Qual
Ammonia (as N)	42	73	75 - 125	3	30	J3	J3

Client: Environmental Engineering Consultant

Job Number: 660-33886-1

Duplicate - Batch: 680-161659

Method: 350.1 Preparation: 3-154

Lab Sample ID: Client Matrix: Dilution: Date Analyzed: Date Prepared:	660-33914-D-8-B DU Solid 2.0 02/26/2010 1148 02/25/2010 1234	Analysis Batch: 680-161811 Prep Batch: 680-161659 Units: mg/Kg		Instrument ID: I Lab File ID: I Initial Weight/Vo Final Weight/Vo	KONELAB1 N/A olume: 20.06 olume: 100 i	g nL
Analyte		Sample Result/Qual	Result	RPD	Limit	Qual
Ammonia (as N)	9.3	11.1	17	30	

Method Blank - Batch: 660-91191

Job Number: 660-33886-1

Quality Control Results

Method: 350.1 Preparation: N/A

Lab Sample ID:MB 660-91191/11Client Matrix:WaterDilution:1.0Date Analyzed:02/26/2010Date Prepared:N/A	Analysis Batch: Prep Batch: N/A Units: mg/L	660-91191	Instrur Lab Fi Initial V Final V	nent ID: LACHA [*] le ID: N/A Veight/Volume: * Veight/Volume: *	T 10 mL 10 mL
Analyte	Result		Qual	MDL	PQL
Ammonia (as N)	0.010		U	0.010	0.020
Lab Control Sample - Batch: 660-9119 ⁴	I		Metho Prepa	od: 350.1 wation: N/A	
Lab Sample ID: LCS 660-91191/12 Client Matrix: Water Dilution: 1.0 Date Analyzed: 02/26/2010 1425 Date Prepared: N/A	Analysis Batch: Prep Batch: N/A Units: mg/L	660-91191	Instrur Lab Fi Initial V Final V	nent ID: LACHA le ID: N/A Weight/Volume: Veight/Volume:	T 10 mL 10 mL
Analyte	Spike Amount	Result	% Rec.	Limit	Qual
Ammonia (as N)	0.500	0.477	95	90 - 110	

Nitrite as N

Client: Environmental Engineering Consultant

Method Blank - Batch: 660-90906

Lab Sample ID:MB 660-90906/1Client Matrix:WaterDilution:1.0Date Analyzed:02/18/2010 1002Date Prepared:N/A

Quality	Control	Results
---------	---------	---------

Job Number: 660-33886-1

Method: 353.2 Preparation: N/A

Instrument ID: 1	No Equ	ipme	ent Assigned
Lab File ID: 1	N/A		
Initial Weight/Vo	olume:	10	mL
Final Weight/Vo	olume:	10	mL

Analyte	Result	Qual	MDL	PQL
Nitrate Nitrite as N	0.10	U	0.10	0.50
Nitrite as N	0.10	U	0.10	0.50
Nitrate as N	0.10	U	0.10	0.50

Analysis Batch: 660-90906

Prep Batch: N/A

Units: mg/L

Lab Control Sample - Batch: 660-90906

Method: 353.2 Preparation: N/A

90 - 110

Lab Sample ID: LCS 660-90906/2 Analysis Batch: 660-90906 Instrument ID: No Equipment Assigned Client Matrix: Water Prep Batch: N/A Lab File ID: N/A Dilution: 1.0 Units: mg/L Initial Weight/Volume: 10 mL Date Analyzed: 02/18/2010 1002 Final Weight/Volume: 10 mL Date Prepared: N/A Analyte Spike Amount Result % Rec. Limit Qual Nitrate Nitrite as N 90 - 110 1.00 0.992 99

0.938

94

1.00

Client: Environmental Engineering Consultant

Water

1.0

N/A

Water

MSD Lab Sample ID: 660-33881-A-1 MSD

MS Lab Sample ID: Client Matrix:

Date Analyzed: Date Prepared:

Client Matrix:

Dilution:

Matrix Spike/ Matrix Spike Duplicate Recovery Report - Batch: 660-90906

660-33881-A-1 MS

02/18/2010 1002

Job Number: 660-33886-1

rt - Batch: 660-90906	Preparation: N/A
Analysis Batch: 660-90906 Prep Batch: N/A	Instrument ID: No Equipment Assigned Lab File ID: N/A Initial Weight/Volume: 50 mL Final Weight/Volume: 50 mL
Analysis Batch: 660-90906 Prep Batch: N/A	Instrument ID: No Equipment Assigned Lab File ID: N/A

Method: 353.2

Dilution:	1.0			li II	nitial Weight/Vol	ume: 50	mL	
Date Analyzed:	02/18/2010 1002			F	inal Weight/Volu	ume: 50	mL	
Date Prepared:	N/A							
		<u>%</u>	Rec.					
A I I .			1100	 				

Analyte	MS	MSD	Limit	RPD	RPD Limit	MS Qual	MSD Qual
Nitrate Nitrite as N	95	100	90 - 110	5	30		
Nitrite as N	77	77	90 - 110	1	30	J3	J3

Lab Sample ID: Client Matrix:	MB 660-91350/1-A Solid	Analysis Batch: Prep Batch: N/A	660-91352	l	nstrument ID: .ab File ID:	No Equipn	nent Assigned
Dilution:	1.0	Units: mg/Kg		I	nitial Weight/	Volume: 10	mL
Date Analyzed:	03/03/2010 0939			F	inal Weight/	/olume: 10	mL
Date Prepared:	N/A						
Date Leached:	03/01/2010 1600	Leachate Batch:	660-91350				
Analyte		Result		Qual	MDL		PQL

Analyte	Result	Qual	MDL	PQL
Nitrate Nitrite as N-Soluble	1.0	U	1.0	5.0
Nitrite as N-Soluble	1.0	U	1.0	5.0
Nitrate as N-Soluble	1.0	U	1.0	5.0

Lab Control Sample - Batch: 660-91352

Method: 353.2 Preparation: N/A

Method: 353.2 **Preparation: N/A**

Lab Sample ID: Client Matrix: Dilution: Date Analyzed: Date Prepared:	LCS 660-91350/2-A Solid 1.0 03/03/2010 0939 N/A	Analysis Batch: 6 Prep Batch: N/A Units: mg/Kg	660-91352	Instrument Lab File ID Initial Weig Final Weigl	ID: No Equipment As : N/A ht/Volume: 10 mL ht/Volume: 10 mL	signed
Date Leached:	03/01/2010 1600	Leachate Batch:	660-91350			
Analyte		Spike Amount	Result	% Rec.	Limit	Qual
Nitrate Nitrite as Nitrite as N-Solu	N-Soluble Ible	10.0 10.0	9.80 9.46	98 95	90 - 110 90 - 110	

Job Number: 660-33886-1

Job Number: 660-33886-1

Client: Environmental Engineering Consultant

Matrix Spike/ Matrix Spike Duplicate Recovery Report - Batch: 660-91352

Method: 353.2 Preparation: N/A

MS Lab Sample ID: Client Matrix: Dilution: Date Analyzed: Date Prepared: Date Leached:	660-33863-C-1-F MS Solid 1.0 03/03/2010 0939 N/A 03/01/2010 1600	Analysis Batch Prep Batch: N/ Leachate Batch	: 660-91352 A n: 660-91350	Ins La Ini Fir	strument ID: lb File ID: tial Weight/Vo nal Weight/Vo	No Equipme N/A blume: 50 r blume: 50 r	nt Assigned nL nL
MSD Lab Sample ID: Client Matrix: Dilution: Date Analyzed: Date Prepared: Date Leached:	660-33863-C-1-G MSD Solid 1.0 03/03/2010 0939 N/A 03/01/2010 1600	Analysis Batch Prep Batch: N/ Leachate Batcl	: 660-91352 A n: 660-91350	Ins La Ini Fir	strument ID: 1 b File ID: 1 tial Weight/Vo nal Weight/Vo	No Equipment N/A blume: 50 ml blume: 50 ml	t Assigned L L
Analyte		<u>% Rec.</u> MS MSD	Limit	RPD	RPD Limit	MS Qual	MSD Qual
Nitrate Nitrite as N-Sc	luble	106 107	90 - 110	1	20		
Nitrite as N-Soluble		110 105	90 - 110	5	20		

Method Blank - Batch: 660-91108

Quality Control Results

Job Number: 660-33886-1

Method: 365.1 Preparation: N/A

Lab Sample ID: MB 660-91108/11 Client Matrix: Water Dilution: 1.0 Date Analyzed: 02/18/2010 1328 Date Prepared: N/A	Analysis Batch: Prep Batch: N/A Units: mg/L	660-91108 A		Instrument ID: No Lab File ID: N/, Initial Weight/Volu Final Weight/Volu	e Equipment Assigned A ume: 1.0 mL me: 2 mL
Analyte	Resu	ılt	Qual	MDL	PQL
Orthophosphate-Dissolved	0.010)	U	0.010	0.040
Lab Control Sample - Batch: 660-9110	8			Method: 365.1 Preparation: N	/A
Lab Sample ID:LCS 660-91108/12Client Matrix:WaterDilution:1.0Date Analyzed:02/18/2010Date Prepared:N/A	Analysis Batch: Prep Batch: N// Units: mg/L	660-91108 A		Instrument ID: No Lab File ID: N// Initial Weight/Volu Final Weight/Volu	e Equipment Assigned A ume: 1.0 mL me: 2 mL
Analyte	Spike Amount	Result	% Re	c. Limit	Qual
Orthophosphate-Dissolved	0.300	0.306	102	90 - 1	10
Matrix Spike/ Matrix Spike Duplicate Recovery Repo	rt - Batch: 660-	-91108		Method: 365.1 Preparation: N	Ά
MS Lab Sample ID:660-33886-5Client Matrix:WaterDilution:1.0Date Analyzed:02/18/2010 1328Date Prepared:N/A	Analysis Batch: Prep Batch: N/A	660-91108 A		Instrument ID: N Lab File ID: N Initial Weight/Volu Final Weight/Volu	lo Equipment Assigned I/A Ime: 1.0 mL me: 2 mL
MSD Lab Sample ID:660-33886-5Client Matrix:WaterDilution:1.0Date Analyzed:02/18/2010 1328Date Prepared:N/A	Analysis Batch: Prep Batch: N/A	660-91108 A		Instrument ID: Nc Lab File ID: N/, Initial Weight/Volu Final Weight/Volu	e Equipment Assigned A ume: 1.0 mL me: 2 mL
	<u>% Rec.</u>				
Analyte Orthophosphate-Dissolved	MS MSD	Limit	2 RPD	0 RPD Limit	MS Qual MSD Qual

Method: 365.4

Lab File ID:

Preparation: 365.2/365.3/365

N/A

Initial Weight/Volume: 0.200 g

Final Weight/Volume: 40 mL

Instrument ID: KONELAB1

Job Number: 660-33886-1

Client: Environmental Engineering Consultant

Method Blank - Batch: 680-161349

Lab Sample ID: MB 680-161349/1-A

1.0

Solid

Client Matrix:

Dilution:

Date Prepared: 02/22/2010 1258

Date Analyzed: 0 Date Prepared: 0	2/24/2010 1400 2/22/2010 1258					Final Weight/Vol	ume: 40 m	ıL
Analyte			Result	(Qual	MDL	PG	L
Phosphorus			11	ι	J	11	20	
Lab Control Sa Lab Control Sa	ample/ ample Duplicate Recov	ery Repo	rt - Batch:	680-16134	9	Method: 365.4 Preparation: 3	65.2/365.3	/365
LCS Lab Sample Client Matrix: Dilution: Date Analyzed: Date Prepared:	ID: LCS 680-161349/2-A Solid 1.0 02/24/2010 1400 02/22/2010 1258	Analy Prep Units	vsis Batch: Batch: 680 : mg/Kg	680-161565)-161349		Instrument ID: K Lab File ID: N/A Initial Weight/Volu Final Weight/Volu	ONELAB1 me: 0.20 me: 40	0 g mL
LCSD Lab Sample Client Matrix: Dilution: Date Analyzed: Date Prepared:	e ID: LCSD 680-161349/3-/ Solid 1.0 02/24/2010 1400 02/22/2010 1258	A Analy Prep Units	vsis Batch: Batch: 680 : mg/Kg	680-161565)-161349		Instrument ID: Lab File ID: N/A Initial Weight/Volu Final Weight/Volu	KONELAB1 A me: 0.200 me: 40 m	9 hL
Analyte		LCS	<u>% Rec.</u> LCSD	Limit	RPD) RPD Limit	LCS Qual	LCSD Qual
Phosphorus		95	97	60 - 140	3	40		
Duplicate - Bate	ch: 680-161349					Method: 365.4 Preparation: 3	65.2/365.3	/365
Lab Sample ID: 6 Client Matrix: S Dilution: 1 Date Analyzed: 0	60-33914-E-11-B DU olid .0 2/24/2010 1417	Analysis E Prep Batc Units: mg	3atch: 680- h: 680-161 g/Kg	161565 349		Instrument ID: K Lab File ID: N Initial Weight/Vol Final Weight/Vol	ONELAB1 /A ume: 0.239 ume: 40 m	5 g IL

Analysis Batch: 680-161565

Prep Batch: 680-161349

Units: mg/Kg

Analyte	Sample Result/Qual	Result	RPD	Limit	Qual
Phosphorus	270	432	45	40	J3

TestAmerica Tampa

Phosphorus, Total

Quality Control Results

Job Number: 660-33886-1

Method: 365.4

Preparation: 365.2/365.3/365

Client: Environmental Engineering Consultant

Method Blank - Batch: 660-91250

Lab Sample ID:MB 6Client Matrix:WateDilution:1.0Date Analyzed:03/03Date Prepared:03/03	60-91250/10-A er 8/2010 1113 1/2010 1700	Analysis Batch: Prep Batch: 660 Units: mg/L	660-91349)-91250		Instrument ID: SEAI Lab File ID: N/A Initial Weight/Volum Final Weight/Volume	_1 e: 20 mL e: 20 mL
Analyte		Result	:	Qual	MDL	PQL
Phosphorus, Total		0.10		U	0.10	0.30
Lab Control Samp	le - Batch: 660-912	250			Method: 365.4 Preparation: 365	.2/365.3/365
Lab Sample ID: LCS Client Matrix: Wate Dilution: 1.0 Date Analyzed: 03/00 Date Prepared: 03/00	660-91250/11-A er 3/2010 1113 1/2010 1700	Analysis Batch: Prep Batch: 660 Units: mg/L	660-91349)-91250		Instrument ID: SEAI Lab File ID: N/A Initial Weight/Volum Final Weight/Volume	L1 e: 20 mL e: 20 mL
Analyte		Spike Amount	Result	% Re	ec. Limit	Qual
Phosphorus, Total Matrix Spike/ Matrix Spike Dupli	cate Recovery Rep	3.00 port - Batch: 660-9	3.03 9 1250	101	90 - 110 Method: 365.4 Preparation: 365.	.2/365.3/365
MS Lab Sample ID: Client Matrix: Dilution: Date Analyzed: Date Prepared:	660-33886-6 Water 1.0 03/03/2010 1113 03/01/2010 1700	Analysis Batch: Prep Batch: 660	660-91349)-91250		Instrument ID: SE/ Lab File ID: N/A Initial Weight/Volum Final Weight/Volume	AL1 e: 20 mL e: 20 mL
MSD Lab Sample ID: Client Matrix: Dilution: Date Analyzed: Date Prepared:	660-33886-6 Water 1.0 03/03/2010 1113 03/01/2010 1700	Analysis Batch: Prep Batch: 660	660-91349)-91250		Instrument ID: SEAI Lab File ID: N/A Initial Weight/Volum Final Weight/Volume	L1 e: 20 mL e: 20 mL
A male da		<u>% Rec.</u>	Limit	DD		MS Qual MSD Qu

90 - 110

2

30

102

104

Method Blank - Batch: 680-161395

Batch:	680-161395	

Quality Control Results

Job Number: 660-33886-1

Method: 9034 Preparation: 9030B

Lab Sample ID:MBClient Matrix:SolDilution:1.0Date Analyzed:02/2Date Prepared:02/2	680-161395/1-A id 23/2010 1430 23/2010 1144	Analysis Batch: 680-161436 Prep Batch: 680-161395 Units: mg/Kg				Instrument ID: No Equipment Assigned Lab File ID: N/A Initial Weight/Volume: 10.00 g Final Weight/Volume: 250 mL			
Analyte			Result		Qual		PQL	PC	QL
Sulfide		25			U		25	25	
Lab Control Sam	ple - Batch: 680-1613	95				Metho Prepa	od: 9034 aration: 9	030B	
Lab Sample ID:LCSClient Matrix:SolDilution:1.0Date Analyzed:02/2Date Prepared:02/2	ab Sample ID: LCS 680-161395/2-A Client Matrix: Solid Dilution: 1.0 Date Analyzed: 02/23/2010 1430 Date Prepared: 02/23/2010 1144			Analysis Batch: 680-161436 Prep Batch: 680-161395 Units: mg/Kg			ment ID: N le ID: N Weight/Vol Weight/Vol	o Equipmer /A ume: 10.00 ume: 250	nt Assigned g mL
Analyte		Spike	Amount	Result	% R	ec.	Limit		Qual
Sulfide		252		207	82		50 -	150	
Matrix Spike/ Matrix Spike Dup	licate Recovery Repo	rt - Bat	ch: 680-1	61395		Metho Prepa	od: 9034 aration: 9	030B	
MS Lab Sample ID: Client Matrix: Dilution: Date Analyzed: Date Prepared:	660-33863-E-4-C MS Solid 1.0 02/23/2010 1430 02/23/2010 1144	Analysis Batch: 680-161436 Prep Batch: 680-161395				Instrument ID: No Equipment Assigned Lab File ID: N/A Initial Weight/Volume: 10.03 g Final Weight/Volume: 250 mL			
MSD Lab Sample ID Client Matrix: Dilution: Date Analyzed: Date Prepared:	 660-33863-E-4-D MSD Solid 1.0 02/23/2010 1430 02/23/2010 1144 	D Analysis Batch: 680-161436 Prep Batch: 680-161395				Instrument ID: No Equipment Assigned Lab File ID: N/A Initial Weight/Volume: 10.03 g Final Weight/Volume: 250 mL			nt Assigned g mL
		<u>%</u>	Rec.	1					
Analyte		MS	MSD	Limit	RF	טי R	PD Limit	MS Qua	MSD Qual
Sulfide		84	83	50 - 150	2	50	J		

Method Blank - Batch: 680-162106

Job Number: 660-33886-1

Method: 9038 Preparation: N/A

Lab Sample ID: Client Matrix: Dilution: Date Analyzed: Date Prepared:	MB 680-162053/1-A Solid 1.0 03/02/2010 1707 N/A	Analysis Batch: 680-162106 Prep Batch: N/A Units: mg/Kg				Instrument ID: KONELAB1 Lab File ID: N/A Initial Weight/Volume: 1.0 mL Final Weight/Volume: 1.0 mL		
Date Leached:	03/02/2010 1138	Leachate	Batch:	680-162053				
Analyte			Result	Q	lual	PQL	PQ	L
Sulfate-Soluble			100	U	l	100	100	l
Lab Control S Lab Control S	Sample/ Sample Duplicate Recove	ry Report -	- Batch	: 680-162106	6	Method: 9038 Preparation: N	/A	
LCS Lab Sampl Client Matrix: Dilution: Date Analyzed: Date Prepared:	le ID: LCS 680-162053/2-A Solid 1.0 03/02/2010 1707 N/A	Analysis Prep Ba Units: r	Batch: tch: N/A ng/Kg	680-162106		Instrument ID: K0 Lab File ID: N/A Initial Weight/Volur Final Weight/Volun	ONELAB1 me: 1.0 ne: 1.0	mL mL
Date Leached:	03/02/2010 1138	Leachat	e Batch:	680-162053				
LCSD Lab Sam Client Matrix: Dilution: Date Analyzed: Date Prepared:	ple ID: LCSD 680-162053/3-A Solid 1.0 03/02/2010 1707 N/A	Analysis Prep Ba Units: r	Batch: tch: N/A ng/Kg	680-162106		Instrument ID: H Lab File ID: N/A Initial Weight/Volur Final Weight/Volun	KONELAB1 me: 1.0 n ne: 1.0 n	nL nL
Date Leached:	03/02/2010 1138	Leachat	e Batch:	680-162053				
Analyte		<u>% F</u> LCS	<u>Rec.</u> LCSD	Limit	RPD	RPD Limit	LCS Qual	LCSD Qual
Sulfate-Soluble		100	100	75 - 125	0	30		

Client: Environmental Engineering Consultant

Job Number: 660-33886-1

Matrix Spike/ Matrix Spike Dupli	cate Recovery Repo	ort - Batch: 680)-162106		Method: 9038 Preparation: N	/ A	
MS Lab Sample ID: Client Matrix: Dilution: Date Analyzed: Date Prepared: Date Leached:	660-33863-D-1-C MS Solid 1.0 03/02/2010 1709 N/A 03/02/2010 1138	Analysis Batch Prep Batch: N Leachate Batc	h: 680-1621(/A h: 680-1620	06	Instrument ID: I Lab File ID: I Initial Weight/Vol Final Weight/Volu	KONELAB1 N/A ume: 1.0 m ume: 1.0 m	L
MSD Lab Sample ID: Client Matrix: Dilution: Date Analyzed: Date Prepared: Date Leached:	660-33863-D-1-D MSE Solid 1.0 03/02/2010 1709 N/A 03/02/2010 1138	 Analysis Batch Prep Batch: N Leachate Batch 	n: 680-16210 /A h: 680-1620	D6 953	Instrument ID: K0 Lab File ID: N/ Initial Weight/Vol Final Weight/Volu	ONELAB1 /A ume: 1.0 mL ume: 1.0 mL	
Analyte		<u>% Rec.</u> MS MSD	Limit	RI	PD RPD Limit	MS Qual N	/ISD Qual
Sulfate-Soluble		119 113	75 - 12	25 7	30		
Duplicate - Batch:	680-162106				Method: 9038 Preparation: N	/ A	
Lab Sample ID: 660-3 Client Matrix: Solid Dilution: 1.0 Date Analyzed: 03/02 Date Prepared: N/A Date Leached: 03/02	33914-D-11-C DU 2/2010 1726	Analysis Batch: Prep Batch: N/A Units: mg/Kg	680-162106		Instrument ID: K0 Lab File ID: N/ Initial Weight/Vol Final Weight/Volu	ONELAB1 /A ume: 1.0 mL ume: 1.0 mL	
			000-102000	D		1.1.1	
Analyte Sulfate-Soluble		Sample Resul		Result	NC.	Limit	

Method Blank - Batch: 660-90922

Client: Environmental Engineering Consultant

Lab Control Sample - Batch: 660-90922

Lab Sample ID: MB 660-90923/1-A

Solid

1.0 Date Analyzed: 02/18/2010 2145

Date Leached: 02/18/2010 1907

Client Matrix:

Date Prepared: N/A

Dilution:

Analyte pH-Soluble

Preparation: N/A

Qual

Method: 9045C

Lab File ID:

Preparation: N/A

Lab Sample ID:LCS 660-90923/2-AClient Matrix:SolidDilution:1.0Date Analyzed:02/18/2010 2145Date Prepared:N/A	Analysis Batch: Prep Batch: N/A Units: SU	660-9092	2	Instrument II Lab File ID: Initial Weigh Final Weight	D: No Equipme N/A /Volume: 1.0 /Volume: 1.0	nt Assigned mL mL
Date Leached: 02/18/2010 1907	Leachate Batch:	660-9092	23			
Analyte	Spike Amount	Result	% F	Rec. I	₋imit	Qual
pH-Soluble	6.00	5.990	100		98 - 102	
Duplicate - Batch: 660-90922				Method: 90 Preparatio	945C n: N/A	
Lab Sample ID:660-33886-4Client Matrix:SolidDilution:1.0Date Analyzed:02/18/2010 2145Date Prepared:N/A	Analysis Batch: 66 Prep Batch: N/A Units: SU	60-90922		Instrument II Lab File ID: Initial Weigh Final Weight	D: No Equipme N/A /Volume: 1.0 /Volume: 1.0	nt Assigned mL mL
Date Leached: 02/18/2010 1907	Leachate Batch: 6	60-90923				
Analyte	Sample Result/C	Qual	Result	RPD	Limit	Qual
pH-Soluble	7.53		7.530	0	20	Q

Analysis Batch: 660-90922

Leachate Batch: 660-90923

Result

7.520

Prep Batch: N/A

Units: SU

Instrument ID: No Equipment Assigned

N/A

Initial Weight/Volume: 1.0 mL

Final Weight/Volume: 1.0 mL

PQL

1.00

Method: 9045C

Job Number: 660-33886-1

PQL

1.00

Total Organic Carbon

Client: Environmental Engineering Consultant

Method Blank - Batch: 680-161519

Lab Sample ID: MB 680-161519/1

Client Matrix: Dilution: Date Analyzed: Date Prepared:	Solid 1.0 02/23/2010 1035 N/A	Prep Batch: N/ Units: mg/Kg	A	Lab Initia Fina	File ID: N/A al Weight/Volume: 1 I Weight/Volume: 1	100 mg 1.0 mL	
Analyte		Res	ult	Qual	MDL	PQL	
Total Organic Ca	rbon	100)	U	1000	3000	
Lab Control Sa	ample - Batch: 680-′	161519		Met Pre	hod: 9060 paration: N/A		
Lab Sample ID: 1 Client Matrix: 5 Dilution: Date Analyzed: 0 Date Prepared: 1	LCS 680-161519/2 Solid 1.0 02/23/2010 1035 N/A	Analysis Batch Prep Batch: N/ Units: mg/Kg	: 680-161519 A	Instr Lab Initia Fina	ument ID: TOC2 File ID: N/A al Weight/Volume: 2 I Weight/Volume: 1	0.5 mg .0 mL	
Analyte		Spike Amount	Result	% Rec.	Limit	Qual	
Total Organic Ca	arbon	408000	377000	92	60 - 140		
Matrix Spike/ Matrix Spike D	ouplicate Recovery F	eport - Batch: 680	-161519	Met Pre	hod: 9060 paration: N/A		
MS Lab Sample Client Matrix: Dilution: Date Analyzed: Date Prepared:	ID: 680-55167-A-8 M Solid 1.0 02/23/2010 1035 N/A	S Analysis Batch Prep Batch: N/	: 680-161519 A	Instr Lab Initia Fina	rument ID: TOC2 File ID: N/A al Weight/Volume: I Weight/Volume:	113.5 mg 113.5 mg	
MSD Lab Sample Client Matrix: Dilution: Date Analyzed: Date Prepared:	e ID: 680-55167-A-8 M Solid 1.0 02/23/2010 1035 N/A	SD Analysis Batch Prep Batch: N/	: 680-161519 A	Instr Lab Initia Fina	ument ID: TOC2 File ID: N/A al Weight/Volume: 1 I Weight/Volume: 1	13.1 mg 13.1 mg	
Analyte		<u>% Rec.</u> MS MSD	Limit	RPD	RPD Limit MS	Qual MSD Qual	

Analysis Batch: 680-161519

Quality Control Results

Job Number: 660-33886-1

Method: 9060 Preparation: N/A

Instrument ID: TOC2

60 - 140

40

1

83

83

TestAmerica Tampa

Client: Environmental Engineering Consultant

Duplicate - Batch:

Lab Sample ID: 680-55167-A-2 DU

1.0 Date Analyzed: 02/23/2010 1035

Client Matrix: Solid

Date Prepared: N/A

Dilution:

680-161519	
------------	--

Method: 9060 **Preparation: N/A**

Instrument ID: TOC2
Lab File ID: N/A
Initial Weight/Volume: 97.0 mg
Final Weight/Volume: 1.0 mL

Analyte	Sample Result/Qual		Result	RPD	Limit	Qual
Total Organic Carbon	1500	I	1760	13	40	I

Analysis Batch: 680-161519

Prep Batch: N/A Units: mg/Kg

Quality Control Results

Job Number: 660-33886-1

Client: Environmental Engineering Consultant

Job Number: 660-33886-1

Method Blank - Batch: 660-90996

Job Number: 660-33886-1

Method: SM 2320B Preparation: N/A

Lab Sample ID: Client Matrix: Dilution: Date Analyzed: Date Prepared:	MB 660-90996/3 Water 1.0 02/23/2010 1010 N/A	Analysis Batch: (Prep Batch: N/A Units: mg/L	660-90996		Instrument ID: N Lab File ID: N Initial Weight/Vo Final Weight/Vo	MANTECH WA Dume: 50 mL Iume: 50 mL	
Analyte		Result		Qual	PQL	PQL	
Alkalinity		1.0		U	1.0	1.0	
Lab Control S	Sample - Batch: 660-9099	6			Method: SM 2 Preparation: I	2320B N/A	
Lab Sample ID: Client Matrix: Dilution: Date Analyzed: Date Prepared:	LCS 660-90996/4 Water 1.0 02/23/2010 1017 N/A	Analysis Batch: 6 Prep Batch: N/A Units: mg/L	660-90996		Instrument ID: M Lab File ID: M Initial Weight/Vo Final Weight/Vo	MANTECH N/A blume: 50 mL lume: 50 mL	
Analyte		Spike Amount	Result	% Re	ec. Limi	it	Qual
Alkalinity		118	119	101	80 -	120	
Duplicate - Ba	atch: 660-90996				Method: SM 2 Preparation: I	2320B N/A	
Lab Sample ID: Client Matrix: Dilution: Date Analyzed: Date Prepared:	660-33880-D-1 DU // Water F 1.0 U 02/23/2010 1158 N/A	Analysis Batch: 660 Prep Batch: N/A Units: mg/L	9-90996		Instrument ID: M Lab File ID: M Initial Weight/Vo Final Weight/Vo	MANTECH N/A Dlume: 50 mL lume: 50 mL	
Analyte		Sample Result/Qu	ual F	Result	RPD	Limit	Qual
Alkalinity		84	8	6.1	3	30	

Method Blank - Batch: 660-91136

Method: SM 2520B Preparation: N/A

Lab Sample ID: M Client Matrix: M Dilution: 1 Date Analyzed: 0 Date Prepared: N	Analysis Prep Bat Units: p	Batch: 66 ch: N/A pt	80-91136		Instrument ID: No Equipment Assigned Lab File ID: N/A Initial Weight/Volume: 1.0 mL Final Weight/Volume: 100 mL			
Analyte			Result	C	Qual	PQL PQL		
Salinity			2.0	L	J	2.0 2.0		
Lab Control S Lab Control S	ample/ ample Duplicate Recov	ery Report	- Batch:	660-91136		Method: SM 2520B Preparation: N/A		
LCS Lab Sample Client Matrix: Dilution: Date Analyzed: Date Prepared:	ID: LCS 660-91136/2 Water 1.0 02/25/2010 1200 N/A	Analysi Prep Ba Units:	s Batch: atch: N/A ppt	660-91136		Instrument ID: No Equipment Assigned Lab File ID: N/A Initial Weight/Volume: 1.0 mL Final Weight/Volume: 100 mL		
LCSD Lab Samp Client Matrix: Dilution: Date Analyzed: Date Prepared:	le ID: LCSD 660-91136/3 Water 1.0 02/25/2010 1200 N/A	Analysi Prep Ba Units:	s Batch: atch: N/A ppt	660-91136		Instrument ID: No Equipment Assigned Lab File ID: N/A Initial Weight/Volume: 1.0 mL Final Weight/Volume: 100 mL		
Analyte		LCS	<u>Rec.</u> LCSD	Limit	RPD) RPD Limit LCS Qual LCSD Qual		
Salinity		103	103	90 - 110	0	10		

Job Number: 660-33886-1

Duplicate - Batch: 660-91136

Quality Control Results

Job Number: 660-33886-1

Method: SM 2520B Preparation: N/A

Lab Sample ID: 660-33886-6 Client Matrix: Water Dilution: 1.0 Date Analyzed: 02/25/2010 1200 Date Prepared: N/A	Analysis Batch: Prep Batch: N/A Units: ppt	660-91136		Instrument ID: Lab File ID: Initial Weight/V Final Weight/V	No Equipmer N/A olume: 1.0 r olume: 100	nt Assigned nL mL
Analyte	Sample Resu	ilt/Qual	Result	RPD	Limit	Qual
Salinity	2.0	U	2.0	NC	10	U
Duplicate - Batch: 660-91136				Method: SM Preparation:	2520B N/A	
Lab Sample ID: 660-33886-7 Client Matrix: Water Dilution: 1.0 Date Analyzed: 02/25/2010 1200 Date Prepared: N/A	Analysis Batch: Prep Batch: N/A Units: ppt	660-91136		Instrument ID: Lab File ID: Initial Weight/V Final Weight/Ve	No Equipmer N/A olume: 1.0 r olume: 100	nt Assigned nL mL
Analyte	Sample Resu	ilt/Qual	Result	RPD	Limit	Qual
Salinity	2.0	U	2.0	NC	10	U

Total Suspended Solids

Client: Environmental Engineering Consultant

Method Blank - Batch: 660-90872

Lab Sample ID: MB 660-90872/1

Water

1.0

Date Analyzed: 02/19/2010 1455

Client Matrix:

Dilution:

Date Prepared: N/A						
Analyte	Result	:	Qual	PQL	PQL	
Total Suspended Solids	1.0		U	1.0	1.0	
Lab Control Sample - Batch: 660-90	872		N	lethod: SM 254 Preparation: N/	40D A	
Lab Sample ID:LCS 660-90872/2Client Matrix:WaterDilution:1.0Date Analyzed:02/19/2010Date Prepared:N/A	Analysis Batch: Prep Batch: N/A Units: mg/L	660-90872	lr L F	nstrument ID: No ab File ID: N/A nitial Weight/Volu inal Weight/Volur	Equipment A A me: 250 mL me: 250 mL	Assigned
Analyte	Spike Amount	Result	% Rec.	Limit		Qual
Total Suspended Solids	100	106	106	80 - 12	20	
Duplicate - Batch: 660-90872			N	lethod: SM 254 Preparation: N/	40D A	
Lab Sample ID: 660-33876-E-1 DU Client Matrix: Water Dilution: 1.0 Date Analyzed: 02/19/2010 1455 Date Prepared: N/A	Analysis Batch: 66 Prep Batch: N/A Units: mg/L	0-90872	Ir L Ir F	nstrument ID: No ab File ID: N/A nitial Weight/Volu inal Weight/Volur	Equipment A A me: 250 mL me: 250 mL	ssigned
Analyte	Sample Result/Q	lual	Result	RPD	Limit	Qual

Analysis Batch: 660-90872

Prep Batch: N/A

Units: mg/L

Method: SM 2540D Preparation: N/A

Lab File ID:

Instrument ID: No Equipment Assigned

N/A

Initial Weight/Volume: 250 mL

Final Weight/Volume: 250 mL

Job Number: 660-33886-1

1.6

1.60

0

20

TestAmerica Tampa

Quality Control Results

Method: SM 426C Preparation: N/A

Instrument ID: Turbidity

Job Number: 660-33886-1

Client: Environmental Engineering Consultant

Method Blank - Batch: 660-91248

Lab Sample ID: MB 660-91248/12

Client Matrix: Dilution: Date Analyzed: Date Prepared:	Water 1.0 03/01/2010 1350 N/A	Prep Units	Batch: N/A s: mg/L		La In Fi	ab File ID: N/ itial Weight/Volu nal Weight/Volu	A ıme: 25 m me: 25 m	L
Analyte			Result	:	Qual	MDL	PQ	L
Sulfate			2.0		U	2.0	5.0	
Lab Control S	ample - Batch:	660-91248			M Pr	ethod: SM 42 reparation: N	6C /A	
Lab Sample ID: Client Matrix: Dilution: Date Analyzed: Date Prepared:	LCS 660-91248/13 Water 1.0 03/01/2010 1350 N/A	Anal Prep Units	ysis Batch: Batch: N/A s: mg/L	660-91248	In La In Fi	strument ID: Tu ab File ID: N/ itial Weight/Volu nal Weight/Volu	rbidity A ıme: 25 m me: 25 m	L
Analyte		Spike	e Amount	Result	% Rec.	Limit		Qual
Sulfate		10.0		9.24	92	75 - 1	25	
Matrix Spike/ Matrix Spike [Duplicate Recov	ery Report - Ba	tch: 660-9	1248	M Pi	ethod: SM 42 reparation: N	6C /A	
MS Lab Sample Client Matrix: Dilution: Date Analyzed: Date Prepared:	ID: 660-33886-6 Water 2.0 03/01/2010 N/A	Anal Prep	ysis Batch: Batch: N/A	660-91248	In La In Fi	strument ID: 1 ab File ID: N itial Weight/Volu nal Weight/Volu	Turbidity I/A Ime: 25 me: 25	mL mL
MSD Lab Sampl Client Matrix: Dilution: Date Analyzed: Date Prepared:	e ID: 660-33886-6 Water 2.0 03/01/2010 N/A	Anal Prep	ysis Batch: Batch: N/A	660-91248	In La In Fi	strument ID: Tu ab File ID: N/ itial Weight/Volu nal Weight/Volu	rbidity A ıme: 25 m me: 25 m	L
Analyte		<u>%</u> MS	<u>o Rec.</u> MSD	Limit	RPD	RPD Limit	MS Qual	MSD Qual
Sulfate		124	120	75 - 125	1	30		

Page 135 of 160

Analysis Batch: 660-91248

TestAmerica Tampa

Page 136 of 160

Quality	Control	Results

Job Number: 660-33886-1

Method: SM 426C

Client: Environmental Engineering Consultant

				F	Preparation: N/A	
Lab Sample ID: M Client Matrix: V Dilution: 1 Date Analyzed: 0 Date Prepared: N	/IB 660-91434/12 Vater .0 93/04/2010 1100 N/A	Analysis Batch Prep Batch: N/ Units: mg/L	n: 660-91434 ′A	lı L F	nstrument ID: Turbi .ab File ID: N/A nitial Weight/Volum Final Weight/Volume	idity e: 25 mL e: 25 mL
Analyte		Res	ult	Qual	MDL	PQL
Sulfate		2.0		U	2.0	5.0
Lab Control Sa	mple - Batch: 660-914	34		N F	Method: SM 4260 Preparation: N/A	2
Lab Sample ID: L Client Matrix: V Dilution: 1 Date Analyzed: 0 Date Prepared: N	.CS 660-91434/13 Vater .0)3/04/2010 1100 \/A	Analysis Batch Prep Batch: N/ Units: mg/L	n: 660-91434 ′A	lı L F	nstrument ID: Turbi .ab File ID: N/A nitial Weight/Volum Final Weight/Volume	idity e: 25 mL e: 25 mL
Analyte		Spike Amount	Result	% Rec	. Limit	Qual
Sulfate		10.0	10.2	102	75 - 125	5
Matrix Spike/ Matrix Spike D	uplicate Recovery Rep	ort - Batch: 660)-91434	N F	Method: SM 4260 Preparation: N/A	2
MS Lab Sample I Client Matrix: Dilution: Date Analyzed: Date Prepared:	D: 660-33914-N-2 MS Water 5.0 03/04/2010 1100 N/A	Analysis Batch Prep Batch: N/	n: 660-91434 /A	li L F	nstrument ID: Tur .ab File ID: N/A nitial Weight/Volum ⁻ inal Weight/Volume	bidity e: 25 mL e: 25 mL
MSD Lab Sample Client Matrix: Dilution: Date Analyzed: Date Prepared:	ID: 660-33914-N-2 MSD Water 5.0 03/04/2010 1100 N/A	Analysis Batch Prep Batch: N/	n: 660-91434 /A	lı L II F	nstrument ID: Turbi .ab File ID: N/A nitial Weight/Volum Final Weight/Volume	idity e: 25 mL e: 25 mL
Analyte		<u>% Rec.</u> MS MSD	Limit	RÞU	RPD Limit	MS Qual MSD Qual
Sulfate		121 106	75 - 125	5	30	

Method Blank - Batch: 660-91434

Meth

Quality	Control	Results
---------	---------	---------

Job Number: 660-33886-1

Method: SM 4500 CI- E Preparation: N/A

Lab Sample ID: Client Matrix: Dilution: Date Analyzed: Date Prepared:	MB 660-91159/3 Water 1.0 02/25/2010 1400 N/A	Analysis Batch: Prep Batch: N/A Units: mg/L	660-91159		Instrument I Lab File ID: Initial Weigh Final Weigh	D: No Equipr N/A t/Volume: 2 t/Volume: 2	nent Assigned mL mL
Analyte		Result		Qual	ME)L	PQL
Chloride		3.0		U	3.0		5.0
Lab Control S	ample - Batch: 660-91159				Method: S Preparatio	M 4500 Cl- on: N/A	E
Lab Sample ID: Client Matrix: Dilution: Date Analyzed: Date Prepared:	LCS 660-91159/4 Water 1.0 02/25/2010 1400 N/A	Analysis Batch: Prep Batch: N/A Units: mg/L	660-91159		Instrument I Lab File ID: Initial Weigh Final Weigh	D: No Equipr N/A t/Volume: 2 t/Volume: 2	nent Assigned mL mL
Analyte		Spike Amount	Result	% Re	:C.	Limit	Qual
Chloride		25.0	24.8	99		90 - 110	

MS

67

Prep Batch: N/A

Date Prepared:	N/A		-
MSD Lab Sample ID:	660-33896-E-1 MSD	Analysis Batch: 660-91159	Instrument ID: No Equipment Assigned
Client Matrix:	Water	Prep Batch: N/A	Lab File ID: N/A
Dilution:	1.0		Initial Weight/Volume: 2 mL
Date Analyzed:	02/25/2010 1400		Final Weight/Volume: 2 mL
Date Prepared:	N/A		-
		% Rec.	

MSD

78

Limit

90 - 110

RPD

1

RPD Limit

30

Analysis Batch: 660-91159

MS Lab Sample ID:

Client Matrix:

Date Analyzed:

Dilution:

Analyte

Chloride

04/06/2010

MS Qual MSD Qual

J3

Quality Control Results

Job Number: 660-33886-1

Method: SM 4500 CI- E Preparation: N/A

MS Lab Sample ID: Client Matrix: Dilution: Date Analyzed: Date Prepared:	660-33886-6 Water 1.0 02/25/2010 1400 N/A	Analysis Batch: 6 Prep Batch: N/A	660-91159	Instrument ID: Lab File ID: Initial Weight/Vo Final Weight/Vol	No Equipment Assigned N/A lume: 2 mL ume: 2 mL
MSD Lab Sample ID: Client Matrix: Dilution: Date Analyzed: Date Prepared:	660-33886-6 Water 1.0 02/25/2010 1400 N/A	Analysis Batch: 6 Prep Batch: N/A	660-91159	Instrument ID: N Lab File ID: N Initial Weight/Vo Final Weight/Vol	o Equipment Assigned I/A Iume: 2 mL ume: 2 mL

Analyte	MS	MSD	Limit	RPD	RPD Limit	MS Qual MSD Qua
Chloride	95	100	90 - 110	1	30	

Matrix Spike/ Matrix Spike Duplicate Recovery Report - Batch: 660-91159

660-33896-E-1 MS

02/25/2010 1400

Water

1.0

Client: Environmental Engineering Consultant

Matrix Spike Duplicate Recovery Report - Batch: 660-91159

Matrix Spike/

Method: SM 4500 CI- E Preparation: N/A

Lab File ID:	N/A			
Initial Weight/	Volume:	2	mL	
Final Weight/\	/olume:	2	mL	

J3

Instrument ID: No Equipment Assigned

Method Blank - Batch: 660-91342

Job Number: 660-33886-1

Method: SM 4500 P E Preparation: N/A

Lab Sample ID: MB Client Matrix: Soli Dilution: 1.0 Date Analyzed: 03/0 Date Prepared: N/A	660-91341/1-A d 02/2010 1600	Analysis Batch: Prep Batch: N/A Units: mg/L	660-91342		Instrument ID: No Lab File ID: N// Initial Weight/Volu Final Weight/Volu	Equipment Assigned A me: 1.0 mL me: 50 mL
Date Leached: 03/0	01/2010 1600	Leachate Batch:	660-91341			
Analyte		Resul	t	Qual	MDL	PQL
Orthophosphate-Sol	uble	0.75		U	0.75	3.0
Lab Control Sam	ole - Batch: 660-91342	2			Method: SM 45 Preparation: N/	00 P E A
Lab Sample ID: LCS Client Matrix: Soli Dilution: 1.0 Date Analyzed: 03/0 Date Prepared: N/A	660-91341/2-A d 02/2010 1600	Analysis Batch: Prep Batch: N/A Units: mg/L	660-91342		Instrument ID: No Lab File ID: N// Initial Weight/Volu Final Weight/Volu	Equipment Assigned A me: 1.0 mL me: 50 mL
Date Leached: 03/0	01/2010 1600	Leachate Batch:	660-91341			
Analyte		Spike Amount	Result	% Re	c. Limit	Qual
Orthophosphate-Sol	uble	3.00	3.07	102	90 - 1	10
Matrix Spike/ Matrix Spike Dup	licate Recovery Repor	t - Batch: 660-9	91342		Method: SM 45 Preparation: N/	00 P E A
MS Lab Sample ID: Client Matrix: Dilution: Date Analyzed: Date Prepared: Date Leached:	660-33863-C-1-C MS Solid 1.0 03/02/2010 1600 N/A 03/01/2010 1600	Analysis Batch: Prep Batch: N/A Leachate Batch:	660-91342 660-91341		Instrument ID: N Lab File ID: N Initial Weight/Volu Final Weight/Volu	lo Equipment Assigned I/A me: 1.0 mL me: 50 mL
MSD Lab Sample ID Client Matrix: Dilution: Date Analyzed: Date Prepared:	: 660-33863-C-1-D MSD Solid 1.0 03/02/2010 1600 N/A	Analysis Batch: Prep Batch: N/A	660-91342		Instrument ID: No Lab File ID: N// Initial Weight/Volu Final Weight/Volu	Equipment Assigned A me: 1.0 mL me: 50 mL
Date Leached:	03/01/2010 1600	Leachate Batch:	660-91341			
Analyte		<u>% Rec.</u> MS MSD	Limit	RPE	D RPD Limit	MS Qual MSD Qual
Orthophosphate-Sol	uble	94 96	90 - 110	1	30	

Method Blank - Batch: 660-90918

Job Number: 660-33886-1

Method: SM 4500 S2 F Preparation: N/A

Lab Sample ID: Client Matrix: Dilution: Date Analyzed: Date Prepared:	MB 660-90918/1 Water 1.0 02/19/2010 1600 N/A	Analysis Batch: 6 Prep Batch: N/A Units: mg/L	660-90918	Ir Li Ir F	nstrument ID: N ab File ID: N nitial Weight/Vol inal Weight/Vol	o Equipment /A ume: 1.0 m ume: 250 n	: Assigned IL nL
Analyte		Result	Q	ual	PQL	PQ	L
Sulfide		1.0	U		1.0	1.0	
Lab Control S Lab Control S	Sample/ Sample Duplicate Recov	ery Report - Batch	: 660-90918	N P	Method: SM 4 Preparation: N	500 S2 F I/A	
LCS Lab Sampl Client Matrix: Dilution: Date Analyzed: Date Prepared:	e ID: LCS 660-90918/2 Water 1.0 02/19/2010 1600 N/A	Analysis Batch: Prep Batch: N/A Units: mg/L	660-90918	Ins Lal Init Fin	trument ID: N b File ID: N/A tial Weight/Volu aal Weight/Volu	o Equipmen me: 1.0 me: 250	t Assigned mL mL
LCSD Lab Sam Client Matrix: Dilution: Date Analyzed: Date Prepared:	ple ID: LCSD 660-90918/3 Water 1.0 02/19/2010 1600 N/A	Analysis Batch: Prep Batch: N/A Units: mg/L	660-90918	Ins Lal Init Fin	trument ID: b File ID: N/A tial Weight/Volu al Weight/Volu	No Equipme A me: 1.0 m me: 250 r	nt Assigned nL nL
Analyte Sulfide		LCS <u>% Rec.</u> LCS LCSD 88 90	Limit 75 - 125	RPD 2	RPD Limit	LCS Qual	LCSD Qual

Page 140 of 160

Metho

d	Blank -	Batch:	660-91131	
	Biain	Batom		

Quality Control Results

Job Number: 660-33886-1

Method: SM 5220D Preparation: SM 5220

Lab Sample ID: 1 Client Matrix: Dilution: Date Analyzed: Date Prepared:	MB 660-91131/3-A Water 1.0 02/25/2010 1557 02/25/2010 1333	Analysis Batch: Prep Batch: 66 Units: mg/L	660-91132 D-91131	In: La Ini Fir	strument ID: HACH b File ID: N/A tial Weight/Volume nal Weight/Volume	1 9: 2 mL : 2 mL
Analyte		Resul	t	Qual	MDL	PQL
Chemical Oxyge	n Demand	10		U	10	20
Lab Control Sa	ample - Batch: 660-91 [.]	131		M Pi	ethod: SM 5220 reparation: SM 5	D 5220
Lab Sample ID: Client Matrix: Dilution: Date Analyzed: Date Prepared:	LCS 660-91131/4-A Water 1.0 02/25/2010 1557 02/25/2010 1333	Analysis Batch: Prep Batch: 66 Units: mg/L	660-91132 0-91131	In: La Ini Fir	strument ID: HACH b File ID: N/A itial Weight/Volume nal Weight/Volume	1 9: 2 mL : 2 mL
Analyte		Spike Amount	Result	% Rec.	Limit	Qual
Chemical Oxyge	n Demand	50.0	45.3	91	90 - 110	
Quality Control Results

Client: Environmental Engineering Consultant

Job Number: 660-33886-1

Matrix Spike/ Matrix Spike Dupli	cate Recovery Repor		Method: SM 5220D Preparation: SM 5220			
MS Lab Sample ID: Client Matrix: Dilution: Date Analyzed: Date Prepared:	640-26108-N-18-B MS Water 1.0 02/25/2010 1557 02/25/2010 1333	Analysi Prep Ba	s Batch: 6 atch: 660-	60-91132 91131		Instrument ID: HACH Lab File ID: N/A Initial Weight/Volume: 25 mL Final Weight/Volume: 25 mL
MSD Lab Sample ID: Client Matrix: Dilution: Date Analyzed: Date Prepared:	640-26108-N-18-C MSD Water 1.0 02/25/2010 1557 02/25/2010 1333	Analysi Prep Ba	s Batch: 6 atch: 660-	60-91132 91131		Instrument ID: HACH Lab File ID: N/A Initial Weight/Volume: 25 mL Final Weight/Volume: 25 mL
Analyte	1	<u>% R</u> MS	<u>ec.</u> MSD	Limit	RPD) RPD Limit MS Qual MSD Qual
Chemical Oxygen De	mand	90	91	90 - 110	1	20
Matrix Spike/ Matrix Spike Dupli	cate Recovery Repor	t - Batcl	h: 660-91	131		Method: SM 5220D Preparation: SM 5220
MS Lab Sample ID: Client Matrix: Dilution: Date Analyzed: Date Prepared:	660-33863-N-7-B MS Water 1.0 02/25/2010 1557 02/25/2010 1333	Analysi Prep Ba	s Batch: 6 atch: 660-	60-91132 91131		Instrument ID: HACH Lab File ID: N/A Initial Weight/Volume: 25 mL Final Weight/Volume: 25 mL
MSD Lab Sample ID: Client Matrix: Dilution: Date Analyzed: Date Prepared:	660-33863-N-7-C MSD Water 1.0 02/25/2010 1557 02/25/2010 1333	Analysi Prep Ba	s Batch: 6 atch: 660-	60-91132 91131		Instrument ID: HACH Lab File ID: N/A Initial Weight/Volume: 25 mL Final Weight/Volume: 25 mL
		<u>% R</u>	<u>ec.</u>			
Analyte	I	MS	MSD	Limit	RPD	O RPD Limit MS Qual MSD Qual

Chemical Oxygen Demand

90 - 110

19

20

92

111

J3

Client: Environmental Engineering Consultant

Job Number: 660-33886-1

Method Blank - Batch: 660-91273

Method: SM 5220D Preparation: SM 5220

Lab Sample ID: MB 6 Client Matrix: Wate Dilution: 1.0 Date Analyzed: 03/0 Date Prepared: 03/0	660-91273/3-A er 2/2010 1021 1/2010 1230	Analysis Batch: Prep Batch: 660 Units: mg/L	660-91274 -91273		Instrument ID: HACH Lab File ID: N/A Initial Weight/Volume: 2 mL Final Weight/Volume: 2 mL				
Analyte		Result		Qual	MDL	PQL			
Chemical Oxygen De	mand	10		U	10	20			
Lab Control Samp	ble - Batch: 660-91273	3		1	Method: SM 5220D Preparation: SM 522	20			
Lab Sample ID: LCS Client Matrix: Wate Dilution: 1.0 Date Analyzed: 03/0 Date Prepared: 03/0	660-91273/4-A er 2/2010 1021 1/2010 1230	Analysis Batch: Prep Batch: 660 Units: mg/L	660-91274 -91273		Instrument ID: HACH Lab File ID: N/A Initial Weight/Volume: 2 Final Weight/Volume: 2	2 mL 2 mL			
Analyte		Spike Amount	Result	% Rec	. Limit	Qual			
Chemical Oxygen De	emand	100	97.3	97	90 - 110				
Matrix Spike/ Matrix Spike Dupl	icate Recovery Repor	rt - Batch: 660-9	1273	I	Method: SM 5220D Preparation: SM 522	20			
MS Lab Sample ID: Client Matrix: Dilution: Date Analyzed: Date Prepared:	640-26178-A-5-B MS Water 1.0 03/02/2010 1021 03/01/2010 1230	Analysis Batch: Prep Batch: 660	660-91274 -91273		Instrument ID: HACH Lab File ID: N/A Initial Weight/Volume: Final Weight/Volume:	25 mL 25 mL			
MSD Lab Sample ID: Client Matrix: Dilution: Date Analyzed: Date Prepared:	640-26178-A-5-C MSD Water 1.0 03/02/2010 1021 03/01/2010 1230	Analysis Batch: Prep Batch: 660	660-91274 -91273		Instrument ID: HACH Lab File ID: N/A Initial Weight/Volume: 2 Final Weight/Volume: 2	25 mL 25 mL			
		<u>% Rec.</u>							
Analyte		MS MSD	Limit	RPD	RPD Limit MS	Qual MSD Qual			

Analyte	MS	MSD	Limit	RPD	RPD Limit	MS Qual	MSD Qual
Chemical Oxygen Demand	79	63	90 - 110	5	20	J3	J3

TestAmerica Tampa

Page	144	of	160	

Quality Control Results

Job Number: 660-33886-1

Client: Environmental Engineering Consultant

Method Blank - Batch: 640-65864

Water

1.0

Date Analyzed: 02/19/2010 1435

Lab Sample ID: MB 640-65864/1

Client Matrix:

Date Prepared: N/A

Total Organic Carbon

Lab Control Sample/

Dilution:

Analyte

N/A Lab File ID: Initial Weight/Volume: 40 mL Final Weight/Volume: 40 mL Qual MDL PQL U 0.35 1.0 Method: SM 5310C Lab Control Sample Duplicate Recovery Report - Batch: 640-65864 Preparation: N/A

Method: SM 5310C **Preparation: N/A**

Instrument ID: No Equipment Assigned

Total Organic Carb	on	16	16.4	0	25	
Analyte		Sample Result/Q	ual Result	RPD	Limit	Qual
Duplicate - BatcLab Sample ID:64Client Matrix:WDilution:1.0Date Analyzed:02Date Prepared:N/	h: 640-65864 0-26226-A-8 DU ater 0 2/19/2010 1856 A	Analysis Batch: 640 Prep Batch: N/A Units: mg/L)-65864	Method: SM Preparation Instrument ID Lab File ID: Initial Weight/ Final Weight/	I 5310C : N/A : No Equipme N/A Volume: 40 r Volume: 40 r	nt Assigned nL nL
Total Organic Carb	oon	103 103	80 - 120 0) 25		
Analyte		<u>% Rec.</u> LCS LCSD	Limit F	RPD RPD Lin	nit LCS Qua	I LCSD Qual
LCSD Lab Sample Client Matrix: Dilution: Date Analyzed: Date Prepared:	ID: LCSD 640-65864/3 Water 1.0 02/19/2010 1503 N/A	Analysis Batch: Prep Batch: N/A Units: mg/L	640-65864	Instrument ID: Lab File ID: Initial Weight/V Final Weight/Vo	No Equipm N/A olume: 40 n olume: 40 n	nent Assigned mL mL
LCS Lab Sample II Client Matrix: Dilution: Date Analyzed: Date Prepared:	D: LCS 640-65864/2 Water 1.0 02/19/2010 1449 N/A	Analysis Batch: Prep Batch: N/A Units: mg/L	640-65864	Instrument ID: Lab File ID: N Initial Weight/V Final Weight/Vo	No Equipme //A olume: 40 olume: 40	nt Assigned mL mL
				·		

Analysis Batch: 640-65864

Result

0.35

Prep Batch: N/A

Units: mg/L

Method Blank - Batch: 680-161223

Client: Environmental Engineering Consultant

Quality Control Results

Job Number: 660-33886-1

Method: SM 5550B Preparation: N/A

Lab Sample ID: MB 6 Client Matrix: Wate Dilution: 1.0 Date Analyzed: 02/19 Date Prepared: N/A	580-161223/1 er 9/2010 1126	Analysis Prep Ba Units:	s Batch: atch: N/A mg/L	680-161223		Instrument ID: K0 Lab File ID: N/ Initial Weight/Volu Final Weight/Volu	DNELAB1 'A ume: 2 mL ume: 2 mL	
Analyte			Result	:	Qual	MDL	PQ	L
Tannins and Lignins			0.037		U	0.037	0.10)
Lab Control Samp	ole - Batch: 680-1612	223				Method: SM 55 Preparation: N	550B /A	
Lab Sample ID: LCS Client Matrix: Wate Dilution: 1.0 Date Analyzed: 02/19 Date Prepared: N/A	680-161223/2 er 9/2010 1126	Analysis Prep Ba Units:	s Batch: atch: N/A mg/L	680-161223		Instrument ID: K0 Lab File ID: N/ Initial Weight/Volu Final Weight/Volu	DNELAB1 A ume: 2 mL ume: 2 mL	
Analyte		Spike A	mount	Result	% Red	c. Limit		Qual
Tannins and Lignins		1.00		0.937	94	80 - 1	120	
Matrix Spike/ Matrix Spike Dupl	icate Recovery Repo	ort - Batcl	ı: 680-1	61223		Method: SM 55 Preparation: N	550B /A	
MS Lab Sample ID: Client Matrix: Dilution: Date Analyzed: Date Prepared:	400-45490-A-1 MS Water 1.0 02/19/2010 1126 N/A	Analysis Prep Ba	s Batch: atch: N/A	680-161223		Instrument ID: K Lab File ID: N Initial Weight/Volu Final Weight/Volu	KONELAB1 N/A ume: 10 u ume: 10 u	nL nL
MSD Lab Sample ID: Client Matrix: Dilution: Date Analyzed: Date Prepared:	400-45490-A-1 MSD Water 1.0 02/19/2010 1126 N/A	Analysis Prep Ba	s Batch: atch: N/A	680-161223		Instrument ID: K0 Lab File ID: N/ Initial Weight/Volu Final Weight/Volu	ONELAB1 'A ume: 10 m ume: 10 m	L
Analyte		<u>% R</u> MS	<u>ec.</u> MSD	Limit	RPD	RPD Limit	MS Qual	MSD Qual
Tannins and Lignins		73	69	80 - 120	1	20	J3	J3

2/26/2010 9:12:16AM

Client:	TestAmerica Tampa 6712 Benjamin Road, Suite 100 Tampa, FL 33634	Work Order: Project Name: Project Number: Date Received:	NTB1515 GHNS Barbados 660-33886 02/18/10
Attn:	Nancy Robertson		
	SAMPLE IDENTIFICATION	LAB NUMBER	COLLECTION DATE AND TIME
2A		NTB1515-01	02/16/10 11:00
1		NTB1515-02	02/16/10 10:00
3B		NTB1515-03	02/16/10 12:20
3A		NTB1515-04	02/16/10 12:40
4B		NTB1515-05	02/16/10 13:50
5A		NTB1515-06	02/16/10 13:30
4D		NTB1515-07	02/16/10 14:40

Samples were received into laboratory at a temperature of 2.30 °C.

Comments:

An executed copy of the chain of custody, the project quality control data, and the sample receipt form are also included as an addendum to this report. If you have any questions relating to this analytical report, please contact your Laboratory Project Manager. Any opinions, if expressed, are outside the scope of the Laboratory's accreditation.

This material is intended only for the use of the individual(s) or entity to whom it is addressed, and may contain information that is privileged and confidential. If you are not the intended recipient, or the employee or agent responsible for delivering this material to the intended recipient, you are hereby notified that any dissemination, distribution, or copying of this material is strictly prohibited. If you have recieved this material in error, please notify us immediately.

Results are reported on a wet weight basis unless otherwise noted

The reported results were obtained in compliance with 2003 NELAC standards unless otherwise noted.

These results relate only to the items tested

Estimated uncertainty is available upon request.

Florida Certification Number: E87358

This report has been electronically signed.

Approved By:

udith a Beato

TestAmerica Nashville Judith A Beato Project Manager

Page 1 of 6

Chlorophyll-a Uncorrected

NA

137

2960 Foster Creighton Road Nashville, TN 37204 * 800-765-0980 * Fax 615-726-3404

THE	LEADER IN ENVIRONMENTA	L TESTING		2960 Foster	Creignion Roa		IN 37204	000-700-0900 Pax			
Client: Attn:	TestAmerica Tampa 6712 Benjamin Road, Suite 100 Tampa, FL 33634 Nancy Robertson		Woi Proj Proj	rk Order: ject: ject Number:	NTB151 GHNS B 660-3388	5 arbados 36			Samp Recei	led: 02/16/ ved: 02/18/	10 10
		Sample ID:	LA 2A - La	BORATOR b Number: I	Y REPORT	ſ l - Matrix	: Water				
CAS #	Analyte	Result	Q	Units	MDL	PQL	Dil Factor	Analyzed Date/Time	Ву	Method	Batch
General BOD	I Chemistry Parameters BOD - 5 Day	4,38	Q	mg/L	2,00	2.00	1	02/23/10 08:30	MXN	SM 5210B	10B3734
NA	Chlorophyll-a Uncorrected	25.3	Q	ug/L	2.00	2.00	1	Prep Date: 02/18/ 02/23/10 10:20	/10 14:38 SXJ	SM 10200H	10B4141
						_		Filtered Date:	02/18/10	14:22	
		Sample ID	LA : 1 - Lal	BORATOR	TB1515-02	ſ - Matrix:	Water				
CAS #	Analyte	Result	Q	Units	MDL	PQL	Dil Factor	Analyzed Date/Time	By	Method	Batch
General BOD	l Chemistry Parameters BOD - 5 Day	7.38	Q	mg/L	2.00	2.00	1	02/23/10 08:30	MXN	SM 5210B	10B3734

02/23/10 10:22 SXJ SM 10200H Filtered Date: 02/18/10 14:43

Prep Date: 02/18/10 14:38

LABORATORY REPORT

2,00

2.00

1

ug/L

Q

Sample ID: 3B - Lab Number: NTB1515-03 - Matrix: Water

CAS #	Analyte	Result	Q	Units	MDL	PQL	Dil Factor	Analyzed Date/Time	Ву	Method	Batch
General Che BOD	emistry Parameters BOD - 5 Day	4.64	Q	mg/L	2,00	2.00	1	02/23/10 08:30	MXN	SM 5210B	10B3734
NA	Chlorophyll-a Uncorrected	22.6	Q	ug/L	2.00	2.00	1	Prep Date: 02/18/ 02/23/10 10:23	10 14:38 SXJ	SM 10200H	10B4141

LABORATORY REPORT

Samj	ple	ID:	3A	- Lal	b Number:	NTB1515-0)4 -	Matrix:	Water
------	-----	-----	----	-------	-----------	-----------	------	---------	-------

CAS #	Analyte	Result	Q	Units	MDL	PQL	Dil Factor	Analyzed Date/Time	Ву	Method	Batch
General Che BOD	emistry Parameters BOD - 5 Day	2.58	Q	mg/L	2.00	2.00	1	02/23/10 08:30	MXN	SM 5210B	10B3734
NA	Chiorophyll-a Uncorrected	21.1	Q	ug/L	2.00	2.00	1	Prep Date: 02/18/ 02/23/10 10:24 Filtered Date: 0	10 14:38 SXJ 02/18/10	SM 10200H 14:30	10B4141

LABORATORY REPORT

Sample ID: 4B - Lal	Number:	NTB1515-05	- Matrix:	Water
---------------------	---------	------------	-----------	-------

CAS #	Analyte	Result	Q	Units	MDL	PQL.	Dil Factor	Analyzed Date/Time	Ву	Method	Batch
General Che BOD	emistry Parameters BOD - 5 Day	6.55	Q	mg/L	2.00	2.00	1	02/23/10 08:30	MXN	SM 5210B	10B3734
								Prep Date: 02/18/	0 14:38		

10B4141

2960 Foster Creighton Road Nashville, TN 37204 * 800-765-0980 * Fax 615-726-3404

Client:	TestAmerica Tampa 6712 Benjamin Road, Suite 100	Work Order: Project:	NTB1515 GHNS Barbados	Sampled: Received:	02/16/10 02/18/10	
	Tampa, FL 33634	Project Number:	660-33886			
Attn:	Nancy Robertson					

LABORATORY REPORT Sample ID: 4B - Lab Number: NTB1515-05 - Matrix: Water

CAS #	Analyte	Result	Q	Units	MDL	PQL	Dil Factor	Analyzed Date/Time	Ву	Method	Batch
General Ch	emistry Parameters - Cont. Chiorophyll-a Uncorrected	4.40	нтз	ug/L	2.00	2.00	1	02/23/10 10:25	SXJ	SM 10200H	10B4141
								Filtered Date:	02/18/10	15:15	

LABORATORY REPORT Sample ID: 5A - Lab Number: NTB1515-06 - Matrix: Water

CAS #	Analyte	Result	Q	Units	MEDL	PQL	Dil Factor	Analyzed Date/Time	Ву	Method	Batch
General Che BOD	emistry Parameters BOD - 5 Day	8.84	Q	mg/L	2.00	2.00	1	02/23/10 08:30	MXN	SM 5210B	10B3734
NA	Chłorophyll-a Uncorrected	22.0	Q	ug/L	2.00	2.00	1	Prep Date: 02/18/10 02/23/10 10:27 Filtered Date: 02/	14:38 SXJ /18/10 1	SM 10200H 5:14	10B4141

LABORATORY REPORT Sample ID: 4D - Lab Number: NTB1515-07 - Matrix: Water

CAS #	Analyte	Result	Q	Units	MDL	PQL	Dil Factor	Analyzed Date/Time	By	Method	Batch
General Ch BOD	emistry Parameters BOD - 5 Day	11.5		mg/L	2.00	2.00	1	02/23/10 08:30	MXN	SM 5210B	10B3734
NA	Chlorophyll-a Uncorrected	40.7		ug/L	2.00	2.00	I	Prep Date: 02/18/ 02/23/10 10:28 Filtered Date: 0	10 14:38 SXJ 02/18/10	SM 10200H 14:35	10B4141

2960 Foster Creighton Road Nashville, TN 37204 * 800-765-0980 * Fax 615-726-3404

Client:	TestAmerica Tampa	Work Order:	NTB1515	Sampled:	02/16/10
	6712 Benjamin Road, Suite 100	Project:	GHNS Barbados	Received:	02/18/10
	Tampa, FL 33634	Project Number:	660-33886		

Attn: Nancy Robertson

SAMPLE EXTRACTION DATA

		Wt/Vol				
Parameter	Lab Number	Extracted	Extracted Vol	Date	Analyst	Method
General Chemistry Parameters	NTB1515-01	300.0 mL	300.0 mL	02/18/2010	MXN	*** DEFAULT PREF
General Chemistry Parameters	NTB1515-02	300.0 mL	300.0 mL	02/18/2010	MXN	*** DEFAULT PREF
General Chemistry Parameters	NTB1515-03	300.0 mL	300.0 mL	02/18/2010	MXN	*** DEFAULT PREF
General Chemistry Parameters	NTB1515-04	300.0 mL	300.0 mL	02/18/2010	MXN	*** DEFAULT PREF
General Chemistry Parameters	NTB1515-05	300.0 mL	300.0 mL	02/18/2010	MXN	*** DEFAULT PREF
General Chemistry Parameters	NTB1515-06	300.0 mL	300.0 mL	02/18/2010	MXN	*** DEFAULT PREF
General Chemistry Parameters	NTB1515-07	300,0 mL	300.0 mL	02/18/2010	MXN	*** DEFAULT PREF
General Chemistry Parameters	NTB1515-01	1.0 filter	1.0 filter	02/18/2010	SXJ	Filtering
General Chemistry Parameters	NTB1515-02	1.0 filter	1.0 filter	02/18/2010	SXJ	Filtering
General Chemistry Parameters	NTB1515-03	1.0 filter	1.0 filter	02/18/2010	SXJ	Filtering
General Chemistry Parameters	NTB1515-04	1.0 filter	1.0 filter	02/18/2010	SXJ	Filtering
General Chemistry Parameters	NTB1515-05	1.0 filter	1.0 filter	02/18/2010	SXJ	Filtering
General Chemistry Parameters	NTB1515-06	1.0 filter	1.0 filter	02/18/2010	SXJ	Filtering
General Chemistry Parameters	NTB1515-07	1.0 filter	1.0 filter	02/18/2010	SXJ	Filtering

2960 Foster Creighton Road Nashville, TN 37204 * 800-765-0980 * Fax 615-726-3404

Client: TestAmerica Tampa 6712 Benjamin Road, Suite 100 Tampa, FL 33634 Attn: Nancy Robertson				Work Projec Projec	Order: ot: ct Number:	NTB1515 GHNS Bart 660-33886	oados			Sampled: Received:	02/16/10 02/18/10
			PR	OJECT (QUALITY (Blank	CONTROL D	ATA				
Analyte		Blank Val	ue	Q	Units	Q.C. Bate	:h	Lab Number			
G eneral BOD - 5 D	Chemistry Parameters ay	2.00			mg/L	10B3734	\$	10B3734-BLK	1		
Chiorophyl	II-a Uncorrected	2.00		U	ug/L	10B414	1	10B4141-BLK	1		
			PR	OJECT (QUALITY (Duplic:	CONTROL E	DATA				
Analyte		Orig. Va	I. I	Duplicate	Q	Units	R	PD RI	D Limit	Q.C. Batch	Sample Duplicated
General	Chemistry Parameters										
BOD - 5 D	ay	2.72		2,72		mg/L		0	20	10B3734	NTB1443-01
Chlorophy	ll-a Uncorrected	5.00		5.00		ug/L		0	50	10B4141	NTB1517-01
			PR	OJECT	QUALITY (LCS	CONTROL I	DATA				
Analyte		Know	n Val.	Anal	lyzed Val	Q	Units	%1	lec.	Target Range	Q.C. Batch
General	Chemistry Parameters				202				10	95 115	1002724
BOD - 5 D Chlorophy	ay	1	98		168		11g/L	8	4	80 - 120	10B4141
сшогориу.	n-a chiconected				100		~ 0 ~~	-			
			PR	ојест	QUALITY LCS D	CONTROL I	DATA				
Analyte		Orig. Val.	Duplicate	Q	Units	Spike Conc	% Rec.	RPD	RPD Limit	Q.C. Batch	Sample Duplicated
General Chlorophy	Chemistry Parameters Il-a Uncorrected		178		ug/L	200	89	5	50	10B4141	

Page 5 of 6

2960 Foster Creighton Road Nashville, TN 37204 * 800-765-0980 * Fax 615-726-3404

Client:	TestAmerica Tampa 6712 Benjamin Road Tampa, FL 33634 Nancy Robertson	, Suite 100	Wo Proj Proj	Work Order: Project: Project Number:			Sampled: Received:	02/16/10 02/18/10
	<i>.</i>		CER.	TIFICATION	SUMMARY			
TestAm	erica Nashville		CLAR .					
	Method	Matrix	A2LA	AIHA	Nelac	Florida		
SM	1 10200H	Water			X	Х	***********	
SI	4 5210B	Water		N/A	х	х		
Subcont	racted Laboratorie	\$						
TestAmo	erica - Orlando, FL Flo	rida Cert #E83012						
8010 S	unport Drive Suite 11	6 - Orlando, FL 32809	9					
Ana Ana	lysis Performed: Samples: NTF lysis Performed: Samples: NTF	BOD 5 Day SM 521 31515-01, NTB1515-(Chlorophyll-a Unco 31515-01, NTB1515-(0B 02, NTB1515-03, NTB rrected SM10200H 02, NTB1515-03, NTB	1515-04, NTB15	15-05, NTB1515-06, N 15-05, NTB1515-06, N	TB1515-07 TB1515-07		
			DATA QU	JALIFIERS AN	VD DEFINITIONS			

- **HT3** Sample received with insufficient holding time remaining for analysis to be performed within the method's holding time requirements.
- Q Sample analyzed beyond acceptable holding time.
- U The compound was analyzed for but not detected

ADDITIONAL COMMENTS

When insufficient sample volume is received for Matrix Spike and Matrix Spike Duplicate, Laboratory Control Spike and Laboratory Control Spike Duplicate data is used for batch QC.

Page 6 of 6

4310 East Anderson Road * Orlando, FL 32812 * 407-851-2560 * Fax: 407-856-0886 * 800-851-

Client: <u>TestAmerica Tampa</u> Project: <u>NTB1515</u>
Shipped By: Walk-in Tracking Number:
Cooler Received On: 02/18/10 13:47 And Opened On (Date/time): 2-18-10/1347
Received By: Jennifer Batura Logged in by: Ryan Reich
Were custody seals on the outside of cooler? YES NO If Yes # Location
Were custody seals intact? YES NO N/A $$ (no seals present)
Chain of Custody Complete? YES _/ NO Discrepancy Comments:
Cooler Temparture When Opened: <u>2.30</u> Degrees Celsius Temparture Blank Included: YES NO/
Packing Material: Bubblewrap NONE Other Plustic
Received on Ice: YES _/ NO Other: Total # Of Containers: _/ // # Vials
Any Bottles Broken? YES NO/ If Yes Which One(s)?
Any Missing Samples? YES If Yes Which One(s)?
pH Levels: H2SO4 <=2? HNO3 <=2? HCL <=2? NaOH >=10?
Of Containers Unpreserved between 6 and 8? $\underline{/ 9}$
Any Air Bubbles in VOA Vials? YES NO N/A (no VOA vials received)
Was there enough sample shipped in each container? YES MO to Rec 2-18-10
Correct Preservatives Used? YES / NO / If No, see comments:
Project Manager: Judith A Beato
Corrective Actions Taken

Mand Handow	REGEIVED FOR LABOR TORY BY		RECEIVED BY, BIOMATURE	RELINQUISHED BY: (SIGNATURE) ENIPTY CONTAINERS		2/16/10 3:30 515	2/11/00:2:00 41	2/10/10/10/3/	J P DIIU MILLO		SAMPLE	COMPANY CONTRACTING THIS WORK (If ap	CI IENT ADDRESS	CLIENT NAME 1550 1	CLIENT (SITE) PMP Dr. 101	SAMPLER'S SIGNATURE	PROJECT REFERENCE / H/VS		ANALYS	
2/19/10 10905 NO O	DATE TIME CUSTODY INTACT CU		DATE TIME RECEIVED BY BEGINTUREY	DATE TIME RELINQUISMED BY JAGNATUR							SAMPLE IDENTIFICATION	(eldicable) (eldic	BE BE AN CONTRACT OF A COLUMNIC OF BE	CLIENTE-MAIL	CLIENT PHONE 7, 2, 7) CLIENT FAX	P.O. NUMBER CONTRACT NO.	PROJECT NO. 1 0001 PROJECT LOGATION M	STING (0100-33830	SIS REQUEST AND CHAIN OF CUSTODY RECOP	
2012 11 61 240 51 51 2.1 5.1 308 5 2	STODY TAMPA CCC COOLER TEMP. UPON RECEIPT LABORATI	ORATORY USE ONLY	AVIC 2/16/10 10:00 RECEIVED BY: (SIGNATURE)	RE) DATE TIME RELIXEUISFEDEN: ISIGNALIVIE)			X IIIII X X IIIII X			<u>N / / / / / / / / / / / / / / / / / / </u>	SOLID AIR NUMBER OF CONTAINERS SUBMITTED		SOLID LIQUID Child Fife Sulpi Sulf An Fie Sulf An Fie Sul An Fie Sul An Fie Sul An An An An An An An An An An An An An	1011. SC 11 Pe 11 Pe	Alt Alt Anos Alt Anos Alt Anos Alt Anos Alt Anos Alt Anos Alt Anos Alt Anos Alt Anos Alt Anos Alt Anos Alt Anos Alt Alt Alt Alt Alt Alt Alt Alt Alt Alt	nite nosphon onon sophon sophon sophon Hat	ATRIX 、 、 、 、 、 、 、 、 REQUIRED ANALYSIS	Alternate Laboratory Name/Location Phone: Fax:	ID TestAmerica Tampa Website: www.tes 6712 Benjamin Road, Suite 100 Phone: (813) 885 Tampa, FL 33634 Fax: (813) 885-7	Serial Number
フォッイ ((L-O + TAL8240-660 (0205	TORY REMARKS			2/16/03/45							REMARKS	NUMBER OF COOLERS SUBMITTED	DATE DUE	CSURCHARGE)	DATE DUE	DELIVERY	PAGE / 2 OF		stamericalinc.com 35-7427 7049	

Page 154 of 160

-.

RECEIVED FOR LABORATIORY BY: DATE TIME CUSTODY INTACT CUST SAMUTURE: VES O MUMAL MUMALON 3/19/10 0905 NO O	RECEIVED BY SIGNATURE) DATE TIME BEDEIVED BY SIGNATURE) EMPTY SUCCEASE 2/10/10 2:00/00 (21/0/00/00)	RELINQUISHED BY: (SIGNATURE) / DATE TIME RELINQUISHED BY: (SIGNATURE)	X= No Calinity, add Turbidity	NAWAGAN OLE VAMA	ZIMIN 2140 HD	2/16/10 7:50 7:2 2/16/10 7:30 7:2 2/11/10 7:30 7:2	$\frac{2110}{12}$	2/10/12:20 312	X 20:01 01/01/Z	2/16/10/11/20 2.A X	DATE TIME SAMPLE IDENTIFICATION	COMPANY CONTRACTING THIS WORK (If applicable)	CLIENT NAME (halfactos velschingschart i cor) and client e-mail	CLIENT (SITE) PR RYDY CLIENT BHONE 7378/ CLIENT FAX	SAMPLER'S SIGNATURE P.O. NUMBER CONTRACT NO.	PROJECT REFERENCE HAIS PROJECT NO. PROJECT UCATIONS MAT	THE LEADER IN ENVIRONMENTAL TESTING (1(10) 33320		
NO TAMPA UUU COOLER TEMP. UPON RECEIPT LABORATORY REMARKS UUUT	72 2/16/10 70:00 RECEIVED BY: (SIGNATURE) VALE	2/10/10 10:00 / UU/UU/UU/UU DATE DATE TIME									SOLIE AIR NONA NUMBER OF CONTAINERS SUBMITTED REMARKS	AQUEOUS L	DID COLLENCERY COLLENC	SOLVENT SOLVENT PLASS TANDATE DUE PLASS TANDATE DUE SILIAN ALE DATE DUE	THE LEY IN A HIM DELIVERY	PE REQUIRED ANALYSIS PAGE 4 4 0F	Alternate Laboratory Name/Location Phone:	TestAmerica Tampa Website: www.testamericainc.com 6712 Benjamin Road, Suite 100 Phone: (813) 885-7427 Tampa, FL 33634 Fax: (813) 885-7049	Serial Number

Page 155 of 160

TAL8240-660 (0209)

1

TestAmerica	
THE LEADER IN ENVIRONMENTAL TESTING PRESERVATION CONFI	RMATION FORM, Tampa, FL
JOB NUMBER: 660 - 33886 Logged in TALS By :-	4Manda Tharbison
Cooler Received on (date) $2 - 18 - 14$ And Opened By (full name):	Charles VOLE
1. Shipper (circle one) FEDEX UPS DHL WALK-IN COURIER OTH	IER:
2. Tracking #	
3 Temperature of rep. sample or temp blank when opened:	Degrees Celsius
r <	
4. Number of H2SO4 (sulfuric acid) preserved containers:	
All containers pH < 2 ? $\frac{25}{2}$ If not please comment below:	
5 Number of HCL (hydrochloric acid) preserved containers:	
All containers pH < 2 ? If not please comment below:	
	· · · · · · · · · · · · · · · · · · ·
6. Number of HNO3 (nitric actor preserved contained).	
4, 3B, 4B, 4B, 4B, 2A, 2A, 4D	/h=3
7. Number of NaOH (sodium hydroxide) preserved containers:	
All containers pH >12 ? If not please comment below:	,/
1A, 38, 4B, 4D, 2A SA Ph-	= /
· · / · · ·	we
8. Number of Unpreserved containers:	
All containers pH between 6 and 8?	t below:
/	
· · · · · ·	ND
 Was chlorine present in any of the unpreserved containers? 	· / / /
If yes, which samples?	9259
Chlorine Strip Lot#:	

4.1

Client: Environmental Engineering Consultant

Job Number: 660-33886-1

List Source: TestAmerica Tampa

Login Number: 33886 Creator: Harrison, Amanda List Number: 1

Question	T / F/ NA	Comment
Radioactivity either was not measured or, if measured, is at or below background	N/A	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	see receipt info page (bottom) for temps
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	False	minimal volume received for 8081, 8141, and 8151 for sample SB
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Is the Field Sampler's name present on COC?	True	
Sample Preservation Verified	True	

Client: Environmental Engineering Consultant

Job Number: 660-33886-1

Login Number: 33886 Creator: Hor, Koma			List Source: TestAmerica Pensacola List Creation: 02/19/10 11:37 AM
List Number: 1			
Question	T / F/ NA	Comment	t
Radioactivity either was not measured or, if measured, is at or below background	N/A		
The cooler's custody seal, if present, is intact.	True		
The cooler or samples do not appear to have been compromised or tampered with.	True		
Samples were received on ice.	True		
Cooler Temperature is acceptable.	True		
Cooler Temperature is recorded.	True	1.4°C	
COC is present.	True		
COC is filled out in ink and legible.	True		
COC is filled out with all pertinent information.	True		
There are no discrepancies between the sample IDs on the containers and the COC.	True		
Samples are received within Holding Time.	True		
Sample containers have legible labels.	True		
Containers are not broken or leaking.	True		
Sample collection date/times are provided.	True		
Appropriate sample containers are used.	True		
Sample bottles are completely filled.	True		
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True		
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True		
If necessary, staff have been informed of any short hold time or quick TAT needs	True		
Multiphasic samples are not present.	True		
Samples do not require splitting or compositing.	True		
Is the Field Sampler's name present on COC?	True		
Sample Preservation Verified	True		

Login Sample Receipt Check List

Client: Environmental Engineering Consultant

Job Number: 660-33886-1

Login Number: 33886 Creator: Conner, Keaton List Number: 1			List Source: TestAmerica Savannah List Creation: 02/19/10 09:39 AM
Question	T / F/ NA	Commen	t
Radioactivity either was not measured or, if measured, is at or below background	N/A		
The cooler's custody seal, if present, is intact.	True		
The cooler or samples do not appear to have been compromised or tampered with.	True		
Samples were received on ice.	True		
Cooler Temperature is acceptable.	True		
Cooler Temperature is recorded.	True		
COC is present.	True		
COC is filled out in ink and legible.	True		
COC is filled out with all pertinent information.	True		
There are no discrepancies between the sample IDs on the containers and the COC.	True		
Samples are received within Holding Time.	True		
Sample containers have legible labels.	True		
Containers are not broken or leaking.	True		
Sample collection date/times are provided.	True		
Appropriate sample containers are used.	True		
Sample bottles are completely filled.	True		
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True		
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	N/A		
If necessary, staff have been informed of any short hold time or quick TAT needs	True		
Multiphasic samples are not present.	N/A		
Samples do not require splitting or compositing.	N/A		
Is the Field Sampler's name present on COC?	False		
Sample Preservation Verified	True		

Login Sample Receipt Check List

Client: Environmental Engineering Consultant

Job Number: 660-33886-1

Login Number: 33886 Creator: Alsheimer, Carl List Number: 1		List Source: TestAmerica Tallahassee List Creation: 02/19/10 08:58 AM
Question	T / F/ NA	Comment
Radioactivity either was not measured or, if measured, is at or below background	N/A	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	N/A	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	N/A	
Samples do not require splitting or compositing.	N/A	
Is the Field Sampler's name present on COC?	True	
Sample Preservation Verified	True	

ANALYTICAL REPORT

Job Number: 660-33914-1 Job Description: GHNS Barbados

For: Environmental Engineering Consultant 5119 N. Florida Avenue Tampa, FL 33603 Attention: Mr. Richard Pryor

Approved for release. Nancy Robertson Project Manager II 4/6/2010 11:53 AM

Nancy Robertson Project Manager II nancy.robertson@testamericainc.com 04/06/2010 Revision: 1

Methods: FDEP, DOH Certification #: TestAmerica Tampa E84282, TestAmerica Tallahassee E81005, TestAmerica Orlando E83012, TestAmerica Savannah E87052, TestAmerica Pensacola E81010

These test results meet all the requirements of NELAC unless specified in the case narrative. All questions regarding this test report should be directed to the TestAmerica Project Manager who signed this test report. The estimated uncertainty associated with these reported results is available upon request. The results contained in this test report relate only to these samples included herein.

TestAmerica Laboratories, Inc. TestAmerica Tampa 6712 Benjamin Road, Suite 100, Tampa, FL 33634 Tel (813) 885-7427 Fax (813) 885-7049 www.testamericainc.com

Comments

No additional comments.

Receipt

All samples were received in good condition within temperature requirements.

GC Semi VOA

Method 8081A: Per TA SOP, at least one of surrogate recoveries was in control on sample 4F. The sample is flagged with J1.

Method 8081A: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for batch 90901 and 90902 were outside of control limits. The associated laboratory control sample (LCS) recovery met acceptance criteria. Sample 7A is flagged with J3.

Method 8141A: Surrogate recovery for sample 4F was outside of acceptance limits. There was insufficient sample to perform a re-extraction; therefore, the data have been reported.

Method 8141: The laboratory control sample (LCS) for batch 640-65857 was outside of control limits for monochrotophos. The laboratories SOP allows for 3/20 analytes to recover outside of limits when a full analyte spike is run. The data are flagged with J3 qualifiers.

Method 8141: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for batch 640-65855 were outside of control limits. The associated laboratory control sample (LCS) recovery met acceptance criteria. The data are flagged with J3 qualifiers.

Method 8151A: The surrogate recovery for samples 4F and 10 were outside control limits bias high. The samples were non detect and are flagged with J1.

Method 8151A: The laboratory control sample / laboratory control sample duplicate (LCS/LCSD) for batch 90999 was outside of control limits for dalapon and MCPA. The laboratories SOP allows for 3/20 analytes to recover outside of limits when a full analyte spike is run. The data are flagged with J3 qualifiers.

Method 8151A: The laboratory control sample (LCS) for batch 91923 was outside control limits for dinoseb. The laboratories SOP allows for 3/20 analytes to recover outside of limits when a full analyte spike is run. The data are flagged with J3 qualifiers.

Method 8151A: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for batch 91293 were outside of control limits. The associated laboratory control sample (LCS) recovery met acceptance criteria. Sample 7A is flagged with J3.

No other analytical or quality issues were noted.

Metals

Method 6010B: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for batch 90981were outside of control limits. The associated laboratory control sample (LCS) recovery met acceptance criteria. The data are flagged with J3 qualifiers.

No other analytical or quality issues were noted.

RSK-175

The Method Blank contained an estimated result between the MDL and PQL for Carbon dioxide. The samples are flagged with V.

General Chemistry

Method 353.2 Nitrate, Nitrite: The samples were received with greater than 50% of holding time expired. As such, the laboratory had insufficient time remaining to perform the analysis within holding time for sample 4F and Surface Water Blank. The data are flagged with Q qualifiers for this sample.

Method 180.1 Turbididty: The samples were received with greater than 50% of holding time expired. As such, the laboratory had insufficient time remaining to perform the analysis within holding time for sample 4F and Surface Water Blank. The data are flagged with Q qualifiers for this sample.

Method SM 5210B BOD: The samples were received with greater than 50% of holding time expired. As such, the laboratory had insufficient time remaining to perform the analysis within holding time. The data are flagged with Q qualifiers except for samples 7A and 7B.

Method 10200H Chlorophyll-a: The samples were received with greater than 50% of holding time expired. As such, the laboratory had insufficient time remaining to perform the analysis within holding time. The data are flagged with Q qualifiers except for samples 7A and

7B.

Method 350.1: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for batch 680-161659 were outside of control limits. The associated laboratory control sample (LCS) recovery met acceptance criteria. The data are flagged with J3 qualifiers.

Method 353.2: The matrix spike duplicate (MSD) recovery for batch 91350 was outside control limits. The associated laboratory control sample (LCS) recovery met acceptance criteria. The data are flagged with J3 qualifiers.

Method SM 5220D: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for batch 91051 were outside control limits. The associated laboratory control sample (LCS) recovery met acceptance criteria. Sample 10 is flagged with J3.

Method SM 5220D: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for batch 91053 were outside control limits due to the high concentration of analyte in the sample. The associated laboratory control sample (LCS) recovery met acceptance criteria. Sample 4F is flagged with J3.

Method SM 5550B: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for batch 680-161926 were outside control limits. The associated laboratory control sample (LCS) recovery met acceptance criteria. The data are flagged with J3 qualifiers.

No other analytical or quality issues were noted.

Client: Environmental Engineering Consultant

Lab Sample ID Analyte	Client Sample ID	Result / Q	ualifier	Reporting Limit	Units	Method
660-33914-1	4F					
Carbon dioxide (as	CO2)	310	V	50	ua/l	RSK-175
Malathion	002)	0.25	ľ	0.94	ug/L	8141A
Turbidity		280	0	5.0	NTU	180.1
Phosphorus Total		13	Q.	0.30	ma/l	365.4
Chlorophyll a		98.9	0	2 00	ua/l	SM 10200H
Alkalinity		160	~	1.0	ma/l	SM 2320B
Total Suspended So	olids	110		17	mg/L	SM 2540D
Chloride		150		10	ma/l	SM 4500 CI- F
Sulfide		53		10	ma/l	SM 4500 S2 F
Biochemical Oxyger	n Demand	88.8	0	2 00	mg/L	SM 5210B
Chemical Oxygen)emand	460	.13	20	mg/L	SM 5220D
Tannins and Lignins	8	5.9	00	1.0	mg/L	SM 5550B
Total Recoverable						
Copper		0.018		0.010	mg/L	6010B
Iron		1.4		0.20	mg/L	6010B
Potassium		8.6		1.0	mg/L	6010B
Magnesium		9.6		0.080	mg/L	6010B
Sodium		100		5.0	mg/L	6010B
Lead		0.0069	I	0.010	mg/L	6010B
Zinc		0.056		0.020	mg/L	6010B
660-33914-2	4E					
Carbon dioxide (as	CO2)	130	V	50	ua/l	RSK-175
Turbidity		17		0 10	NTU	180.1
Phosphorus Total		0.21	1	0.30	ma/l	365.4
Chlorophyll a		3 20	0 0	2 00	ua/l	SM 10200H
Alkalinity		430	<u> </u>	1.0	ma/l	SM 2320B
Total Suspended So	olids	44		1.0	mg/L	SM 2540D
Sulfate		88		25	ma/l	SM 426C
Chloride		490		50	mg/L	SM 4500 CI- E
Biochemical Oxyger	n Demand	3 60	0	2 00	mg/L	SM 5210B
Chemical Oxygen D	emand	41	<u> </u>	20	mg/L	SM 5220D
Tannins and Lignins	8	1.5		0.10	mg/L	SM 5550B
Total Recoverable						
Iron		0.38		0.20	mg/L	6010B
Potassium		25		1.0	mg/L	6010B
Magnesium		66		0.080	mg/L	6010B
Sodium		300		5.0	mg/L	6010B
Lead		0.0036	I	0.010	mg/L	6010B
Zinc		0.016	I	0.020	mg/L	6010B

Client: Environmental Engineering Consultant

Lab Sample ID Analyte	Client Sample ID	Result / Q	ualifier	Reporting Limit	Units	Method
660-33914-3	4C					
Carbon dioxide (as	CO2)	410	V	50	ug/L	RSK-175
Turbidity	,	11		0.10	NTU	180.1
Phosphorus, Total		0.21	I	0.30	mg/L	365.4
Chlorophyll a		91.8	Q	2.00	ug/L	SM 10200H
Alkalinity		530		1.0	mg/L	SM 2320B
Total Suspended S	olids	8.8		1.0	mg/L	SM 2540D
Sulfate		62		10	mg/L	SM 426C
Chloride		510		50	mg/L	SM 4500 CI- E
Sulfide		1.1		1.0	mg/L	SM 4500 S2 F
Biochemical Oxyge	n Demand	10.3	Q	2.00	mg/L	SM 5210B
Chemical Oxygen E	Demand	56		20	mg/L	SM 5220D
Tannins and Ligning	S	3.0		0.50	mg/L	SM 5550B
Total Recoverable						
Iron		0.063	I	0.20	mg/L	6010B
Potassium		30		1.0	mg/L	6010B
Magnesium		63		0.080	mg/L	6010B
Sodium		320		5.0	mg/L	6010B
Zinc		0.0097	I	0.020	mg/L	6010B
660-33914-4	10					
Carbon dioxide (as	CO2)	42	IV	50	ug/L	RSK-175
Turbidity		4.1		0.10	NTU	180.1
Chlorophyll a		15.0	Q	2.00	ug/L	SM 10200H
Alkalinity		440		1.0	mg/L	SM 2320B
Salinity		2.5		2.0	ppt	SM 2520B
Total Suspended Se	olids	8.0		1.0	mg/L	SM 2540D
Sulfate		150		25	mg/L	SM 426C
Chloride		1200		100	mg/L	SM 4500 CI- E
Biochemical Oxyge	n Demand	2.95	Q	2.00	mg/L	SM 5210B
Chemical Oxygen E	Demand	49	J3	20	mg/L	SM 5220D
Tannins and Lignins	S	1.6		0.10	mg/L	SM 5550B
Total Recoverable						
Iron		0.075	I	0.20	mg/L	6010B
Potassium		32		10	mg/L	6010B
Magnesium		97		0.080	mg/L	6010B
Sodium		590		5.0	mg/L	6010B
Zinc		0.0078	I	0.020	mg/L	6010B

Client: Environmental Engineering Consultant

Lab Sample ID Analyte	Client Sample ID	Result / Q	ualifier	Reporting Limit	Units	Method
660-33914-5	7A					
Carbon dioxide (as	CO2)	54	V	50	ug/L	RSK-175
Turbidity		4.6		0.10	NTU	180.1
Phosphorus, Total		0.11	I	0.30	mg/L	365.4
Chlorophyll a		37.2		2.00	ug/L	SM 10200H
Alkalinity		420		1.0	mg/L	SM 2320B
Salinity		2.5		2.0	ppt	SM 2520B
Total Suspended So	olids	11		1.0	mg/L	SM 2540D
Sulfate		160		25	mg/L	SM 426C
Chloride		1100		100	mg/L	SM 4500 CI- E
Biochemical Oxyger	n Demand	4.20		2.00	mg/L	SM 5210B
Chemical Oxygen D	emand	51		20	mg/L	SM 5220D
Tannins and Lignins	;	1.6		0.10	mg/L	SM 5550B
Total Recoverable						
Iron		0.11	I	0.20	mg/L	6010B
Potassium		31		10	mg/L	6010B
Magnesium		96		0.080	mg/L	6010B
Sodium		580		5.0	mg/L	6010B
Zinc		0.0082	I	0.020	mg/L	6010B
660-33914-6	7B					
Carbon dioxide (as	CO2)	36	IV	50	ua/L	RSK-175
Turbidity	,	2.7		0.10	NTU	180.1
Chlorophyll a		24.2		2.00	ug/L	SM 10200H
Alkalinity		440		1.0	ma/L	SM 2320B
Salinity		2.5		2.0	ppt	SM 2520B
Total Suspended So	olids	9.6		1.0	ma/L	SM 2540D
Sulfate		140		25	ma/L	SM 426C
Chloride		1000		100	ma/L	SM 4500 CI- E
Biochemical Oxyger	Demand	3.93		2.00	ma/L	SM 5210B
Chemical Oxygen D	emand	48		20	ma/l	SM 5220D
Tannins and Lignins	5	1.5		0.10	mg/L	SM 5550B
Total Recoverable						
Iron		0.067	I	0.20	mg/L	6010B
Potassium		32		10	mg/L	6010B
Magnesium		97		0.080	mg/L	6010B
Sodium		590		5.0	mg/L	6010B
Zinc		0.0093	I	0.020	mg/L	6010B

Client: Environmental Engineering Consultant

Lab Sample ID Analyte	Client Sample ID	Result / Q	ualifier	Reporting Limit	Units	Method	
660-33914-7	SURFACE WATER E	BLANK					
Carbon dioxide (as	CO2)	120	V	50	ua/L	RSK-175	
Ammonia (as N)	/	0.072		0.020	ma/L	350.1	
Nitrate as N		3.3	Q	0.50	mg/L	353.2	
Chlorophyll a		2.00	Q,U	2.00	ug/L	SM 10200H	
Alkalinity		33		1.0	mg/L	SM 2320B	
Chloride		12		5.0	mg/L	SM 4500 CI- E	
Biochemical Oxyger	n Demand	2.00	Q,U	2.00	mg/L	SM 5210B	
Total Recoverable							
Sodium		9.7		0.50	mg/L	6010B	
660-33914-8	4F						
Chlordane (technica	al)	85		17	ug/Kg	8081A	
Dieldrin		1.4	I	1.7	ug/Kg	8081A	
Heptachlor epoxide		0.17	I	2.0	ug/Kg	8081A	
Aluminum		3200		78	mg/Kg	6010B	
Arsenic		1.6	I	1.9	mg/Kg	6010B	
Boron		8.7	I	19	mg/Kg	6010B	
Barium		26		3.9	mg/Kg	6010B	
Calcium		210000		970	mg/Kg	6010B	
Cobalt		1.3	I	3.9	mg/Kg	6010B	
Chromium		9.2		3.9	mg/Kg	6010B	
Copper		23		7.8	mg/Kg	6010B	
Iron		2900		19	mg/Kg	6010B	
Magnesium		3300		190	mg/Kg	6010B	
Manganese		65		3.9	mg/Kg	6010B	
Sodium		970		190	mg/Kg	6010B	
Lead		33		1.9	mg/Kg	6010B	
Strontium		2000		19	mg/Kg	6010B	
Titanium		27		3.9	mg/Kg	6010B	
Vanadium		6.4		3.9	mg/Kg	6010B	
Zinc		94		7.8	mg/Kg	6010B	
Mercury		0.015	I	0.015	mg/Kg	7471A	
Ammonia (as N)		9.3		0.60	mg/Kg	350.1	
Phosphorus		1300		40	mg/Kg	365.4	
Sulfide		240		25	mg/Kg	9034	
Total Organic Carbo	on	22000		3000	mg/Kg	9060	
Percent Solids		68		0.10	%	Moisture	
Soluble		600		07	100 or 114	0020	
Suitate-Soluble		62U 7 50	0	97	mg/Kg	9038	
pri-Soluble	lubla	7.50	Q	1.00	5U		
Onnophosphate-So	elani	3.1		3.0	mg/L	SIM 4500 P E	

Client: Environmental Engineering Consultant

Lab Sample ID Analyte	Client Sample ID	t Sample ID Result / Qualifier		Reporting Limit	Units	Method	
660-33914-9	4E						
4,4'-DDE		0.51	I	3.3	ug/Kg	8081A	
Dieldrin		0.42	I	1.7	ug/Kg	8081A	
Aluminum		3200		77	mg/Kg	6010B	
Arsenic		1.1	I	1.9	mg/Kg	6010B	
Boron		12	I	19	mg/Kg	6010B	
Barium		15		3.8	mg/Kg	6010B	
Calcium		150000		960	mg/Kg	6010B	
Cobalt		0.82	I	3.8	mg/Kg	6010B	
Chromium		4.8		3.8	mg/Kg	6010B	
Copper		12		7.7	mg/Kg	6010B	
Iron		2600		19	mg/Kg	6010B	
Magnesium		4200		190	mg/Kg	6010B	
Manganese		44		3.8	mg/Kg	6010B	
Sodium		1300		190	mg/Kg	6010B	
Lead		53		1.9	mg/Kg	6010B	
Strontium		2200		19	mg/Kg	6010B	
Titanium		40		3.8	mg/Kg	6010B	
Vanadium		5.4		3.8	mg/Kg	6010B	
Zinc		74		7.7	mg/Kg	6010B	
Mercury		0.016	I	0.016	mg/Kg	7471A	
Ammonia (as N)		30		1.5	mg/Kg	350.1	
Phosphorus		630		18	mg/Kg	365.4	
Sulfide		30		25	mg/Kg	9034	
Total Organic Carbo	n	31000		3000	mg/Kg	9060	
Percent Solids		49		0.10	%	Moisture	
Soluble							
Nitrate as N-Soluble	;	1.4	I	5.0	mg/Kg	353.2	
pH-Soluble		7.73	Q	1.00	SU	9045C	
Orthophosphate-So	luble	2.6	I	3.0	mg/L	SM 4500 P E	

Client: Environmental Engineering Consultant

Lab Sample ID Analyte	Client Sample ID	Result / Qualifier		Reporting Limit	Units	Method
660-33914-10	10					
Aluminum		1200		20	mg/Kg	6010B
Arsenic		0.44	I	0.49	mg/Kg	6010B
Boron		5.4		4.9	mg/Kg	6010B
Barium		5.2		0.98	mg/Kg	6010B
Calcium		14000		49	mg/Kg	6010B
Cobalt		0.25	I	0.98	mg/Kg	6010B
Chromium		1.1		0.98	mg/Kg	6010B
Copper		3.6		2.0	mg/Kg	6010B
Iron		850		4.9	mg/Kg	6010B
Magnesium		1300		49	mg/Kg	6010B
Manganese		21		0.98	mg/Kg	6010B
Sodium		960		49	mg/Kg	6010B
Lead		16		0.49	mg/Kg	6010B
Strontium		660		9.8	mg/Kg	6010B
Titanium		27		0.98	mg/Kg	6010B
Vanadium		2.9		0.98	mg/Kg	6010B
Zinc		8.2		2.0	mg/Kg	6010B
Ammonia (as N)		35		1.5	mg/Kg	350.1
Phosphorus		220		17	mg/Kg	365.4
Total Organic Carbo	on	140000		3000	mg/Kg	9060
Percent Solids		9.8		0.10	%	Moisture
Soluble						
pH-Soluble		7.45	Q	1.00	SU	9045C
Orthophosphate-So	luble	3.9		3.0	mg/L	SM 4500 P E

Client: Environmental Engineering Consultant

Lab Sample ID Analyte	Client Sample ID	Result / Qualifier		Reporting Limit	Units	Method
660-33914-11	7A					
Aluminum		1200		78	mg/Kg	6010B
Boron		8.0	I	19	mg/Kg	6010B
Barium		5.8		3.9	mg/Kg	6010B
Calcium		160000		970	mg/Kg	6010B
Chromium		1.7	I	3.9	mg/Kg	6010B
Copper		2.7	I	7.8	mg/Kg	6010B
Iron		860		19	mg/Kg	6010B
Magnesium		1700		190	mg/Kg	6010B
Manganese		27		3.9	mg/Kg	6010B
Sodium		1500		190	mg/Kg	6010B
Lead		5.2		1.9	mg/Kg	6010B
Strontium		2000		19	mg/Kg	6010B
Titanium		3.4	I	3.9	mg/Kg	6010B
Vanadium		2.2	I	3.9	mg/Kg	6010B
Zinc		6.2	I	7.8	mg/Kg	6010B
Ammonia (as N)		8.8		0.30	mg/Kg	350.1
Phosphorus		270		16	mg/Kg	365.4
Total Organic Carbo	n	30000		3000	mg/Kg	9060
Percent Solids		41		0.10	%	Moisture
Soluble						
pH-Soluble		7.51	Q	1.00	SU	9045C
Orthophosphate-Sol	uble	0.91	I	3.0	mg/L	SM 4500 P E

METHOD SUMMARY

Client: Environmental Engineering Consultant

Job Number: 660-33914-1

Description	Lab Location	Method	Preparation Method
Matrix Solid			
Organochlorine Pesticides (GC) Ultrasonic Extraction	TAL TAM TAL TAM	SW846 8081A	SW846 3550B
Organophosphorous Pesticides (GC) Ultrasonic Extraction	TAL TAL TAL TAL	SW846 8141A	SW846 3550B
Herbicides (GC) Extraction (Herbicides)	TAL TAM TAL TAM	SW846 8151A	SW846 8151A
Metals (ICP) Preparation, Metals	TAL TAM TAL TAM	SW846 6010B	SW846 3050B
Mercury (CVAA) Preparation, Mercury	TAL MOB TAL MOB	SW846 7471A	SW846 7471A
Nitrogen, Ammonia Ammonia (Sediments)	TAL SAV TAL SAV	MCAWW 350.1	EPA 3-154
Nitrogen, Nitrate-Nitrite Deionized Water Leaching Procedure	TAL TAM TAL TAM	MCAWW 353.2	ASTM DI Leach
Phosphorus, Total Phosphorus, Total	TAL SAV TAL SAV	EPA 365.4	MCAWW 365.2/365.3/365
Sulfide, Acid Soluble and Insoluble (Titrimetric) Sulfide, Distillation (Acid Soluble and Insoluble)	TAL SAV TAL SAV	SW846 9034	SW846 9030B
Sulfate, Turbidimetric Deionized Water Leaching Procedure	TAL SAV TAL SAV	SW846 9038	ASTM DI Leach
pH Deionized Water Leaching Procedure	TAL TAM TAL TAM	SW846 9045C	ASTM DI Leach
Organic Carbon, Total (TOC)	TAL SAV	SW846 9060	
Percent Moisture	TAL TAM	EPA Moisture	
Orthophosphate Deionized Water Leaching Procedure	TAL TAM TAL TAM	SM SM 4500 P	E ASTM DI Leach
Matrix Water			
Dissolved Gases (GC)	TAL PEN	RSK RSK-175	
Organochlorine Pesticides (GC) Liquid-Liquid Extraction (Separatory Funnel)	TAL TAM TAL TAM	SW846 8081A	SW846 3510C
Organophosphorous Pesticides (GC) Liquid-Liquid Extraction (Continuous)	TAL TAL TAL TAL	SW846 8141A	SW846 3520C
Herbicides (GC) Extraction (Herbicides)	TAL TAM TAL TAM	SW846 8151A	SW846 8151A
Metals (ICP) Preparation, Total Recoverable or Dissolved Metals	TAL TAM TAL TAM	SW846 6010B	SW846 3005A
Mercury (CVAA) Preparation, Mercury	TAL MOB TAL MOB	SW846 7470A	SW846 7470A
Turbidity, Nephelometric	TAL TAM	MCAWW 180.1	

TestAmerica Tampa

METHOD SUMMARY

Client: Environmental Engineering Consultant

Job Number: 660-33914-1

Description	Lab Location	Method	Preparation Method
Matrix Water			
Nitrogen, Ammonia	TAL TAM	MCAWW 350.1	
Nitrite	TAL TAM	MCAWW 353.2	
Phosphorus, Total Phosphorus, Total	TAL TAM TAL TAM	EPA 365.4	MCAWW 365.2/365.3/365
Chlorophyll-a	TAL ORL	SM SM 10200H	
Alkalinity	TAL TAM	SM SM 2320B	
Salinity	TAL TAM	SM SM 2520B	
Solids, Total Suspended (TSS)	TAL TAM	SM SM 2540D	
Sulfate	TAL TAM	SM SM 426C	
Chloride, Total	TAL TAM	SM SM 4500 CI	- E
Sulfide, Total	TAL TAM	SM SM 4500 S2	2 F
BOD, 5-Day	TAL ORL	SM SM 5210B	
COD COD	TAL TAM TAL TAM	SM SM 5220D	SM SM 5220
Tannin and Lignin	TAL SAV	SM SM 5550B	

Lab References:

- TAL ORL = TestAmerica Orlando
- TAL PEN = TestAmerica Pensacola
- TAL SAV = TestAmerica Savannah
- TAL TAL = TestAmerica Tallahassee

TAL TAM = TestAmerica Tampa

Method References:

ASTM = ASTM International

EPA = US Environmental Protection Agency

MCAWW = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Subsequent Revisions.

RSK = Sample Prep And Calculations For Dissolved Gas Analysis In Water Samples Using A GC Headspace Equilibration Technique, RSKSOP-175, Rev. 0, 8/11/94, USEPA Research Lab

SM = "Standard Methods For The Examination Of Water And Wastewater",

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

METHOD / ANALYST SUMMARY

Client: Environmental Engineering Consultant

Method	Analyst	Analyst ID
RSK RSK-175	Ayers, Kim	KA
SW846 8081A	Myers, Randy	RM
SW846 8141A	Thomas, Martin L	MLT
SW846 8151A	Myers, Randy	RM
SW846 6010B	Ramos, Salvador	SR
SW846 7470A	Mathews, Robert	RDM
SW846 7471A	Mathews, Robert	RDM
MCAWW 180.1	Cerome, Saurel	SC
MCAWW 350.1 MCAWW 350.1	Ross, Jon Steward, Tiffany	JR TS
MCAWW 353.2	Steward, Tiffany	TS
EPA 365.4 EPA 365.4	Martin, Randolph Ross, Jon	RM JR
SW846 9034	Vasquez, Juana	JV
SW846 9038	Ross, Jon	JR
SW846 9045C	Mostafavifar, Efe	EM
SW846 9060	Blackshear, Kim	KB
EPA Moisture	Harrison, Amanda	AH
SM SM 10200H	ANALYST, SUBCONTRACTED	SUB
SM SM 2320B	Steward, Tiffany	TS
SM SM 2520B	Mostafavifar, Efe	EM
SM SM 2540D	Oonnoonny, Thomas	ТО
SM SM 426C	Cerome, Saurel	SC
SM SM 4500 CI- E	Mostafavifar, Efe	EM
SM SM 4500 P E	Mostafavifar, Efe	EM
SM SM 4500 S2 F	Mostafavifar, Efe	EM
SM SM 5210B	ANALYST, SUBCONTRACTED	SUB
SM SM 5220D	Cerome, Saurel	SC
SM SM 5550B	Ross, Jon	JR

SAMPLE SUMMARY

Lab Sample ID	Client Sample ID	Client Matrix	Date/Time Sampled	Date/Time Received
660-33914-1	4F	Water	02/17/2010 0930	02/19/2010 0850
660-33914-2	4E	Water	02/17/2010 1030	02/19/2010 0850
660-33914-3	4C	Water	02/17/2010 1120	02/19/2010 0850
660-33914-4	10	Water	02/17/2010 1230	02/19/2010 0850
660-33914-5	7A	Water	02/17/2010 1350	02/19/2010 0850
660-33914-6	7B	Water	02/17/2010 1430	02/19/2010 0850
660-33914-7	Surface Water Blank	Water	02/17/2010 0900	02/19/2010 0850
660-33914-8	4F	Solid	02/17/2010 0940	02/19/2010 0850
660-33914-9	4E	Solid	02/17/2010 1040	02/19/2010 0850
660-33914-10	10	Solid	02/17/2010 1250	02/19/2010 0850
660-33914-11	7A	Solid	02/17/2010 1400	02/19/2010 0850

Job Number: 660-33914-1

Client Sample ID:	: 4F				
Lab Sample ID: Client Matrix:	660-33914-1 Water			Date San Date Rec	npled: 02/17/2010 0930 eived: 02/19/2010 0850
		RSK-175 Dissolved Gases	s (GC)		
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	RSK-175 N/A 1.0 02/23/2010 1957	Analysis Batch: 400-104240		Instrument ID: Lab File ID: Initial Weight/Volume: Final Weight/Volume: Injection Volume:	NOEQUIP N/A 1.0 mL 1.0 mL
Analyte		Result (ug/L)	Qualifie	r MDL	PQL
Carbon dioxide (as CO2) 310		310	V	7.0	50

Job Number: 660-33914-1

Client Sample ID	: 4E				
Lab Sample ID: Client Matrix:	660-33914-2 Water			Date San Date Rec	npled: 02/17/2010 1030 ceived: 02/19/2010 0850
		RSK-175 Dissolved Gases	s (GC)		
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	RSK-175 N/A 1.0 02/23/2010 2021	Analysis Batch: 400-104240		Instrument ID: Lab File ID: Initial Weight/Volume: Final Weight/Volume: Injection Volume:	NOEQUIP N/A 1.0 mL 1.0 mL
Analyte		Result (ug/L)	Qualifie	r MDL	PQL
Carbon dioxide (a	s CO2)	130	V	7.0	50

Job Number: 660-33914-1

Client Sample ID	: 4C				
Lab Sample ID: Client Matrix:	660-33914-3 Water			Date San Date Rec	npled: 02/17/2010 1120 ceived: 02/19/2010 0850
		RSK-175 Dissolved Gases	s (GC)		
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	RSK-175 N/A 1.0 02/23/2010 2034	Analysis Batch: 400-104240		Instrument ID: Lab File ID: Initial Weight/Volume: Final Weight/Volume: Injection Volume:	NOEQUIP N/A 1.0 mL 1.0 mL
Analyte		Result (ug/L)	Qualifie	r MDL	PQL
Carbon dioxide (a	s CO2)	410	V	7.0	50
Client: Environmental Engineering Consultant

Client Sample ID: 10 Lab Sample ID: 660-33914-4 Date Sampled: 02/17/2010 1230 Client Matrix: Water Date Received: 02/19/2010 0850 RSK-175 Dissolved Gases (GC) Method: RSK-175 Analysis Batch: 400-104240 Instrument ID: NOEQUIP Preparation: N/A Lab File ID: N/A Initial Weight/Volume: 1.0 mL Dilution: 1.0 Date Analyzed: 02/23/2010 2046 Final Weight/Volume: 1.0 mL Date Prepared: Injection Volume: Analyte Result (ug/L) Qualifier MDL PQL Carbon dioxide (as CO2) IV 42 7.0 50

Client Sample ID	: 7A				
Lab Sample ID: Client Matrix:	660-33914-5 Water			Date Sar Date Rec	npled: 02/17/2010 1350 ceived: 02/19/2010 0850
		RSK-175 Dissolved Gase	s (GC)		
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	RSK-175 N/A 1.0 02/23/2010 2058	Analysis Batch: 400-104240		Instrument ID: Lab File ID: Initial Weight/Volume: Final Weight/Volume: Injection Volume:	NOEQUIP N/A 1.0 mL 1.0 mL
Analyte		Result (ug/L)	Qualifie	er MDL	PQL
Carbon dioxide (as	s CO2)	54	V	7.0	50

Client Sample ID	: 7B				
Lab Sample ID: Client Matrix:	660-33914-6 Water			Date Sar Date Rec	npled: 02/17/2010 1430 ceived: 02/19/2010 0850
		RSK-175 Dissolved Gase	s (GC)		
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	RSK-175 N/A 1.0 02/23/2010 2110	Analysis Batch: 400-104240		Instrument ID: Lab File ID: Initial Weight/Volume: Final Weight/Volume: Injection Volume:	NOEQUIP N/A 1.0 mL 1.0 mL
Analyte		Result (ug/L)	Qualifie	r MDL	PQL
Carbon dioxide (as	s CO2)	36	IV	7.0	50

660-33914-7 Water		Date Sampled: 02/17/2010 0900 Date Received: 02/19/2010 0850			
	RSK-175 Dissolved Gases	s (GC)			
SK-175 /A 0 2/23/2010 2135	Analysis Batch: 400-104240		Instrument ID: Lab File ID: Initial Weight/Volume: Final Weight/Volume: Injection Volume:	NOEQUIP N/A 1.0 mL 1.0 mL	
02)	Result (ug/L)	Qualifie	r MDL	PQL 50	
	Water SK-175 A 0 2/23/2010 2135	Bit is a colspan="2" RSK-175 Dissolved Gases SK-175 Analysis Batch: 400-104240 A 0 2/23/2010 2135 Result (ug/L) O2) 120	RSK-175 Dissolved Gases (GC) SK-175 Analysis Batch: 400-104240 A I 0 I !/23/2010 2135 Result (ug/L) Qualifie O2) 120 V	Water Date Sam RSK-175 Dissolved Gases (GC) SK-175 Analysis Batch: 400-104240 Instrument ID: Lab File ID: Initial Weight/Volume: Injection Volume: 0 Initial Weight/Volume: Injection Volume: 22) 120 V	Date Sampled. 02/17/2010 0 Date Sampled. 02/17/2010 0 Date Sampled. 02/19/2010 0 RSK-175 Dissolved Gases (GC) SK-175 Analysis Batch: 400-104240 Instrument ID: NOEQUIP A Lab File ID: N/A 0 Initial Weight/Volume: 1.0 mL ½23/2010 2135 Result (ug/L) Qualifier MDL PQL 02) 120 V 7.0 50

Client: Environmental Engineering Consultant

Job Number: 660-33914-1

Client Sample ID:	4F					
Lab Sample ID: Client Matrix:	660-33914-1 Water			Date Sar Date Ree	mpled: 02/17/2010 0930 ceived: 02/19/2010 0850	
		8081A Organochlorine Pestic	cides (GC	C)		
Method:	8081A	Analysis Batch: 660-91104		Instrument ID:	BSGJ	
Preparation:	3510C	Prep Batch: 660-90902		Initial Weight/Volume:	1055 mL	
Dilution:	1.0			Final Weight/Volume:	10 mL	
Date Analyzed:	02/23/2010 1412			Injection Volume:	2 uL	
Date Prepared:	02/22/2010 0737			Result Type:	PRIMARY	
Analyte		Result (ug/L)	Qualifie	er MDL	PQL	
Endrin aldehyde		0.0030	U	0.0030	0.0095	

Client: Environmental Engineering Consultant

Client Sample ID:	4F				
Lab Sample ID: Client Matrix:	660-33914-1 Water			Date San Date Rec	npled: 02/17/2010 0930 eived: 02/19/2010 0850
		8081A Organochlorine Pestic	cides (GC	C)	
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	8081A 3510C 1.0 02/23/2010 1814 02/22/2010 0737	Analysis Batch: 660-91104 Prep Batch: 660-90902		Instrument ID: Initial Weight/Volume: Final Weight/Volume: Injection Volume: Result Type:	BSGJ 1055 mL 10 mL 2 uL PRIMARY
Analyte		Result (ug/L)	Qualifie	er MDL	PQL
4,4'-DDD 4,4'-DDE 4,4'-DDT Aldrin		0.0039 0.0052 0.0030 0.0017	U U U U	0.0039 0.0052 0.0030 0.0017	0.0095 0.0095 0.0095 0.0095
alpha-BHC beta-BHC Chlordane (technic	al)	0.0027 0.0025 0.054	U U U	0.0027 0.0025 0.054	0.0095 0.0095 0.47
delta-BHC Dieldrin Endosulfan I		0.0026 0.0013 0.0032	U U U	0.0026 0.0013 0.0032	0.0095 0.0095 0.0095
Endosulfan II Endosulfan sulfate Endrin		0.0031 0.0028 0.0030	U U U	0.0031 0.0028 0.0030	0.0095 0.0095 0.0095
Endrin ketone gamma-BHC (Lind Heptachlor	ane)	0.0051 0.0025 0.0029	U U U	0.0051 0.0025 0.0029	0.095 0.0095 0.0095
Heptachlor epoxide Methoxychlor Toxaphene	2	0.0030 0.0048 0.68	U U U	0.0030 0.0048 0.68	0.0095 0.0095 2.8
Surrogate		%Rec	Qualifie	er Acceptan	ce Limits
DCB Decachlorobi Tetrachloro-m-xyle	phenyl ne	29 56	J1	30 - 150 30 - 150	

Job Number: 660-33914-1

Client: Environmental Engineering Consultant

Client Sample ID: 4E Lab Sample ID: 660-33914-2 Date Sampled: 02/17/2010 1030 Client Matrix: Water Date Received: 02/19/2010 0850 8081A Organochlorine Pesticides (GC) Method: 8081A Analysis Batch: 660-91104 Instrument ID: BSGJ Preparation: 3510C Prep Batch: 660-90902 Initial Weight/Volume: 1030 mL Final Weight/Volume: Dilution: 10 mL 1.0 Date Analyzed: 02/23/2010 1426 Injection Volume: 2 uL Date Prepared: 02/22/2010 0737 Result Type: PRIMARY Result (ug/L) Qualifier MDL PQL

U

0.0031

Analyte Endrin aldehyde

TestAmerica Tampa

Job Number: 660-33914-1

0.0097

0.0031

Client Sample ID:	4E				
Lab Sample ID: Client Matrix:	660-33914-2 Water			Date Sar Date Rec	npled: 02/17/2010 1030 ceived: 02/19/2010 0850
		8081A Organochlorine Pestic	cides (G	C)	
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	8081A 3510C 1.0 02/23/2010 1827 02/22/2010 0737	Analysis Batch: 660-91104 Prep Batch: 660-90902		Instrument ID: Initial Weight/Volume: Final Weight/Volume: Injection Volume: Result Type:	BSGJ 1030 mL 10 mL 2 uL PRIMARY
Analyte		Result (ug/L)	Qualifie	er MDL	PQL
4,4'-DDD		0.0040	U	0.0040	0.0097
4,4'-DDE		0.0053	U	0.0053	0.0097
4,4'-DDT		0.0031	U	0.0031	0.0097
Aldrin		0.0018	U	0.0018	0.0097
alpha-BHC		0.0027	U	0.0027	0.0097
beta-BHC		0.0026	U	0.0026	0.0097
Chlordane (technic	cal)	0.055	U	0.055	0.49
delta-BHC		0.0027	U	0.0027	0.0097
Dieldrin		0.0014	U	0.0014	0.0097
Endosulfan I		0.0033	U	0.0033	0.0097
Endosulfan II		0.0032	U	0.0032	0.0097
Endosulfan sulfate		0.0029	U	0.0029	0.0097
Endrin		0.0030	U	0.0030	0.0097
Endrin ketone		0.0052	U	0.0052	0.097
gamma-BHC (Lind	ane)	0.0025	U	0.0025	0.0097
Heptachlor		0.0030	U	0.0030	0.0097
Heptachlor epoxide	e	0.0031	U	0.0031	0.0097
Methoxychlor		0.0049	U	0.0049	0.0097
Toxaphene		0.70	U	0.70	2.9
Surrogate		%Rec	Qualifie	er Acceptar	ice Limits
DCB Decachlorobi	phenyl	37		30 - 150	
Tetrachloro-m-xyle	ne	61		30 - 150	

Client Sample ID:	4C						
Lab Sample ID: Client Matrix:	660-33914-3 Water	Date Sampled: 02/17/201 Date Received: 02/19/201					
		8081A Organochlorine Pestic	cides (GC)				
Method:	8081A	Analysis Batch: 660-91104	Ir	nstrument ID:	BSGJ		
Preparation:	3510C	Prep Batch: 660-90902	Ir	nitial Weight/Volume:	1030 mL		
Dilution:	1.0		F	inal Weight/Volume:	10 mL		
Date Analyzed:	02/23/2010 1439		Ir	njection Volume:	2 uL		
Date Prepared:	02/22/2010 0737		F	Result Type:	PRIMARY		
Analyte		Result (ug/L)	Qualifier	MDL	PQL		
Endrin aldehyde		0.0031	U	0.0031	0.0097		

Client Sample ID:	4C				
Lab Sample ID: Client Matrix:	660-33914-3 Water			Date Sar Date Rec	npled: 02/17/2010 1120 ceived: 02/19/2010 0850
		8081A Organochlorine Pestic	cides (GC	;)	
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	8081A 3510C 1.0 02/23/2010 1841 02/22/2010 0737	Analysis Batch: 660-91104 Prep Batch: 660-90902		Instrument ID: Initial Weight/Volume: Final Weight/Volume: Injection Volume: Result Type:	BSGJ 1030 mL 10 mL 2 uL PRIMARY
Analyte		Result (ug/L)	Qualifie	er MDL	PQL
4,4'-DDD		0.0040	U	0.0040	0.0097
4,4'-DDE		0.0053	U	0.0053	0.0097
4,4'-DDT		0.0031	U	0.0031	0.0097
Aldrin		0.0018	U	0.0018	0.0097
alpha-BHC		0.0027	U	0.0027	0.0097
beta-BHC		0.0026	U	0.0026	0.0097
Chlordane (technic	cal)	0.055	U	0.055	0.49
delta-BHC		0.0027	U	0.0027	0.0097
Dieldrin		0.0014	U	0.0014	0.0097
Endosulfan I		0.0033	U	0.0033	0.0097
Endosulfan II		0.0032	U	0.0032	0.0097
Endosulfan sulfate	;	0.0029	U	0.0029	0.0097
Endrin		0.0030	U	0.0030	0.0097
Endrin ketone		0.0052	U	0.0052	0.097
gamma-BHC (Lind	lane)	0.0025	U	0.0025	0.0097
Heptachlor		0.0030	U	0.0030	0.0097
Heptachlor epoxid	e	0.0031	U	0.0031	0.0097
Methoxychlor		0.0049	U	0.0049	0.0097
Toxaphene		0.70	U	0.70	2.9
Surrogate		%Rec	Qualifie	er Acceptar	nce Limits
DCB Decachlorobi	iphenyl	31		30 - 150	
Tetrachloro-m-xyle	ene	57		30 - 150	

Client: Environmental Engineering Consultant

Client Sample ID:	10				
Lab Sample ID: Client Matrix:	660-33914-4 Water			Date Sar Date Rec	npled: 02/17/2010 1230 ceived: 02/19/2010 0850
		8081A Organochlorine Pestic	ides (GC	2)	
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	8081A 3510C 1.0 02/23/2010 1450 02/22/2010 0737	Analysis Batch: 660-91104 Prep Batch: 660-90902		Instrument ID: Initial Weight/Volume: Final Weight/Volume: Injection Volume: Result Type:	BSGJ 1050 mL 10 mL 2 uL PRIMARY
Analyte		Result (ug/L)	Qualifie	er MDL	PQL
4,4'-DDD 4,4'-DDE 4,4'-DDT Aldrin alpha-BHC		0.0039 0.0052 0.0030 0.0017 0.0027	U U U U U	0.0039 0.0052 0.0030 0.0017 0.0027	0.0095 0.0095 0.0095 0.0095 0.0095 0.0095
beta-BHC Chlordane (technic delta-BHC	cal)	0.0025 0.054 0.0026	U U U	0.0025 0.054 0.0026	0.0095 0.48 0.0095
Dieldrin Endosulfan I Endosulfan II		0.0013 0.0033 0.0031	U U U	0.0013 0.0033 0.0031	0.0095 0.0095 0.0095
Endosulfan sulfate Endrin Endrin aldehyde		0.0028 0.0030 0.0030	U U U	0.0028 0.0030 0.0030	0.0095 0.0095 0.0095
Endrin ketone gamma-BHC (Lind Heptachlor	ane)	0.0051 0.0025 0.0029	U U U	0.0051 0.0025 0.0029	0.095 0.0095 0.0095
Heptachlor epoxide Methoxychlor Toxaphene	9	0.0030 0.0048 0.69	U U U	0.0030 0.0048 0.69	0.0095 0.0095 2.9
Surrogate		%Rec	Qualifie	er Acceptar	nce Limits
DCB Decachlorobi Tetrachloro-m-xyle	phenyl ne	41 60		30 - 150 30 - 150	

Job Number: 660-33914-1

30 - 150

Client: Environmental Engineering Consultant

Client Sample ID	. /A				
Lab Sample ID: Client Matrix:	660-33914-5 Water			Date Sar Date Rec	npled: 02/17/2010 1350 ceived: 02/19/2010 0850
		8081A Organochlorine Pesti	cides (GC	;)	
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	8081A 3510C 1.0 02/23/2010 1505 02/22/2010 0737	Analysis Batch: 660-91104 Prep Batch: 660-90902		Instrument ID: Initial Weight/Volume: Final Weight/Volume: Injection Volume: Result Type:	BSGJ 920 mL 10 mL 2 uL PRIMARY
Analyte		Result (ug/L)	Qualifie	r MDL	PQL
4,4'-DDD 4,4'-DDE 4,4'-DDT Aldrin alpha-BHC beta-BHC Chlordane (techn)	ical)	0.0044 0.0060 0.0034 0.0020 0.0030 0.0029 0.062		0.0044 0.0060 0.0034 0.0020 0.0030 0.0029 0.062	0.011 0.011 0.011 0.011 0.011 0.011 0.54
delta-BHC Dieldrin Endosulfan I Endosulfan II	,	0.0030 0.0015 0.0037 0.0036	U U U U	0.0030 0.0015 0.0037 0.0036	0.011 0.011 0.011 0.011
Endosulfan sulfat Endrin Endrin aldehyde Endrin ketone gamma-BHC (Lin	e dane)	0.0032 0.0034 0.0035 0.0059 0.0028		0.0032 0.0034 0.0035 0.0059 0.0028	0.011 0.011 0.011 0.11 0.011
Heptachlor Heptachlor epoxic Methoxychlor Toxaphene	de	0.0033 0.0034 0.0055 0.78		0.0033 0.0034 0.0055 0.78	0.011 0.011 0.011 3.3
Surrogate DCB Decachlorot	piphenyl	%Rec 47	Qualifie	r Acceptar 30 - 150	nce Limits

64

Client Sample ID: 7A

TestAmerica Tampa

Tetrachloro-m-xylene

Client Sample ID): 7B				
Lab Sample ID: Client Matrix:	660-33914-6 Water			Date Sar Date Rec	npled: 02/17/2010 1430 ceived: 02/19/2010 0850
		8081A Organochlorine Pestio	cides (GC	C)	
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	8081A 3510C 1.0 02/23/2010 1519 02/22/2010 0737	Analysis Batch: 660-91104 Prep Batch: 660-90902		Instrument ID: Initial Weight/Volume: Final Weight/Volume: Injection Volume: Result Type:	BSGJ 1040 mL 10 mL 2 uL PRIMARY
Analyte		Result (ug/L)	Qualifie	er MDL	PQL
4,4'-DDD 4,4'-DDE 4,4'-DDT Aldrin alpha-BHC beta-BHC Chlordane (techn delta-BHC Dieldrin Endosulfan I	ical)	0.0039 0.0053 0.0030 0.0018 0.0027 0.0026 0.055 0.0027 0.0013 0.0033 0.0033		0.0039 0.0053 0.0030 0.0018 0.0027 0.0026 0.055 0.0027 0.0013 0.0013 0.0033	0.0096 0.0096 0.0096 0.0096 0.0096 0.0096 0.48 0.0096 0.0096 0.0096
Endosulfan sulfat Endosulfan sulfat Endrin Endrin aldehyde Endrin ketone gamma-BHC (Lin	e dane)	0.0032 0.0028 0.0030 0.0031 0.0052 0.0025		0.0032 0.0028 0.0030 0.0031 0.0052 0.0025	0.0096 0.0096 0.0096 0.0096 0.0096
Heptachlor Heptachlor epoxic Methoxychlor Toxaphene	de	0.0030 0.0030 0.0049 0.69	U U U U	0.0030 0.0030 0.0049 0.69	0.0096 0.0096 0.0096 2.9
Surrogate		%Rec	Qualifie	er Acceptar	nce Limits
DCB Decachlorob Tetrachloro-m-xy	piphenyl lene	50 63		30 - 150 30 - 150	

Client Sample ID	: Surface Water Blank				
Lab Sample ID: Client Matrix:	660-33914-7 Water			Date Sar Date Rec	npled: 02/17/2010 0900 ceived: 02/19/2010 0850
		8081A Organochlorine Pesti	cides (G	C)	
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	8081A 3510C 1.0 02/23/2010 1533 02/22/2010 0737	Analysis Batch: 660-91104 Prep Batch: 660-90902		Instrument ID: Initial Weight/Volume: Final Weight/Volume: Injection Volume: Result Type:	BSGJ 960 mL 10 mL 2 uL PRIMARY
Analyte		Result (ug/L)	Qualifi	er MDL	PQL
4,4'-DDD 4,4'-DDE 4,4'-DDT Aldrin alpha-BHC beta-BHC Chlordane (techni delta-BHC Dieldrin Endosulfan L	cal)	0.0043 0.0057 0.0033 0.0019 0.0029 0.0028 0.0059 0.0029 0.0029 0.0015 0.0036		0.0043 0.0057 0.0033 0.0019 0.0029 0.0028 0.059 0.0029 0.0029 0.0015 0.0036	0.010 0.010 0.010 0.010 0.010 0.010 0.52 0.010 0.010 0.010
Endosulfan I Endosulfan II Endosulfan sulfate Endrin Endrin aldehyde Endrin ketone gamma-BHC (Lind Heptachlor Heptachlor epoxid Methoxychlor Toxaphene	e dane) le	0.0036 0.0034 0.0031 0.0032 0.0033 0.0056 0.0027 0.0032 0.0033 0.0053 0.75		0.0036 0.0034 0.0031 0.0032 0.0033 0.0056 0.0027 0.0032 0.0033 0.0053 0.75	0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 3.1
Surrogate		%Rec	Qualifi	er Acceptar	nce Limits
DCB Decachlorob Tetrachloro-m-xyle	iphenyl ene	52 67		30 - 150 30 - 150	

Client: Environmental Engineering Consultant

Client Sample ID:	4F		
Lab Sample ID: Client Matrix:	660-33914-8 Solid		Date Sampled: 02/17/2010 0940 Date Received: 02/19/2010 0850
		8081A Organochlorine Pesticides (GC)	

Method:	8081A	Analysis Batch: 660-91299	Instr	ument ID:	BSGJ	
Preparation:	3550B	Prep Batch: 660-90901	Initia	I Weight/Volume:	30.38 g	
Dilution:	1.0		Final	I Weight/Volume:	10 mL	
Date Analyzed:	02/25/2010 0523		Injec	tion Volume:	2 uL	
Date Prepared:	02/22/2010 0654		Resi	ult Type:	PRIMARY	
Analyte	DryWt Corrected	I: N Result (ug/Kg)	Qualifier	MDL	PQL	
4,4'-DDD		0.49	U	0.49	3.3	
4,4'-DDE		0.49	U	0.49	3.3	
4,4'-DDT		0.49	U	0.49	3.3	
Aldrin		0.49	U	0.49	2.0	
alpha-BHC		0.14	U	0.14	1.7	
beta-BHC		0.49	U	0.49	2.0	
delta-BHC		0.49	U	0.49	2.0	
Dieldrin		1.4	I	0.15	1.7	
Endosulfan I		0.25	U	0.25	2.0	
Endosulfan II		0.25	U	0.25	3.3	
Endosulfan sulfate		0.25	U	0.25	3.3	
Endrin		0.49	U	0.49	3.9	
Endrin ketone		0.49	U	0.49	3.9	
gamma-BHC (Lind	ane)	0.49	U	0.49	2.0	
Heptachlor		0.49	U	0.49	2.0	
Heptachlor epoxide	9	0.17	I	0.14	2.0	
Methoxychlor		0.99	U	0.99	17	
Toxaphene		29	U	29	170	
Surrogate		%Rec	Qualifier	Acceptan	ce Limits	
DCB Decachlorobi	phenyl	94		30 - 150		
Tetrachloro-m-xyle	ne	64		30 - 150		

Client: Environmental Engineering Consultant

Client Sample ID:	4F					
Lab Sample ID: Client Matrix:	660-33914-8 Solid				Date Sa Date Re	mpled: 02/17/2010 0940 ceived: 02/19/2010 0850
		8081A	Organochlorine Pest	icides (GC)	
Method:	8081A	Ana	lysis Batch: 660-91299	. I	nstrument ID:	BSGJ
Preparation:	3550B	Prep	Batch: 660-90901	I	nitial Weight/Volume:	30.38 g
Dilution:	1.0			ſ	Final Weight/Volume:	10 mL
Date Analyzed:	02/25/2010 0536			I	njection Volume:	2 uL
Date Prepared:	02/22/2010 0654			I	Result Type:	PRIMARY
Analyte	DryWt Correc	ted: N	Result (ug/Kg)	Qualifie	MDL	PQL
Endrin aldehyde			0.49	U	0.49	3.9

TestAmerica Tampa

Client: Environmental Engineering Consultant

Client Sample ID:	4F					
Lab Sample ID:	660-33914-8				Date Sa	mpled: 02/17/2010 0940
Client Matrix:	Solid				Date Re	eceived: 02/19/2010 0850
		8081A	Organochlorine Pest	icides (GC)	
Method:	8081A	Ana	lysis Batch: 660-91299	I	nstrument ID:	BSGJ
Preparation:	3550B	Pre	p Batch: 660-90901	I	nitial Weight/Volume	: 30.38 g
Dilution:	1.0			I	inal Weight/Volume:	10 mL
Date Analyzed:	02/25/2010 2256			I	njection Volume:	2 uL
Date Prepared:	02/22/2010 0654			I	Result Type:	PRIMARY
Analyte	DryWt Correct	ted: N	Result (ug/Kg)	Qualifie	MDL	PQL
Chlordane (technic	cal)		85		2.4	17

Chlordane (technical)

Page 34 of 160

Client: Environmental Engineering Consultant

1.0

02/25/2010 0550

02/22/2010 0654

Dilution:

Date Analyzed:

Date Prepared:

Client Sample ID:	: 4E				
Lab Sample ID: Client Matrix:	660-33914-9 Solid		Date San Date Rec	npled: 02/17/2010 1 eived: 02/19/2010 0	1040)850
		8081A Organochlorine Pesticide	s (GC)		
Method:	8081A	Analysis Batch: 660-91299	Instrument ID:	BSGJ	
Preparation:	3550B	Prep Batch: 660-90901	Initial Weight/Volume:	30.42 g	

Analyte	DryWt Corrected: N	Result (ug/Kg)	Qualifier	MDL	PQL
4,4'-DDD		0.49	U	0.49	3.3
4,4'-DDE		0.51	I	0.49	3.3
4,4'-DDT		0.49	U	0.49	3.3
Aldrin		0.49	U	0.49	2.0
alpha-BHC		0.14	U	0.14	1.7
beta-BHC		0.49	U	0.49	2.0
Chlordane (technical)		2.4	U	2.4	17
delta-BHC		0.49	U	0.49	2.0
Dieldrin		0.42	I	0.15	1.7
Endosulfan I		0.25	U	0.25	2.0
Endosulfan II		0.25	U	0.25	3.3
Endosulfan sulfate		0.25	U	0.25	3.3
Endrin		0.49	U	0.49	3.9
Endrin ketone		0.49	U	0.49	3.9
gamma-BHC (Lindane)		0.49	U	0.49	2.0
Heptachlor		0.49	U	0.49	2.0
Heptachlor epoxide		0.14	U	0.14	2.0
Methoxychlor		0.99	U	0.99	17
Toxaphene		29	U	29	170
Surrogate		%Rec	Qualifier	Accept	ance Limits
DCB Decachlorobiphenyl		48		30 - 15	0
Tetrachloro-m-xylene		68		30 - 15	0

2 uL

PRIMARY

Final Weight/Volume: 10 mL

Injection Volume:

Result Type:

Job Number: 660-33914-1

Client: Environmental Engineering Consultant

Client Sample ID:	4E						
Lab Sample ID: Client Matrix:	660-33914-9 Solid				Date Date	e Sampled:(e Received:(02/17/2010 1040 02/19/2010 0850
		8081A O	rganochlorine Pesti	cides (G	C)		
Method:	8081A	Analys	sis Batch: 660-91299		Instrument ID:	BSGJ	
Preparation:	3550B	Prep E	Batch: 660-90901		Initial Weight/Volu	ime: 30.42	g
Dilution:	1.0				Final Weight/Volu	me: 10 m	ıL
Date Analyzed:	02/25/2010 0603				Injection Volume:	2 uL	
Date Prepared:	02/22/2010 0654				Result Type:	PRIM	ARY
Analyte	DryWt Correct	ted: N	Result (ug/Kg)	Qualifie	er MDL	Р	QL
Endrin aldehyde			0.49	U	0.49	3	.9

TestAmerica Tampa

Client Sample ID	: 10					
Lab Sample ID: Client Matrix:	660-339 Solid	914-10			Date Sar Date Rec	npled: 02/17/2010 1250 ceived: 02/19/2010 0850
		808	31A Organochlorine Pesti	cides (G	C)	
Method: Preparation: Dilution: Date Analyzed: Date Prenared:	8081A 3550B 1.0 02/25/2010 02/22/2010) 0617 0654	Analysis Batch: 660-91299 Prep Batch: 660-90901		Instrument ID: Initial Weight/Volume: Final Weight/Volume: Injection Volume: Result Type:	BSGJ 29.83 g 10 mL 2 uL PRIMARY
Analyte	л	rvWt Corrected: N	Result (ua/Ka)	Qualifie	er MDI	PQI
4,4'-DDD 4,4'-DDE 4,4'-DDT Aldrin alpha-BHC beta-BHC Chlordane (technic data BHC	cal)		0.50 0.50 0.50 0.50 0.14 0.50 2.4		0.50 0.50 0.50 0.50 0.14 0.50 2.4 0.50	3.3 3.3 3.3 2.0 1.7 2.0 17 2.0
Dieldrin Endosulfan I Endosulfan sulfate Endrin Endrin ketone	9		0.50 0.15 0.25 0.25 0.25 0.50 0.50		0.50 0.15 0.25 0.25 0.25 0.50 0.50	2.0 1.7 2.0 3.3 3.3 4.0 4.0
gamma-BHC (Lind Heptachlor Heptachlor epoxid Methoxychlor Toxaphene	dane) le		0.50 0.50 0.14 1.0 29	U U U U U	0.50 0.50 0.14 1.0 29	2.0 2.0 2.0 17 170
Surrogate DCB Decachlorob Tetrachloro-m-xyle	iphenyl ene		%Rec 44 64	Qualifie	er Acceptar 30 - 150 30 - 150	nce Limits

Client: Environmental Engineering Consultant

Client Sample ID:	10					
Lab Sample ID: Client Matrix:	660-33914-10 Solid				Date Sa Date Re	mpled: 02/17/2010 1250 cceived: 02/19/2010 0850
		8081A	Organochlorine Pes	ticides (GC	;)	
Method:	8081A	Ana	lysis Batch: 660-91299)	Instrument ID:	BSGJ
Preparation:	3550B	Pre	b Batch: 660-90901		Initial Weight/Volume:	29.83 g
Dilution:	1.0				Final Weight/Volume:	10 mL
Date Analyzed:	02/25/2010 0630				Injection Volume:	2 uL
Date Prepared:	02/22/2010 0654				Result Type:	PRIMARY
Analyte	DryWt Correc	ted: N	Result (ug/Kg)	Qualifie	er MDL	PQL
Endrin aldehyde			0.50	U	0.50	4.0

TestAmerica Tampa

Job Number: 660-33914-1

Client Sample ID:	7A					
Lab Sample ID: Client Matrix:	660-33 Solid	3914-11			Date Sar Date Rec	npled: 02/17/2010 1400 ceived: 02/19/2010 0850
		8	081A Organochlorine Pesti	cides (G	C)	
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	8081A 3550B 1.0 02/25/201 02/22/201	0 0643 0 0654	Analysis Batch: 660-91299 Prep Batch: 660-90901		Instrument ID: Initial Weight/Volume: Final Weight/Volume: Injection Volume: Result Type:	BSGJ 30.20 g 10 mL 2 uL PRIMARY
Analyte	Γ	DryWt Corrected:	N Result (ug/Kg)	Qualifie	er MDL	PQL
4,4'-DDD			0.50	U	0.50	3.3
4,4'-DDE			0.50	U	0.50	3.3
4,4'-DDT			0.50	U J3	0.50	3.3
Aldrin			0.50	U	0.50	2.0
alpha-BHC			0.14	U	0.14	1.7
beta-BHC			0.50	U	0.50	2.0
Chlordane (technic	al)		2.4	U	2.4	17
delta-BHC			0.50	U	0.50	2.0
Dieldrin			0.15	U	0.15	1.7
Endosulfan I			0.25	U	0.25	2.0
Endosulfan II			0.25	U J3	0.25	3.3
Endosulfan sulfate			0.25	U	0.25	3.3
Endrin			0.50	U J3	0.50	4.0
Endrin aldehyde			0.50	U	0.50	4.0
Endrin ketone			0.50	U J3	0.50	4.0
gamma-BHC (Lind	ane)		0.50	U J3	0.50	2.0
Heptachlor			0.50	U J3	0.50	2.0
Heptachlor epoxide	9		0.14	U J3	0.14	2.0
Methoxychlor			0.99	U J3	0.99	17
Toxaphene			29	U	29	170
Surrogate			%Rec	Qualifie	er Acceptar	nce Limits
DCB Decachlorobi	phenyl		48		30 - 150	
Tetrachloro-m-xyle	ne		72		30 - 150	

Client: Environmental Engineering Consultant

Client Sample ID:	: 4F				
Lab Sample ID: Client Matrix:	660-33914-1 Water			Date Sar Date Rec	npled: 02/17/2010 0930 ceived: 02/19/2010 0850
		8141A Organophosphorous Pe	sticides (G	iC)	
Method:	8141A	Analysis Batch: 640-65998	li	nstrument ID:	SGF
Preparation:	3520C	Prep Batch: 640-65857	li	nitial Weight/Volume:	1060 mL
Dilution:	1.0		F	inal Weight/Volume:	5.0 mL
Date Analyzed:	02/25/2010 1526		li	njection Volume:	1 uL
Date Prepared:	02/22/2010 1420		F	Result Type:	PRIMARY
Analyte		Result (ug/L)	Qualifier	MDL	PQL
Hexazinone		0.15	U	0.15	1.9

Job Number: 660-33914-1

Job Number:	660-33914-1

Client Sample ID:	4F				
Lab Sample ID: Client Matrix:	660-33914-1 Water			Date Sar Date Rec	npled: 02/17/2010 0930 ceived: 02/19/2010 0850
		8141A Organophosphorous Pe	sticides ((GC)	
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	8141A 3520C 1.0 02/26/2010 1325 02/22/2010 1420	Analysis Batch: 640-66015 Prep Batch: 640-65857		Instrument ID: Initial Weight/Volume: Final Weight/Volume: Injection Volume: Result Type:	SGF 1060 mL 5.0 mL 1 uL PRIMARY
Analyte		Result (ug/L)	Qualifie	er MDL	PQL
Bolstar Chlorpyrifos Coumaphos Demeton, Total Diazinon Dichlorvos Dimethoate Disulfoton EPN Ethoprop Fensulfothion Malathion Merphos Mevinphos		0.090 0.10 0.076 0.14 0.10 0.25 0.30 0.11 0.067 0.39 0.16 0.25 0.12 0.14 2.5 0.25	U U U U U U U U U U U U U U U U J 3	0.090 0.10 0.076 0.14 0.10 0.25 0.30 0.11 0.067 0.39 0.16 0.087 0.12 0.14 2.5	0.94 0.94 2.4 0.94 1.9 1.9 1.9 0.94 0.94 0.47 4.7 0.94 0.94 0.94 1.9 9.4
Naled Ethyl Parathion Methyl parathion Phorate Ronnel Sulfotepp Stirophos Tokuthion Trichloronate		0.34 0.075 0.11 0.15 0.12 0.052 0.079 0.082 0.10		0.34 0.075 0.11 0.15 0.12 0.052 0.079 0.082 0.10	4.7 0.94 0.47 0.94 0.94 0.94 0.94 0.94 0.94
Surrogate	te	%Rec	Qualifie	er Acceptar	ce Limits
inplienyipliospila		20	JI	57 - 159	

Client Sample ID:	4E				
Lab Sample ID: Client Matrix:	660-33914-2 Water		npled: 02/17/2010 1030 ceived: 02/19/2010 0850		
		8141A Organophosphorous Pe	sticides (C	SC)	
Method:	8141A	Analysis Batch: 640-65998	I	nstrument ID:	SGF
Preparation:	3520C	Prep Batch: 640-65857	Initial Weight/Volume:		1020 mL
Dilution:	1.0		F	inal Weight/Volume:	5.0 mL
Date Analyzed:	02/25/2010 1540		I	njection Volume:	1 uL
Date Prepared:	02/22/2010 1420		F	Result Type:	PRIMARY
Analyte		Result (ug/L)	Qualifier	MDL	PQL
Hexazinone		0.16	U	0.16	2.0

Job Number:	660-33914-1
-------------	-------------

Client Sample ID	: 4E				
Lab Sample ID: Client Matrix:	ab Sample ID: 660-33914-2 Client Matrix: Water		Date San Date Rec	npled: 02/17/2010 1030 ceived: 02/19/2010 0850	
		8141A Organophosphorous Pe	sticides ((GC)	
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	8141A 3520C 1.0 02/26/2010 1310 02/22/2010 1420	Analysis Batch: 640-66015 Prep Batch: 640-65857		Instrument ID: Initial Weight/Volume: Final Weight/Volume: Injection Volume: Result Type:	SGF 1020 mL 5.0 mL 1 uL PRIMARY
Analyte		Result (ug/L)	Qualifie	er MDL	PQL
Azinphos-methyl Bolstar Chlorpyrifos Coumaphos Demeton, Total Diazinon Dichlorvos Dimethoate Disulfoton EPN		0.32 0.093 0.11 0.079 0.15 0.11 0.25 0.31 0.12 0.070		0.32 0.093 0.11 0.079 0.15 0.11 0.25 0.31 0.12 0.070	0.98 0.98 0.98 2.5 0.98 2.0 2.0 2.0 2.0 2.0 0.98
Ethoprop Fensulfothion Malathion Merphos		0.40 0.17 0.090 0.13		0.40 0.17 0.090 0.13	0.49 4.9 0.98 0.98
Monochrotophos Naled Ethyl Parathion Methyl parathion		0.15 2.5 0.35 0.078 0.12	U J3 U U U U	0.15 2.5 0.35 0.078 0.12	2.0 9.8 4.9 0.98 0.49
Phorate Ronnel Sulfotepp Stirophos Tokuthion		0.16 0.13 0.054 0.082 0.085	U U U U U	0.16 0.13 0.054 0.082 0.085	0.98 0.98 0.49 0.98 0.98
I richloronate Surrogate Triphenylphospha	te	0.11 %Rec 94	U Qualifie	0.11 er Acceptan 37 - 139	0.98 Ice Limits

Client Sample ID:	4C				
Lab Sample ID: Client Matrix:	660-33914-3 Water		npled: 02/17/2010 1120 ceived: 02/19/2010 0850		
		8141A Organophosphorous Pe	sticides (O	SC)	
Method:	8141A	Analysis Batch: 640-65998	l.	nstrument ID:	SGF
Preparation:	3520C	Prep Batch: 640-65857	l	nitial Weight/Volume:	1020 mL
Dilution:	1.0		F	inal Weight/Volume:	5.0 mL
Date Analyzed:	02/25/2010 1554		l	njection Volume:	1 uL
Date Prepared:	02/22/2010 1420		Result Type:		PRIMARY
Analyte		Result (ug/L)	Qualifier	MDL	PQL
Hexazinone		0.16	U	0.16	2.0

Job Number:	660-33914-1

Client Sample ID:	4C				
Lab Sample ID:660-33914-3Client Matrix:Water				Date Sar Date Rec	npled: 02/17/2010 1120 ceived: 02/19/2010 0850
		8141A Organophosphorous Pe	sticides ((GC)	
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	8141A 3520C 1.0 02/26/2010 1256 02/22/2010 1420	Analysis Batch: 640-66015 Prep Batch: 640-65857		Instrument ID: Initial Weight/Volume: Final Weight/Volume: Injection Volume: Result Type:	SGF 1020 mL 5.0 mL 1 uL PRIMARY
Analyte		Result (ug/L)	Qualifie	er MDL	PQL
Bolstar Chlorpyrifos Coumaphos Demeton, Total Diazinon Dichlorvos Dimethoate Disulfoton EPN Ethoprop Fensulfothion Malathion Merphos Monochrotophos Naled Ethyl Parathion Methyl parathion Phorate Ronnel Sulfotepp Stirophos		0.32 0.093 0.11 0.079 0.15 0.11 0.25 0.31 0.12 0.070 0.40 0.17 0.090 0.13 0.15 2.5 0.35 0.078 0.12 0.12 0.16 0.13 0.054 0.082	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.32 0.093 0.11 0.079 0.15 0.11 0.25 0.31 0.12 0.070 0.40 0.17 0.090 0.13 0.15 2.5 0.35 0.078 0.12 0.16 0.13 0.054 0.082 0.95	0.98 0.98 0.98 2.5 0.98 2.0 2.0 2.0 0.98 0.49 4.9 0.98 0.98 2.0 9.8 4.9 0.98 0.98 0.98 0.98 0.98 0.49 0.98 0.49 0.98 0.49 0.98 0.49 0.98 0.49 0.98 0.
Trichloronate		0.11	Ū	0.11	0.98
Surrogate Triphenylphosphat	e	%Rec 83	Qualifie	er Acceptar 37 - 139	ice Limits

Client Sample ID:	10					
Lab Sample ID: Client Matrix:	660-33914-4 Water	Date Sampled: 02/17/2010 1 Date Received: 02/19/2010 0				
		8141A Organophosphorous Pe	sticides (C	SC)		
Method:	8141A	Analysis Batch: 640-65998	l.	nstrument ID:	SGF	
Preparation:	3520C	Prep Batch: 640-65857	l	nitial Weight/Volume:	1040 mL	
Dilution:	1.0		F	inal Weight/Volume:	5.0 mL	
Date Analyzed:	02/25/2010 1623		l	njection Volume:	1 uL	
Date Prepared:	02/22/2010 1420		F	Result Type:	PRIMARY	
Analyte		Result (ug/L)	Qualifier	MDL	PQL	
Hexazinone		0.15	U	0.15	1.9	

Client: Environmental Engineering Consultant

10

Client Sample ID:

Lab Sample ID: 660-33914-4 Client Matrix: Water			Date San Date Rec	Date Sampled: 02/17/2010 1230 Date Received: 02/19/2010 0850	
		8141A Organophosphorous Pe	sticides (G	C)	
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	8141A 3520C 1.0 02/26/2010 1242 02/22/2010 1420	Analysis Batch: 640-66015 Ins Prep Batch: 640-65857 Ini Fir Inj R€		strument ID: itial Weight/Volume: nal Weight/Volume: jection Volume: esult Type:	SGF 1040 mL 5.0 mL 1 uL PRIMARY
Analyte		Result (ug/L)	Qualifier	MDL	PQL
Azinphos-methyl		0.32	U	0.32	0.96
Bolstar		0.091	Ŭ	0.091	0.96
Chlorpyrifos		0.11	Ŭ	0.11	0.96
Coumaphos		0.078	U	0.078	0.96
Demeton. Total		0.14	U	0.14	2.4
Diazinon		0.11	Ŭ	0.11	0.96
Dichlorvos		0.25	U	0.25	1.9
Dimethoate		0.31	U	0.31	1.9
Disulfoton		0.12	U	0.12	1.9
EPN		0.068	U	0.068	0.96
Ethoprop		0.39	U	0.39	0.48
Fensulfothion		0.16	U	0.16	4.8
Malathion		0.088	U	0.088	0.96
Merphos		0.12	U	0.12	0.96
Mevinphos		0.14	U	0.14	1.9
Monochrotophos		2.5	U J3	2.5	9.6
Naled		0.35	U	0.35	4.8
Ethyl Parathion		0.077	U	0.077	0.96
Methyl parathion		0.12	U	0.12	0.48
Phorate		0.15	U	0.15	0.96
Ronnel		0.12	U	0.12	0.96
Sulfotepp		0.053	U	0.053	0.48
Stirophos		0.081	U	0.081	0.96
Tokuthion		0.084	U	0.084	0.96
Trichloronate		0.11	U	0.11	0.96
Surrogate		%Rec	Qualifier	Acceptan	ice Limits
Triphenylphospha	te	92		37 - 139	

Client Sample ID:	7 A				
Lab Sample ID: Client Matrix:	660-33914-5 Water		mpled: 02/17/2010 1350 ceived: 02/19/2010 0850		
		8141A Organophosphorous Pe	sticides (GC)	
Method:	8141A	Analysis Batch: 640-65998		nstrument ID:	SGF
Preparation:	3520C	Prep Batch: 640-65857	Initial Weight/Volume:		1060 mL
Dilution:	1.0			-inal Weight/Volume:	5.0 mL
Date Analyzed:	02/25/2010 1637			njection Volume:	1 uL
Date Prepared:	02/22/2010 1420		I	Result Type:	PRIMARY
Analyte		Result (ug/L)	Qualifie	MDL	PQL
Hexazinone		0.15	U	0.15	1.9

Client: Environmental Engineering Consultant

7A

Client Sample ID:

Lab Sample ID:

Client Matrix:

		Data Sam	mlad: 02/17/2	010 125

 660-33914-5
 Date Sampled: 02/17/2010 1350

 Water
 Date Received: 02/19/2010 0850

8141A Organophosphorous Pesticides (GC)							
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	8141A 3520C 1.0 02/26/2010 164 02/22/2010 142	Analys Prep B 0	is Batch: 640-66015 atch: 640-65857	 	Instrume Initial We Final We Injection Result Ty	nt ID: eight/Volume: ight/Volume: Volume: ype:	SGF 1060 mL 5.0 mL 1 uL PRIMARY
Analyte			Result (ug/L)	Qualifier	r	MDL	PQL
Azinphos-methyl			0.31	U		0.31	0.94
Bolstar			0.090	U		0.090	0.94
Chlorpyrifos			0.10	U		0.10	0.94
Coumaphos			0.076	U		0.076	0.94
Demeton, Total			0.14	U		0.14	2.4
Diazinon			0.10	U		0.10	0.94
Dichlorvos			0.25	U		0.25	1.9
Dimethoate			0.30	U		0.30	1.9
Disulfoton			0.11	U		0.11	1.9
EPN			0.067	U		0.067	0.94
Ethoprop			0.39	U		0.39	0.47
Fensulfothion			0.16	U		0.16	4.7
Malathion			0.087	U		0.087	0.94
Merphos			0.12	U		0.12	0.94
Mevinphos			0.14	U		0.14	1.9
Monochrotophos			2.5	U J3		2.5	9.4
Naled			0.34	U		0.34	4.7
Ethyl Parathion			0.075	U		0.075	0.94
Methyl parathion			0.11	U		0.11	0.47
Phorate			0.15	U		0.15	0.94
Ronnel			0.12	U		0.12	0.94
Sulfotepp			0.052	U		0.052	0.47
Stirophos			0.079	U		0.079	0.94
Tokuthion			0.082	U		0.082	0.94
Trichloronate			0.10	U		0.10	0.94
Surrogate			%Rec	Qualifier Acceptance Limits		ce Limits	
Triphenylphosphat	e		92			37 - 139	

Client Sample ID:	7B				
Lab Sample ID: Client Matrix:	660-33914-6 Water	660-33914-6Date SatWaterDate Re			
		8141A Organophosphorous Pe	sticides (C	SC)	
Method:	8141A	Analysis Batch: 640-65998	I	nstrument ID:	SGF
Preparation:	3520C	Prep Batch: 640-65857	I	nitial Weight/Volume:	1000 mL
Dilution:	1.0		F	inal Weight/Volume:	5.0 mL
Date Analyzed:	02/25/2010 1705		I	njection Volume:	1 uL
Date Prepared:	02/22/2010 1420		F	Result Type:	PRIMARY
Analyte		Result (ug/L)	Qualifier	MDL	PQL
Hexazinone		0.16	U	0.16	2.0

Job Number: 6	60-33914-1
---------------	------------

Client Sample ID:	7B				
Lab Sample ID: Client Matrix:	660-33914-6 Water			Date Sar Date Rec	npled: 02/17/2010 1430 ceived: 02/19/2010 0850
		8141A Organophosphorous Pe	sticides ((GC)	
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	8141A 3520C 1.0 02/26/2010 1936 02/22/2010 1420	Analysis Batch: 640-66015 Prep Batch: 640-65857		Instrument ID: Initial Weight/Volume: Final Weight/Volume: Injection Volume: Result Type:	SGF 1000 mL 5.0 mL 1 uL PRIMARY
Analyte		Result (ug/L)	Qualifie	er MDL	PQL
Bolstar Chlorpyrifos Coumaphos Demeton, Total Diazinon Dichlorvos Dimethoate Disulfoton EPN Ethoprop Fensulfothion Malathion Merphos Monochrotophos Naled Ethyl Parathion Methyl parathion Phorate Ronnel		0.095 0.11 0.081 0.15 0.11 0.26 0.32 0.12 0.071 0.41 0.17 0.092 0.13 0.15 2.6 0.36 0.080 0.12 0.16 0.13		0.095 0.11 0.081 0.15 0.11 0.26 0.32 0.12 0.071 0.41 0.17 0.092 0.13 0.15 2.6 0.36 0.080 0.12 0.16 0.13	$ \begin{array}{c} 1.0\\ 1.0\\ 1.0\\ 2.5\\ 1.0\\ 2.0\\ 2.0\\ 2.0\\ 2.0\\ 1.0\\ 0.50\\ 5.0\\ 1.0\\ 1.0\\ 1.0\\ 5.0\\ 1.0\\ 0.50\\ 1.0\\ 1.0\\ 0.50\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\ 1.$
Stirophos Tokuthion Trichloronate		0.084 0.087 0.11	U U U	0.084 0.087 0.11	1.0 1.0 1.0
Surrogate Triphenylphospha	te	%Rec 89	Qualifie	Qualifier Acceptance Limits 37 - 139	

Job Number: 660-33914-1

Client Sample ID:	Surface Water Bla	nk				
Lab Sample ID: Client Matrix:	660-33914-7 Water			Date San Date Rec	npled: 02/17/201 eived: 02/19/201	0 0900 0 0850
		8141A Organophosphorous Pe	sticides (GC)			
Method:	8141A	Analysis Batch: 640-65998	Instr	ument ID:	SGF	
Preparation:	3520C	Prep Batch: 640-65857	Initia	al Weight/Volume:	1000 mL	
Dilution:	1.0		Fina	I Weight/Volume:	5.0 mL	
Date Analyzed:	02/25/2010 1720		Injec	ction Volume:	1 uL	
Date Prepared:	02/22/2010 1420		Res	ult Type:	PRIMARY	
Analyte		Result (ug/L)	Qualifier	MDL	PQL	
Hexazinone		0.16	U	0.16	2.0	

Client Sample ID:	Surface Water Blank					
Lab Sample ID: Client Matrix:	660-33914-7 Water			Date Sar Date Rec	npled: 02/17/2010 0900 ceived: 02/19/2010 0850	
	81	141A Organophosphorous Pe	esticides (GC)		
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	8141A 3520C 1.0 02/26/2010 1951 02/22/2010 1420	Analysis Batch: 640-66015 Prep Batch: 640-65857		Instrument ID: Initial Weight/Volume: Final Weight/Volume: Injection Volume: Result Type:	SGF 1000 mL 5.0 mL 1 uL PRIMARY	
Analyte		Result (ug/L)	Qualifie	er MDL	PQL	
Bolstar Chlorpyrifos Coumaphos Demeton, Total Diazinon Dichlorvos Dimethoate Disulfoton EPN Ethoprop Fensulfothion Malathion Merphos Monochrotophos Naled Ethyl Parathion Methyl parathion Phorate Ronnel Sulfotepp Stirophos		0.095 0.11 0.081 0.15 0.11 0.26 0.32 0.12 0.071 0.41 0.17 0.092 0.13 0.15 2.6 0.36 0.080 0.12 0.16 0.13 0.055 0.081	υ υ υ υ υ υ υ υ υ υ υ υ υ υ υ υ υ υ υ	0.095 0.11 0.081 0.15 0.11 0.26 0.32 0.12 0.071 0.41 0.17 0.092 0.13 0.15 2.6 0.36 0.080 0.12 0.16 0.13 0.055 0.084	$ \begin{array}{r} 1.0 \\ 1.0 \\ 1.0 \\ 2.5 \\ 1.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 1.0 \\ 0.50 \\ 5.0 \\ 1.0 \\ 1.0 \\ 2.0 \\ 10 \\ 5.0 \\ 1.0 \\ 1.0 \\ 0.50 \\ 1.0 \\ 1.0 \\ 0.50 \\ 1.0 \\ 1.0 \\ 0.50 \\ 1.0 \\ $	
Tokuthion Trichloronate		0.087 0.11	U U	0.087 0.11	1.0 1.0	
Surrogate Triphenylphosphat	e	%Rec 101	Qualifie	er Acceptar 37 - 139	ice Limits	
Client Sample ID:	4F					
--	---	------------------	--	----------	--	---
Lab Sample ID: Client Matrix:	660-33914-8 Solid				Date Sa Date Re	impled: 02/17/2010 0940 eceived: 02/19/2010 0850
		8141A Org	anophosphorous Pe	sticides	(GC)	
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	8141A 3550B 1.0 02/24/2010 1406 02/22/2010 1006	Analys Prep E	sis Batch: 640-65935 3atch: 640-65855		Instrument ID: Initial Weight/Volume Final Weight/Volume: Injection Volume: Result Type:	SGF : 00030.45 g 10.0 mL 1 uL PRIMARY
Analyte	DryWt Correc	ted: N	Result (ug/Kg)	Qualifi	er MDL	PQL
Azinphos-methyl	-		4.3	U	4.3	65
Bolstar			8.4	U	8.4	33
Chlorpyrifos			8.3	U	8.3	33
Coumaphos			8.5	U	8.5	330
Demeton, Total			13	U	13	82
Diazinon			8.7	U	8.7	33
Dichlorvos			17	U	17	65
Dimethoate			9.9	U	9.9	65
Disulfoton			11	U	11	65
EPN			9.0	U	9.0	33
Ethoprop			15	U	15	17
Ethyl Parathion			8.7	U	8.7	33
Fensulfothion			9.9	U	9.9	330
Hexazinone			7.6	U	7.6	33
Malathion			8.9	U	8.9	33
Merphos			8.2	U	8.2	33
Methyl parathion			5.3	U	5.3	17
Mevinphos			11	U	11	65
Monochrotophos			84	U	84	330
Naled			5.1	U	5.1	330
Phorate			11	U	11	33
Ronnel			7.9	U	7.9	33
Stirophos			8.8	U	8.8	33
Sulfotepp			5.2	U	5.2	17
Tokuthion			7.6	U	7.6	33
Trichloronate			8.1	U	8.1	330
Surrogate			%Rec	Qualifi	er Accepta	ince Limits
Triphenylphosphat	e		54		35 - 134	-

Client Sample ID:	4E						
Lab Sample ID: Client Matrix:	660-339 [.] Solid	14-9			Date Sa Date Re	npled: 02/17/2010 104 ceived: 02/19/2010 085	0 50
		8141	A Organophosphorous Pe	esticides	(GC)		_
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	8141A 3550B 1.0 02/24/2010 02/22/2010	1421 1006	Analysis Batch: 640-65935 Prep Batch: 640-65855		Instrument ID: Initial Weight/Volume: Final Weight/Volume: Injection Volume: Result Type:	SGF 00030.00 g 10.0 mL 1 uL PRIMARY	
Analyte	Dr	yWt Corrected: N	N Result (ug/Kg)	Qualifie	er MDL	PQL	
Azinphos-methyl		-	4.4	U	4.4	66	-
Bolstar			8.5	U	8.5	33	
Chlorpyrifos			8.4	U	8.4	33	
Coumaphos			8.6	U	8.6	330	
Demeton, Total			13	U	13	83	
Diazinon			8.8	U	8.8	33	
Dichlorvos			17	U	17	66	
Dimethoate			10	U	10	66	
Disulfoton			11	U	11	66	
EPN			9.1	U	9.1	33	
Ethoprop			15	U	15	17	
Ethyl Parathion			8.8	U	8.8	33	
Fensulfothion			10	U	10	330	
Hexazinone			7.7	U	7.7	33	
Malathion			9.0	U	9.0	33	
Merphos			8.3	U	8.3	33	
Methyl parathion			5.4	U	5.4	17	
Mevinphos			11	U	11	66	
Monochrotophos			85	U	85	330	
Naled			5.2	U	5.2	330	
Phorate			11	U	11	33	
Ronnel			8.0	U	8.0	33	
Stirophos			8.9	U	8.9	33	
Sulfotepp			5.3	U	5.3	17	
Tokuthion			7.7	U	7.7	33	
Trichloronate			8.2	U	8.2	330	
Surrogate			%Rec	Qualifie	er Accepta	nce Limits	
Triphenylphosphat	e		41		35 - 134		_

Client Sample ID:	10					
Lab Sample ID: Client Matrix:	660-33914-10 Solid	Date Sampled: 02/17/2010 Date Received: 02/19/2010				
		8141A Organophosphorous Pestici	des (GC)			
Method:	8141A	Analysis Batch: 640-65935	Instrument ID:	SGF		
Preparation:	3550B	Prep Batch: 640-65855	Initial Weight/Volume:	00030.23 g		
Dilution:	1.0		Final Weight/Volume:	10.0 mL		
Date Analyzed:	02/24/2010 1449		Injection Volume:	1 uL		
Date Prepared:	02/22/2010 1006		Result Type:	PRIMARY		

Analyte	DryWt Corrected: N	Result (ug/Kg)	Qualifier	MDL	PQL
Azinphos-methyl		4.4	U	4.4	65
Bolstar		8.4	U	8.4	33
Chlorpyrifos		8.3	U	8.3	33
Coumaphos		8.5	U	8.5	330
Demeton, Total		13	U	13	82
Diazinon		8.7	U	8.7	33
Dichlorvos		17	U	17	65
Dimethoate		9.9	U	9.9	65
Disulfoton		11	U	11	65
EPN		9.0	U	9.0	33
Ethoprop		15	U	15	17
Ethyl Parathion		8.7	U	8.7	33
Fensulfothion		9.9	U	9.9	330
Hexazinone		7.6	U	7.6	33
Malathion		8.9	U	8.9	33
Merphos		8.2	U	8.2	33
Methyl parathion		5.4	U	5.4	17
Mevinphos		11	U	11	65
Monochrotophos		84	U	84	330
Naled		5.2	U	5.2	330
Phorate		11	U	11	33
Ronnel		7.9	U	7.9	33
Stirophos		8.8	U	8.8	33
Sulfotepp		5.3	U	5.3	17
Tokuthion		7.6	U	7.6	33
Trichloronate		8.1	U	8.1	330
Surrogate		%Rec	Qualifier	Accepta	ance Limits
Triphenylphosphate		47		35 - 13	4

33

33

33

17

65

330

330

33

Client: Environmental Engineering Consultant

Client Sample ID:	7A						
Lab Sample ID: Client Matrix:	660-3391 Solid	14-11			Date Sa Date Re	npled: 02/17/2010 14 ceived: 02/19/2010 08)0 50
		8141	A Organophosphorous Pe	esticides	(GC)		_
Method:	8141A		Analysis Batch: 640-65935		Instrument ID:	SGF	
Preparation:	3550B		Prep Batch: 640-65855		Initial Weight/Volume:	00030.25 g	
Dilution:	1.0				Final Weight/Volume:	10.0 mL	
Date Analyzed:	02/24/2010	1503			Injection Volume:	1 uL	
Date Prepared:	02/22/2010	1006			Result Type:	PRIMARY	
Analyte	Dry	/Wt Corrected: N	Result (ug/Kg)	Qualifie	er MDL	PQL	
Azinphos-methyl			4.4	U	4.4	65	
Bolstar			8.4	U	8.4	33	
Chlorpyrifos			8.3	U	8.3	33	
Coumaphos			8.5	U	8.5	330	
Demeton, Total			13	U	13	82	
Diazinon			8.7	U	8.7	33	
Dichlorvos			17	U	17	65	
Dimethoate			9.9	U	9.9	65	
Disulfoton			11	U	11	65	
EPN			9.0	U	9.0	33	
Ethoprop			15	U	15	17	
Ethyl Parathion			8.7	U	8.7	33	
Fensulfothion			9.9	U	9.9	330	

Ronnel	7.9	U 7	7.9	33
Stirophos	8.8	U 8	3.8	33
Sulfotepp	5.3	U 5	5.3	17
Tokuthion	7.6	U 7	7.6	33
Trichloronate	8.1	U 8	3.1	330
Surrogate	%Rec	Qualifier	Acceptance Li	mits
Triphenylphosphate	38		35 - 134	

U

U

U

U

U

U

U

U

7.6

8.9

8.2

5.4

11

84

5.2

11

7.6

8.9

8.2

5.4

11

84

5.2

11

Hexazinone

Methyl parathion

Monochrotophos

Malathion

Merphos

Naled

Phorate

Mevinphos

Client: Environmental Engineering Consultant

Client Sample ID:	4F				
Lab Sample ID: Client Matrix:	660-33914-1 Water			Date Sar Date Rec	npled: 02/17/2010 0930 ceived: 02/19/2010 0850
		8151A Herbicides (G	C)		
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	8151A 8151A 1.0 03/05/2010 0451 02/23/2010 1625	Analysis Batch: 660-91479 Prep Batch: 660-90999		Instrument ID: Initial Weight/Volume: Final Weight/Volume: Injection Volume: Result Type:	BSGJ 1030 mL 10 mL 2 uL PRIMARY
Analyte		Result (ug/L)	Qualifie	er MDL	PQL
2,4,5-T		0.97	U	0.97	4.9
2,4-D		0.97	U	0.97	4.9
2,4-DB		0.97	U	0.97	4.9
Dalapon		24	U J3	24	120
Dicamba		0.24	U	0.24	1.2
Dichlorprop		0.97	U	0.97	5.8
Dinoseb		0.97	U	0.97	5.8
MCPA		33	U J3	33	120
MCPP		34	U	34	120
Pentachloropheno	l	0.083	U	0.083	0.97
Picloram		0.97	U	0.97	4.9
Silvex (2,4,5-TP)		0.97	U	0.97	4.9
Surrogate		%Rec	Qualifie	er Acceptar	ice Limits
2,4-Dichloropheny	lacetic acid	380	J1	33 - 120	

Client Sample ID:	4E				
Lab Sample ID: Client Matrix:	660-33914-2 Water			Date Sar Date Rec	npled: 02/17/2010 1030 ceived: 02/19/2010 0850
		8151A Herbicides (G	C)		
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	8151A 8151A 1.0 03/05/2010 0509 02/23/2010 1625	Analysis Batch: 660-91479 Prep Batch: 660-90999	 	nstrument ID: nitial Weight/Volume: Final Weight/Volume: njection Volume: Result Type:	BSGJ 980 mL 10 mL 2 uL PRIMARY
Analyte		Result (ug/L)	Qualifie	MDL	PQL
2,4,5-T		1.0	U	1.0	5.1
2,4-D		1.0	U	1.0	5.1
2,4-DB		1.0	U	1.0	5.1
Dalapon		26	U J3	26	120
Dicamba		0.26	U	0.26	1.2
Dichlorprop		1.0	U	1.0	6.1
Dinoseb		1.0	U	1.0	6.1
MCPA		35	U J3	35	120
MCPP		36	U	36	120
Pentachlorophenol		0.087	U	0.087	1.0
Picloram		1.0	U	1.0	5.1
Silvex (2,4,5-TP)		1.0	U	1.0	5.1
Surrogate		%Rec	Qualifie	Acceptar	ice Limits

Surrogate%Rec2,4-Dichlorophenylacetic acid85

Job Number: 660-33914-1

33 - 120

Job Number: 660-33914-1

Client: Environmental Engineering Consultant

Client Sample ID:	4C				
Lab Sample ID: Client Matrix:	660-33914-3 Water			Date Sar Date Rec	npled: 02/17/2010 1120 ceived: 02/19/2010 0850
		8151A Herbicides (G	C)		
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	8151A 8151A 1.0 03/05/2010 0600 02/23/2010 1625	Analysis Batch: 660-91479 Prep Batch: 660-90999		Instrument ID: Initial Weight/Volume: Final Weight/Volume: Injection Volume: Result Type:	BSGJ 1030 mL 10 mL 2 uL PRIMARY
Analyte		Result (ug/L)	Qualifie	er MDL	PQL
2,4,5-T		0.97	U	0.97	4.9
2,4-D		0.97	U	0.97	4.9
2,4-DB		0.97	U	0.97	4.9
Dalapon		24	U J3	24	120
Dicamba		0.24	U	0.24	1.2
Dichlorprop		0.97	U	0.97	5.8
Dinoseb		0.97	U	0.97	5.8
MCPA		33	U J3	33	120
MCPP		34	U	34	120
Pentachlorophenol		0.083	U	0.083	0.97
Picloram		0.97	U	0.97	4.9
Silvex (2,4,5-TP)		0.97	U	0.97	4.9
Surrogate		%Rec	Qualifie	er Acceptar	nce Limits
2,4-Dichloropheny	lacetic acid	87		33 - 120	

Client: Environmental Engineering Consultant

Client Sample ID:	10				
Lab Sample ID: Client Matrix:	660-33914-4 Water			Date Sar Date Rec	npled: 02/17/2010 1230 ceived: 02/19/2010 0850
		8151A Herbicides (G	C)		
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	8151A 8151A 1.0 03/05/2010 0618 02/23/2010 1625	Analysis Batch: 660-91479 Prep Batch: 660-90999		Instrument ID: Initial Weight/Volume: Final Weight/Volume: Injection Volume: Result Type:	BSGJ 1040 mL 10 mL 2 uL PRIMARY
Analyte		Result (ug/L)	Qualifie	er MDL	PQL
2,4,5-T		0.96	U	0.96	4.8
2,4-D		0.96	U	0.96	4.8
2,4-DB		0.96	U	0.96	4.8
Dalapon		24	U J3	24	120
Dicamba		0.24	U	0.24	1.2
Dichlorprop		0.96	U	0.96	5.8
Dinoseb		0.96	U	0.96	5.8
MCPA		33	U J3	33	120
MCPP		34	U	34	120
Pentachlorophenol		0.082	U	0.082	0.96
Picloram		0.96	U	0.96	4.8
Silvex (2,4,5-TP)		0.96	U	0.96	4.8
Surrogate		%Rec	Qualifie	er Acceptar	nce Limits
2,4-Dichloropheny	acetic acid	118		33 - 120	

Client: Environmental Engineering Consultant

Client Sample ID:	7A				
Lab Sample ID: Client Matrix:	660-33914-5 Water			Date Sar Date Rec	npled: 02/17/2010 1350 ceived: 02/19/2010 0850
		8151A Herbicides (G	C)		
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	8151A 8151A 1.0 03/05/2010 0635 02/23/2010 1625	Analysis Batch: 660-91479 Prep Batch: 660-90999		Instrument ID: Initial Weight/Volume: Final Weight/Volume: Injection Volume: Result Type:	BSGJ 1050 mL 10 mL 2 uL PRIMARY
Analyte		Result (ug/L)	Qualifie	er MDL	PQL
2,4,5-T		0.95	U	0.95	4.8
2,4-D		0.95	U	0.95	4.8
2,4-DB		0.95	U	0.95	4.8
Dalapon		24	U J3	24	110
Dicamba		0.24	U	0.24	1.1
Dichlorprop		0.95	U	0.95	5.7
Dinoseb		0.95	U	0.95	5.7
MCPA		32	U J3	32	110
MCPP		33	U	33	110
Pentachloropheno	l	0.081	U	0.081	0.95
Picloram		0.95	U	0.95	4.8
Silvex (2,4,5-TP)		0.95	U	0.95	4.8
Surrogate		%Rec	Qualifie	er Acceptar	nce Limits
2,4-Dichloropheny	lacetic acid	112		33 - 120	

Client Sample ID	: 7B				
Lab Sample ID: Client Matrix:	660-33914-6 Water			Date Sar Date Rec	npled: 02/17/2010 1430 ceived: 02/19/2010 0850
		8151A Herbicides (G	C)		
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	8151A 8151A 1.0 03/05/2010 0653 02/23/2010 1625	Analysis Batch: 660-91479 Prep Batch: 660-90999		Instrument ID: Initial Weight/Volume: Final Weight/Volume: Injection Volume: Result Type:	BSGJ 990 mL 10 mL 2 uL PRIMARY
Analyte		Result (ug/L)	Qualifie	er MDL	PQL
2,4,5-T		1.0	U	1.0	5.1
2,4-D		1.0	U	1.0	5.1
2,4-DB		1.0	U	1.0	5.1
Dalapon		25	U J3	25	120
Dicamba		0.25	U	0.25	1.2
Dichlorprop		1.0	U	1.0	6.1
Dinoseb		1.0	U	1.0	6.1
MCPA		34	U J3	34	120
MCPP		35	U	35	120
Pentachloropheno	bl	0.086	U	0.086	1.0
Picloram		1.0	U	1.0	5.1
Silvex (2,4,5-TP)		1.0	U	1.0	5.1
Surrogate		%Rec	Qualifie	er Acceptar	nce Limits
2,4-Dichloropheny	/lacetic acid	74		33 - 120	

Client Sample ID:	Surface Water Blank				
Lab Sample ID: Client Matrix:	660-33914-7 Water			Date Sar Date Rec	npled: 02/17/2010 0900 ceived: 02/19/2010 0850
		8151A Herbicides (G	C)		
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	8151A 8151A 1.0 03/05/2010 0710 02/23/2010 1625	Analysis Batch: 660-91479 Prep Batch: 660-90999		Instrument ID: Initial Weight/Volume: Final Weight/Volume: Injection Volume: Result Type:	BSGJ 960 mL 10 mL 2 uL PRIMARY
Analyte		Result (ug/L)	Qualifie	er MDL	PQL
2,4,5-T		1.0	U	1.0	5.2
2,4-D		1.0	U	1.0	5.2
2,4-DB		1.0	U	1.0	5.2
Dalapon		26	U J3	26	120
Dicamba		0.26	U	0.26	1.2
Dichlorprop		1.0	U	1.0	6.3
Dinoseb		1.0	U	1.0	6.3
MCPA		35	U J3	35	120
MCPP		36	U	36	120
Pentachloropheno		0.089	U	0.089	1.0
Picloram		1.0	U	1.0	5.2
Silvex (2,4,5-TP)		1.0	U	1.0	5.2
Surrogate		%Rec	Qualifie	er Acceptar	nce Limits
2,4-Dichloropheny	lacetic acid	95		33 - 120	

Client: Environmental Engineering Consultant

Client Sample ID:	4F				
Lab Sample ID: Client Matrix:	660-33914-8 Solid			Date Sar Date Rec	npled: 02/17/2010 0940 ceived: 02/19/2010 0850
		8151A Herbicides (G	SC)		
Method: Preparation:	8151A 8151A	Analysis Batch: 660-91563 Prep Batch: 660-91293		Instrument ID: Initial Weight/Volume:	BSGJ 29.97 a
Dilution: Date Analyzed: Date Prepared:	1.0 03/08/2010 2122 03/02/2010 1410			Final Weight/Volume: Injection Volume: Result Type:	10 mL 2 uL PRIMARY
Analyte	DryWt Correcte	d: N Result (ug/Kg)	Qualifie	er MDL	PQL
2,4,5-T		10	U	10	50
2,4-D		1.6	U	1.6	8.3
2,4-DB		6.4	U	6.4	8.3
Dalapon		23	U	23	2000
Dicamba		12	U	12	50
Dichlorprop		25	U	25	100
Dinoseb		8.3	U J3	8.3	30
MCPA		740	U	740	2000
MCPP		400	U	400	2000
Pentachlorophenol		5.0	U	5.0	17
Picloram		1.2	U	1.2	3.3
Silvex (2,4,5-TP)		10	U	10	50
Surrogate		%Rec	Qualifie	er Acceptar	ice Limits
2,4-Dichlorophenyl	acetic acid	74		10 - 135	

Job Number: 660-33914-1

Client: Environmental Engineering Consultant

Client Sample ID:	4E					
Lab Sample ID: Client Matrix:	660-3391 Solid	4-9			Date Sar Date Rec	npled: 02/17/2010 1040 ceived: 02/19/2010 0850
			8151A Herbicides (G	C)		
Method:	8151A	1	Analysis Batch: 660-91563		Instrument ID:	BSGJ
Preparation:	8151A	F	Prep Batch: 660-91293		Initial Weight/Volume:	30.45 g
Dilution:	1.0				Final Weight/Volume:	10 mL
Date Analvzed:	03/08/2010	2140			Injection Volume:	2 uL
Date Prepared:	03/02/2010	1410			Result Type:	PRIMARY
Analyte	Dry	Wt Corrected: N	Result (ug/Kg)	Qualifie	er MDL	PQL
2,4,5-T			9.9	U	9.9	49
2,4-D			1.6	U	1.6	8.2
2,4-DB			6.3	U	6.3	8.2
Dalapon			23	U	23	2000
Dicamba			12	U	12	49
Dichlorprop			25	U	25	99
Dinoseb			8.2	U J3	8.2	30
MCPA			730	U	730	2000
MCPP			390	U	390	2000
Pentachlorophenol			4.9	U	4.9	17
Picloram			1.2	U	1.2	3.3
Silvex (2,4,5-TP)			9.9	U	9.9	49
Surrogate			%Rec	Qualifie	er Acceptar	nce Limits
2,4-Dichlorophenyl	acetic acid		73		10 - 135	

Client: Environmental Engineering Consultant

Client Sample ID:	10					
Lab Sample ID: Client Matrix:	660-3391 Solid	14-10			Date Sar Date Rec	npled: 02/17/2010 1250 ceived: 02/19/2010 0850
			8151A Herbicides (G	C)		
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	8151A 8151A 1.0 03/07/2010 03/02/2010	7 1957 1410	Analysis Batch: 660-91563 Prep Batch: 660-91293		Instrument ID: Initial Weight/Volume: Final Weight/Volume: Injection Volume: Result Type:	BSGJ 30.16 g 10 mL 2 uL PRIMARY
Analyte	Dry	/Wt Corrected: N	Result (ua/Ka)	Qualifie	er MDL	PQL
2.4.5-T	;		9.9	U	9.9	50
2.4-D			1.6	Ū	1.6	8.3
2,4-DB			6.4	Ū	6.4	8.3
Dalapon			23	U	23	2000
Dicamba			12	U	12	50
Dichlorprop			25	U	25	99
Dinoseb			8.3	U J3	8.3	30
MCPA			740	U	740	2000
MCPP			400	U	400	2000
Pentachlorophenol			5.0	U	5.0	17
Picloram			1.2	U	1.2	3.3
Silvex (2,4,5-TP)			9.9	U	9.9	50
Surrogate			%Rec	Qualifie	er Acceptar	nce Limits
2,4-Dichlorophenyl	acetic acid		272	J1	10 - 135	

Client Sample ID:	7A					
Lab Sample ID: Client Matrix:	660-33914-11 Solid				Date Sa Date Re	impled: 02/17/2010 1400 eceived: 02/19/2010 0850
			8151A Herbicides (G	C)		
Method:	8151A	Anal	ysis Batch: 660-91563		Instrument ID:	BSGJ
Preparation:	8151A	Prep	Batch: 660-91293		Initial Weight/Volume	: 29.58 g
Dilution:	1.0				Final Weight/Volume:	10 mL
Date Analyzed:	03/08/2010 2158				Injection Volume:	2 uL
Date Prepared:	03/02/2010 1410				Result Type:	PRIMARY
Analyte	DryWt Correc	ted: N	Result (ug/Kg)	Qualifi	er MDL	PQL
2,4,5-T			10	U	10	51
2,4-D			1.6	U	1.6	8.4
2,4-DB			6.5	U J3	6.5	8.4
Dalapon			23	U J3	23	2000
Dicamba			12	U	12	51
Dichlorprop			25	U	25	100
Dinoseb			8.4	U J3	8.4	30
MCPA			750	U	750	2000
MCPP			410	U	410	2000
Pentachlorophenol			5.1	U J3	5.1	17
Picloram			1.2	U	1.2	3.3
Silvex (2,4,5-TP)			10	U J3	10	51
Surrogate			%Rec	Qualifi	er Accepta	ance Limits
2,4-Dichlorophenyl	acetic acid		81		10 - 135	;

Client Sample I	D: 4F				
Lab Sample ID: Client Matrix:	660-33914-1 Water			Date San Date Rec	npled: 02/17/2010 0930 eived: 02/19/2010 0850
		6010B Metals (ICP)-Total Re	coverable		
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	6010B 3005A 1.0 03/02/2010 1148 02/26/2010 0900	Analysis Batch: 660-91268 Prep Batch: 660-91157	اr ل F	istrument ID: ab File ID: iitial Weight/Volume: inal Weight/Volume:	ICPA 10C02A 50 mL 50 mL
Analyte		Result (mg/L)	Qualifier	MDL	PQL
Copper Iron Potassium Magnesium Lead Zinc		0.018 1.4 8.6 9.6 0.0069 0.056	I	0.0029 0.050 0.19 0.020 0.0020 0.0050	0.010 0.20 1.0 0.080 0.010 0.020
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	6010B 3005A 10 03/02/2010 1411 02/26/2010 0900	Analysis Batch: 660-91268 Prep Batch: 660-91157	ir لـ F	nstrument ID: ab File ID: nitial Weight/Volume: nal Weight/Volume:	ICPA 10C02A 50 mL 50 mL
Analyte Sodium		Result (mg/L) 100	Qualifier	MDL 3.1	PQL 5.0
		7470A Moreury (CVA	(A)		
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	7470A 7470A 1.0 02/24/2010 1801 02/24/2010 0915	Analysis Batch: 700-79238 Prep Batch: 700-79169	r, L Ir F	nstrument ID: ab File ID: iitial Weight/Volume: inal Weight/Volume:	LEEMAN HYDRA N/A 40 mL 40 mL
Analyte		Result (mg/L)	Qualifier	MDL	PQL
Mercury		0.000071	U	0.000071	0.00020

Client Sample I	D: 4E				
Lab Sample ID: Client Matrix:	660-33914-2 Water			Date San Date Rec	npled: 02/17/2010 1030 eived: 02/19/2010 0850
		6010B Metals (ICP)-Total Re	coverable		
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	6010B 3005A 1.0 03/02/2010 1154 02/26/2010 0900	Analysis Batch: 660-91268 Prep Batch: 660-91157	lr L F	nstrument ID: ab File ID: nitial Weight/Volume: ïnal Weight/Volume:	ICPA 10C02A 50 mL 50 mL
Analyte		Result (mg/L)	Qualifier	MDL	PQL
Copper Iron Potassium Magnesium Lead Zinc		0.0029 0.38 25 66 0.0036 0.016	U I I	0.0029 0.050 0.19 0.020 0.0020 0.0050	0.010 0.20 1.0 0.080 0.010 0.020
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	6010B 3005A 10 03/02/2010 1417 02/26/2010 0900	Analysis Batch: 660-91268 Prep Batch: 660-91157	lr L F	nstrument ID: ab File ID: nitial Weight/Volume: inal Weight/Volume:	ICPA 10C02A 50 mL 50 mL
Analyte Sodium		Result (mg/L) 300	Qualifier	MDL 3.1	PQL 5.0
		7470A Mercury (CVA	A)		
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	7470A 7470A 1.0 02/24/2010 1803 02/24/2010 0915	Analysis Batch: 700-79238 Prep Batch: 700-79169	lr L F	nstrument ID: ab File ID: nitial Weight/Volume: ïnal Weight/Volume:	LEEMAN HYDRA N/A 40 mL 40 mL
Analyte		Result (mg/L)	Qualifier	MDL	PQL
Mercury		0.000071	U	0.000071	0.00020

Client Sample I	D: 4C				
Lab Sample ID: Client Matrix:	660-33914-3 Water			Date Sar Date Rec	npled: 02/17/2010 1120 ceived: 02/19/2010 0850
		6010B Metals (ICP)-Total Re	coverabl	9	
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	6010B 3005A 1.0 03/02/2010 1200 02/26/2010 0900	Analysis Batch: 660-91268 Prep Batch: 660-91157		Instrument ID: Lab File ID: Initial Weight/Volume: Final Weight/Volume:	ICPA 10C02A 50 mL 50 mL
Analyte		Result (mg/L)	Qualifie	er MDL	PQL
Copper Iron Potassium Magnesium Lead Zinc		0.0029 0.063 30 63 0.0020 0.0097	U I U I	0.0029 0.050 0.19 0.020 0.0020 0.0050	0.010 0.20 1.0 0.080 0.010 0.020
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	6010B 3005A 10 03/02/2010 1423 02/26/2010 0900	Analysis Batch: 660-91268 Prep Batch: 660-91157		Instrument ID: Lab File ID: Initial Weight/Volume: Final Weight/Volume:	ICPA 10C02A 50 mL 50 mL
Analyte		Result (mg/L)	Qualifie	er MDL	PQL
Sodium		320		3.1	5.0
		7470A Mercury (CVA	A)		
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	7470A 7470A 1.0 02/24/2010 1805 02/24/2010 0915	Analysis Batch: 700-79238 Prep Batch: 700-79169		Instrument ID: Lab File ID: Initial Weight/Volume: Final Weight/Volume:	LEEMAN HYDRA N/A 40 mL 40 mL
Analyte		Result (mg/L)	Qualifie	er MDL	PQL
Mercury		0.000071	U	0.000071	0.00020

Client Sample I	D: 10				
Lab Sample ID: Client Matrix:	660-33914-4 Water			Date San Date Rec	npled: 02/17/2010 1230 ceived: 02/19/2010 0850
		6010B Metals (ICP)-Total Re	coverable	9	
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	6010B 3005A 1.0 03/02/2010 1218 02/26/2010 0900	Analysis Batch: 660-91268 Prep Batch: 660-91157		Instrument ID: Lab File ID: Initial Weight/Volume: Final Weight/Volume:	ICPA 10C02A 50 mL 50 mL
Analyte		Result (mg/L)	Qualifie	r MDL	PQL
Copper Iron Magnesium Lead Zinc		0.0029 0.075 97 0.0020 0.0078	U I U I	0.0029 0.050 0.020 0.0020 0.0050	0.010 0.20 0.080 0.010 0.020
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	6010B 3005A 10 03/02/2010 1429 02/26/2010 0900	Analysis Batch: 660-91268 Prep Batch: 660-91157		Instrument ID: Lab File ID: Initial Weight/Volume: Final Weight/Volume:	ICPA 10C02A 50 mL 50 mL
Analyte		Result (mg/L)	Qualifie	r MDL	PQL
Potassium Sodium		32 590		1.9 3.1	10 5.0
		7470A Mercury (CVA	A)		
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	7470A 7470A 1.0 02/24/2010 1811 02/24/2010 0915	Analysis Batch: 700-79238 Prep Batch: 700-79169		Instrument ID: Lab File ID: Initial Weight/Volume: Final Weight/Volume:	LEEMAN HYDRA N/A 40 mL 40 mL
Analyte		Result (mg/L)	Qualifie	r MDL	PQL
Mercury		0.000071	U	0.000071	0.00020

Client Sample I	D: 7A				
Lab Sample ID: Client Matrix:	660-33914-5 Water			Date San Date Rec	npled: 02/17/2010 1350 eived: 02/19/2010 0850
		6010B Metals (ICP)-Total Re	coverable		
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	6010B 3005A 1.0 03/02/2010 1224 02/26/2010 0900	Analysis Batch: 660-91268 Prep Batch: 660-91157	lı L F	nstrument ID: ab File ID: nitial Weight/Volume: ïnal Weight/Volume:	ICPA 10C02A 50 mL 50 mL
Analyte		Result (mg/L)	Qualifier	MDL	PQL
Copper Iron Magnesium Lead Zinc		0.0029 0.11 96 0.0020 0.0082	U I U I	0.0029 0.050 0.020 0.0020 0.0050	0.010 0.20 0.080 0.010 0.020
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	6010B 3005A 10 03/02/2010 1447 02/26/2010 0900	Analysis Batch: 660-91268 Prep Batch: 660-91157	lı L Iı F	nstrument ID: ab File ID: nitial Weight/Volume: ïinal Weight/Volume:	ICPA 10C02A 50 mL 50 mL
Analyte		Result (mg/L)	Qualifier	MDL	PQL
Potassium Sodium		31 580		1.9 3.1	10 5.0
		7470A Mercury (CVA	A)		
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	7470A 7470A 1.0 02/24/2010 1813 02/24/2010 0915	Analysis Batch: 700-79238 Prep Batch: 700-79169	lı L F	nstrument ID: ab File ID: nitial Weight/Volume: ïinal Weight/Volume:	LEEMAN HYDRA N/A 40 mL 40 mL
Analyte		Result (mg/L)	Qualifier	MDL	PQL
Mercury		0.000071	U	0.000071	0.00020

Client Sample I	D: 7B				
Lab Sample ID: Client Matrix:	660-33914-6 Water			Date San Date Rec	npled: 02/17/2010 1430 ceived: 02/19/2010 0850
		6010B Metals (ICP)-Total Re	coverable	9	
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	6010B 3005A 1.0 03/02/2010 1230 02/26/2010 0900	Analysis Batch: 660-91268 Prep Batch: 660-91157		Instrument ID: Lab File ID: Initial Weight/Volume: Final Weight/Volume:	ICPA 10C02A 50 mL 50 mL
Analyte		Result (mg/L)	Qualifie	r MDL	PQL
Copper Iron Magnesium Lead Zinc		0.0029 0.067 97 0.0020 0.0093	U I U I	0.0029 0.050 0.020 0.0020 0.0050	0.010 0.20 0.080 0.010 0.020
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	6010B 3005A 10 03/02/2010 1453 02/26/2010 0900	Analysis Batch: 660-91268 Prep Batch: 660-91157		Instrument ID: Lab File ID: Initial Weight/Volume: Final Weight/Volume:	ICPA 10C02A 50 mL 50 mL
Analyte		Result (mg/L)	Qualifie	r MDL	PQL
Potassium Sodium		32 590		1.9 3.1	10 5.0
		7470A Mercury (CVA	AA)		
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	7470A 7470A 1.0 02/24/2010 1815 02/24/2010 0915	Analysis Batch: 700-79238 Prep Batch: 700-79169		Instrument ID: Lab File ID: Initial Weight/Volume: Final Weight/Volume:	LEEMAN HYDRA N/A 40 mL 40 mL
Analyte		Result (mg/L)	Qualifie	r MDL	PQL
Mercury		0.000071	U	0.000071	0.00020

Client Sample I	D: Su	rface Water Blank					
Lab Sample ID: Client Matrix:	66 Wa	0-33914-7 ater			Date Sa Date Re	mpled: 02/17/2010 090 ceived: 02/19/2010 08)0 50
			6010B Metals (ICP)-Total R	ecoverabl	e		-
Method:	6010B		Analysis Batch: 660-91268		Instrument ID:	ICPA	
Preparation:	3005A		Prep Batch: 660-91157		Lab File ID:	10C02A	
Dilution:	1.0				Initial Weight/Volume:	50 mL	
Date Analyzed:	03/02/2	2010 1236			Final Weight/Volume:	50 mL	
Date Prepared:	02/26/2	2010 0900					
Analyte			Result (mg/L)	Qualifie	er MDL	PQL	
Copper			0.0029	U	0.0029	0.010	_
Iron			0.050	U	0.050	0.20	
Potassium			0.19	U	0.19	1.0	
Magnesium			0.020	U	0.020	0.080	
Sodium			9.7		0.31	0.50	
Lead			0.0020	U	0.0020	0.010	
Zinc			0.0050	U	0.0050	0.020	
			7470A Mercury (CV	AA)			
Method:	7470A		Analysis Batch: 700-79238		Instrument ID:	LEEMAN HYDRA	
Preparation:	7470A		Prep Batch: 700-79169		Lab File ID:	N/A	
Dilution:	1.0				Initial Weight/Volume:	40 mL	
Date Analyzed:	02/24/2	2010 1817			Final Weight/Volume:	40 mL	
Date Prepared:	02/24/2	2010 0915			-		
Analyte			Result (mg/L)	Qualifie	er MDL	PQL	
Mercury			0.000071	U	0.000071	0.00020	_

Client: Environmental Engineering Consultant

Client Sample I	D: 4F					
Lab Sample ID: Client Matrix:	660-33914-8 Solid				Date Sar Date Rec	npled: 02/17/2010 094 ceived: 02/19/2010 085
			6010B Metals (ICP)		
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	6010B 3050B 4.0 03/01/2010 1252 02/23/2010 1202	Analy Prep	sis Batch: 660-91239 Batch: 660-90981		Instrument ID: Lab File ID: Initial Weight/Volume: Final Weight/Volume:	ICPA 10C01A 1.03 g 50 mL
Analyte	DryWt Corr	ected: N	Result (mg/Kg)	Qualifie	r MDL	PQL
Aluminum Arsenic Boron Barium Cadmium Cobalt Chromium Copper Iron Magnesium Manganese Sodium Lead Titanium Vanadium Zinc			3200 1.6 8.7 26 0.34 1.3 9.2 23 2900 3300 65 970 33 27 6.4 94	I I I	23 0.89 2.3 0.62 0.34 0.74 0.66 1.9 12 26 0.82 70 0.58 1.2 0.43 1.9	78 1.9 3.9 3.9 3.9 3.9 7.8 19 190 3.9 190 1.9 3.9 3.9 3.9 3.9 3.9
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	6010B 3050B 20 03/01/2010 1339 02/23/2010 1202	Analy Prep	sis Batch: 660-91239 Batch: 660-90981		Instrument ID: Lab File ID: Initial Weight/Volume: Final Weight/Volume:	ICPA 10C01A 1.03 g 50 mL
Analyte Calcium Strontium	DryWt Corr	ected: N	Result (mg/Kg) 210000 2000	Qualifie	r MDL 290 1.9	PQL 970 19
			7471A Mercury (CVA	A)		
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	7471A 7471A 1.0 02/24/2010 1659 02/24/2010 1100	Analy Prep	sis Batch: 700-79230 Batch: 700-79182		Instrument ID: Lab File ID: Initial Weight/Volume: Final Weight/Volume:	LEEMAN HYDRA N/A 0.79 g 40 mL
Analyte	DryWt Corr	ected: Y	Result (mg/Kg)	Qualifie	r MDL	PQL
Mercury			0.015	I	0.010	0.015

Client Sample I	D: 4E					
Lab Sample ID:	660-33914-9 Solid				Date Sar	npled: 02/17/2010 1040
	3010					ceived. 02/19/2010 0030
			6010B Metals (ICP))		
Method:	6010B	Analys	sis Batch: 660-91239		Instrument ID:	ICPA
Preparation:	3050B	Prep B	Batch: 660-90981		Lab File ID:	10C01A
Dilution:	4.0				Initial Weight/Volume:	1.04 g
Date Analyzed:	03/01/2010 1258				Final Weight/Volume:	50 mL
Date Prepared:	02/23/2010 1202					
Analyte	DryWt Co	rrected: N	Result (mg/Kg)	Qualifie	r MDL	PQL
Aluminum			3200		22	77
Arsenic			1.1	I	0.88	1.9
Boron			12	I	2.3	19
Barium			15		0.62	3.8
Cadmium			0.33	U	0.33	1.9
Cobalt			0.82	I	0.73	3.8
Chromium			4.8		0.65	3.8
Copper			12		1.9	7.7
Iron			2600		12	19
Magnesium			4200		26	190
Manganese			44		0.81	3.8
Sodium			1300		69	190
Lead			53		0.58	1.9
Titanium			40		1.2	3.8
Vanadium			5.4		0.42	3.8
Zinc			74		1.9	7.7
Method:	6010B	Analy	sis Batch: 660-91239		Instrument ID:	ICPA
Preparation:	3050B	Prep B	Batch: 660-90981		Lab File ID:	10C01A
Dilution:	20				Initial Weight/Volume:	1.04 g
Date Analyzed:	03/01/2010 1345				Final Weight/Volume:	50 mL
Date Prepared:	02/23/2010 1202				3	
Analyte	DryWt Co	rrected: N	Result (mg/Kg)	Qualifie	er MDL	PQL
Calcium			150000		290	960
Strontium			2200		1.9	19
			7471A Mercury (CVA	A)		
Method:	7471A	Analy	sis Batch: 700-79230		Instrument ID:	LEEMAN HYDRA
Preparation	7471A	Pren F	Batch: 700-79182		Lab File ID:	N/A
Dilution:	1.0				Initial Weight/Volume	1.00 g
Date Analyzed	02/24/2010 1701				Final Weight/Volume	40 ml
Date Prepared:	02/24/2010 1100					
Analyte	DryWt Co	rrected: Y	Result (mg/Kg)	Qualifie	r MDL	PQL
Mercury			0.016		0.012	0.016

Client Sample I	D: 10							
Lab Sample ID: Client Matrix:	660-3391 Solid	4-10					Date San Date Rec	npled: 02/17/2010 125 eived: 02/19/2010 085
				6010B Metals (ICP	')			
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	6010B 3050B 1.0 03/01/2010 1 02/23/2010 1	327 202	Analysis Prep Ba	Batch: 660-91239 tch: 660-90981		Instrument ID Lab File ID: Initial Weight Final Weight/): /Volume: /Volume:	ICPA 10C01A 1.02 g 50 mL
Analyte	Dry	Wt Corrected:	N	Result (mg/Kg)	Qualifi	er MDI	_	PQL
Aluminum Arsenic Boron Barium Calcium Cadmium Cobalt Chromium Copper Iron Magnesium Manganese Sodium Lead Titanium Vanadium Zinc				1200 0.44 5.4 5.2 14000 0.085 0.25 1.1 3.6 850 1300 21 960 16 27 2.9 8.2	I U I	5.7 0.23 0.58 0.16 15 0.08 0.19 0.19 0.19 0.19 0.21 18 0.21 18 0.29 6.7 0.21 18 0.15 0.29 0.11 0.49	3 3 3 5 9 7 9 7 9	20 0.49 4.9 0.98 49 0.49 0.98 0.98 2.0 4.9 49 0.98 49 0.49 0.98 49 0.49 0.98 2.0
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	6010B 3050B 10 03/01/2010 1 02/23/2010 1	351 202	Analysis Prep Ba	Batch: 660-91239 tch: 660-90981		Instrument ID Lab File ID: Initial Weight Final Weight/): /Volume: 'Volume:	ICPA 10C01A 1.02 g 50 mL
Analyte Strontium	Dry	Wt Corrected:	N	Result (mg/Kg) 660	Qualifi	er MDI 0.96		PQL 9.8
			7	471A Mercury (CVA				
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	7471A 7471A 1.0 02/24/2010 1 02/24/2010 1	703 100	Analysis Prep Ba	Batch: 700-79230 tch: 700-79182		Instrument ID Lab File ID: Initial Weight Final Weight/): /Volume: 'Volume:	LEEMAN HYDRA N/A 1.55 g 40 mL
Analyte Mercury	Dry	Wt Corrected:	Y	Result (mg/Kg) 0.037	Qualifi	er MDI 0.03		PQL 0.053

Client Sample I	D: 7A					
Lab Sample ID: Client Matrix:	660-33914-11 Solid				Date Sar Date Rec	npled: 02/17/2010 1400 ceived: 02/19/2010 0850
			6010B Metals (ICP)		
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	6010B 3050B 4.0 03/01/2010 1333 02/23/2010 1202	Analys Prep B	is Batch: 660-91239 atch: 660-90981		Instrument ID: Lab File ID: Initial Weight/Volume: Final Weight/Volume:	ICPA 10C01A 1.03 g 50 mL
Analyte	DryWt Correct	ed: N	Result (mg/Kg)	Qualifie	r MDL	PQL
Aluminum Arsenic Boron Barium Cadmium Cobalt Chromium Copper Iron Magnesium Manganese Sodium Lead Titanium Vanadium Zinc			1200 0.89 8.0 5.8 0.34 0.74 1.7 2.7 860 1700 27 1500 5.2 3.4 2.2 6.2	U I U I I I	23 0.89 2.3 0.62 0.34 0.74 0.66 1.9 12 26 0.82 70 0.58 1.2 0.43 1.9	78 1.9 19 3.9 1.9 3.9 7.8 19 190 3.9 190 1.9 3.9 3.9 7.8 190 3.9 7.8 190 7.8 190 7.8 190 7.8 190 7.8 190 7.8 190 7.8 190 7.8 190 7.8 190 7.8 190 7.8 7.8 7.8 7.8 7.8 7.8 7.8 7.8
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	6010B 3050B 20 03/01/2010 1357 02/23/2010 1202	Analys Prep B	is Batch: 660-91239 atch: 660-90981		Instrument ID: Lab File ID: Initial Weight/Volume: Final Weight/Volume:	ICPA 10C01A 1.03 g 50 mL
Analyte	DryWt Correct	ed: N	Result (mg/Kg)	Qualifie	r MDL	PQL
Calcium Strontium			160000 2000		290 1.9	970 19
			7471A Mercury (CVA	A)		
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	7471A 7471A 1.0 02/24/2010 1705 02/24/2010 1100	Analys Prep B	is Batch: 700-79230 atch: 700-79182		Instrument ID: Lab File ID: Initial Weight/Volume: Final Weight/Volume:	LEEMAN HYDRA N/A 0.93 g 40 mL
Analyte	DryWt Correct	ed: Y	Result (mg/Kg)	Qualifie	r MDL	PQL
Mercury			0.015	U	0.015	0.021

Job Number: 660-33914-1

Client Sample ID	: 4F							
Lab Sample ID:	660-33914-1	l				Date	e Sampled:	02/17/2010 0930
Client Matrix:	Water					Dat	e Received:	02/19/2010 0850
Analyte		Result	Qual	Units	MDL	PQL	Dil	Method
Nitrite as N		0.10	UQ	mg/L	0.10	0.50	1.0	353.2
	Analysis Batch: 6	60-90874	Date Analyze	d: 02/19/	2010 0955			
Nitrate as N		0.10	UQ	mg/L	0.10	0.50	1.0	353.2
	Analysis Batch: 6	60-90874	Date Analyze	d: 02/19/	2010 0955			
Phosphorus, Tota	l	1.3		mg/L	0.10	0.30	1.0	365.4
	Analysis Batch: 6	60-91349	Date Analyze	d: 03/03/	2010 1113			
	Prep Batch:	660-91250	Date Pre	pared: 03	3/01/2010 1700			
Sulfate		2.0	U	mg/L	2.0	5.0	1.0	SM 426C
	Analysis Batch: 6	60-91434	Date Analyze	d: 03/04/	2010 1100			
Chloride		150		mg/L	6.0	10	2.0	SM 4500 CI- E
	Analysis Batch: 6	60-91210	Date Analyze	d: 02/27/	2010 0946			
Chemical Oxygen	Demand	460	J3	mg/L	10	20	1.0	SM 5220D
	Analysis Batch: 6	60-91054	Date Analyze	d: 02/24/	2010 1445			
	Prep Batch:	660-91053	Date Pre	pared: 02	2/24/2010 1113			
Tannins and Ligni	ins	5.9		mg/L	0.37	1.0	10	SM 5550B
	Analysis Batch: 6	80-161926	Date Analyze	d: 02/26/	2010 1752			
Analyte		Result	Qual	Units	PQL	PQL	Dil	Method
Turbidity		280	Q	NTU	5.0	5.0	50	180.1
	Analysis Batch: 6	60-90881	Date Analyze	d: 02/19/	2010 1030			
Chlorophyll a		98.9	Q	ug/L	2.00	2.00	1.0	SM 10200H
	Analysis Batch: 6	60-91277	Date Analyze	d: 02/25/	2010 0926			
Alkalinity		160		mg/L	1.0	1.0	1.0	SM 2320B
	Analysis Batch: 6	60-91047	Date Analyze	d: 02/24/	2010 1253			
Salinity		2.0	U	ppt	2.0	2.0	1.0	SM 2520B
	Analysis Batch: 6	60-91136	Date Analyze	d: 02/25/	2010 1200			
Total Suspended	Solids	110		mg/L	1.7	1.7	1.0	SM 2540D
	Analysis Batch: 6	60-91018	Date Analyze	d: 02/24/	2010 0847			
Sulfide		5.3		mg/L	1.0	1.0	1.0	SM 4500 S2 F
	Analysis Batch: 6	60-90921	Date Analyze	d: 02/20/	2010 1400			
Biochemical Oxyg	en Demand	88.8	Q	mg/L	2.00	2.00	1.0	SM 5210B
	Analysis Batch: 6	60-91308	Date Analyze	d: 02/24/	2010 0835			

Job Number: 660-33914-1

Client Sample ID	: 4E							
Lab Sample ID:	660-33914-2					Da	te Sampled:	02/17/2010 1030
Client Matrix:	Water					Da	te Received:	02/19/2010 0850
Analyte		Result	Qual	Units	MDL	PQL	Dil	Method
Nitrite as N		0.10	U	mg/L	0.10	0.50	1.0	353.2
	Analysis Batch: 66	0-90874	Date Analyze	d: 02/19/	2010 0955			
Nitrate as N		0.10	U	mg/L	0.10	0.50	1.0	353.2
	Analysis Batch: 66	0-90874	Date Analyze	d: 02/19/	2010 0955			
Phosphorus, Tota	l	0.21	I	mg/L	0.10	0.30	1.0	365.4
	Analysis Batch: 66	0-91349	Date Analyze	d: 03/03/	2010 1113			
	Prep Batch: 66	60-91250	Date Pre	pared: 03	3/01/2010 1700			
Sulfate		88		mg/L	10	25	5.0	SM 426C
	Analysis Batch: 66	0-91434	Date Analyze	d: 03/04/	2010 1100			
Chloride		490		mg/L	30	50	10	SM 4500 CI- E
	Analysis Batch: 66	0-91210	Date Analyze	d: 02/27/	2010 0946			
Chemical Oxygen	Demand	41		mg/L	10	20	1.0	SM 5220D
	Analysis Batch: 66	0-91052	Date Analyze	d: 02/24/	2010 1413			
	Prep Batch: 66	60-91051	Date Pre	pared: 02	2/24/2010 1113			
Tannins and Ligni	ins	1.5		mg/L	0.037	0.10	1.0	SM 5550B
	Analysis Batch: 68	0-161926	Date Analyze	d: 02/26/	2010 1749			
Analyte		Result	Qual	Units	PQL	PQL	Dil	Method
Turbidity		17		NTU	0.10	0.10	1.0	180.1
	Analysis Batch: 66	0-90881	Date Analyze	d: 02/19/	2010 1030			
Chlorophyll a		3.20	Q	ug/L	2.00	2.00	1.0	SM 10200H
	Analysis Batch: 66	0-91277	Date Analyze	d: 02/25/	2010 0928			
Alkalinity		430		mg/L	1.0	1.0	1.0	SM 2320B
	Analysis Batch: 66	0-91047	Date Analyze	d: 02/24/	2010 1306			
Salinity		2.0	U	ppt	2.0	2.0	1.0	SM 2520B
	Analysis Batch: 66	0-91136	Date Analyze	d: 02/25/	2010 1200			
Total Suspended	Solids	44		mg/L	1.0	1.0	1.0	SM 2540D
	Analysis Batch: 66	0-91018	Date Analyze	d: 02/24/	2010 0847			
Sulfide		1.0	U	mg/L	1.0	1.0	1.0	SM 4500 S2 F
	Analysis Batch: 66	0-90921	Date Analyze	d: 02/20/	2010 1400			
Biochemical Oxyg	en Demand	3.60	Q	mg/L	2.00	2.00	1.0	SM 5210B
	Analysis Batch: 66	0-91308	Date Analyze	d: 02/24/	2010 0835			

Job Number: 660-33914-1

Client Sample ID	: 4C							
Lab Sample ID:	660-33914-3					Dat	e Sampled:	02/17/2010 1120
Client Matrix:	Water					Dat	e Received:	02/19/2010 0850
Analyte		Result	Qual	Units	MDL	PQL	Dil	Method
Nitrite as N		0.10	U	mg/L	0.10	0.50	1.0	353.2
	Analysis Batch: 6	60-90874	Date Analyze	d: 02/19/	2010 0955			
Nitrate as N		0.10	U	mg/L	0.10	0.50	1.0	353.2
	Analysis Batch: 6	60-90874	Date Analyze	d: 02/19/	2010 0955			
Phosphorus, Tota	l	0.21	I	mg/L	0.10	0.30	1.0	365.4
	Analysis Batch: 6	60-91349	Date Analyze	d: 03/03/	2010 1113			
	Prep Batch:	660-91250	Date Pre	pared: 03	3/01/2010 1700			
Sulfate		62		mg/L	4.0	10	2.0	SM 426C
	Analysis Batch: 6	60-91434	Date Analyze	d: 03/04/	2010 1100			
Chloride		510		mg/L	30	50	10	SM 4500 CI- E
	Analysis Batch: 6	60-91210	Date Analyze	d: 02/27/	2010 0946			
Chemical Oxygen	Demand	56		mg/L	10	20	1.0	SM 5220D
	Analysis Batch: 6	60-91052	Date Analyze	d: 02/24/	2010 1413			
	Prep Batch:	660-91051	Date Pre	pared: 02	2/24/2010 1113			
Tannins and Ligni	ins	3.0		mg/L	0.18	0.50	5.0	SM 5550B
	Analysis Batch: 6	80-161926	Date Analyze	d: 02/26/	2010 1752			
Analyte		Result	Qual	Units	PQL	PQL	Dil	Method
Turbidity		11		NTU	0.10	0.10	1.0	180.1
	Analysis Batch: 6	60-90881	Date Analyze	d: 02/19/	2010 1030			
Chlorophyll a		91.8	Q	ug/L	2.00	2.00	1.0	SM 10200H
	Analysis Batch: 6	60-91277	Date Analyze	d: 02/25/	2010 0929			
Alkalinity		530		mg/L	1.0	1.0	1.0	SM 2320B
	Analysis Batch: 6	60-91047	Date Analyze	d: 02/24/	2010 1313			
Salinity		2.0	U	ppt	2.0	2.0	1.0	SM 2520B
	Analysis Batch: 6	60-91136	Date Analyze	d: 02/25/	2010 1200			
Total Suspended	Solids	8.8		mg/L	1.0	1.0	1.0	SM 2540D
	Analysis Batch: 6	60-91018	Date Analyze	d: 02/24/	2010 0847			
Sulfide		1.1		mg/L	1.0	1.0	1.0	SM 4500 S2 F
	Analysis Batch: 6	60-90921	Date Analyze	d: 02/20/	2010 1400			
Biochemical Oxyg	en Demand	10.3	Q	mg/L	2.00	2.00	1.0	SM 5210B
	Analysis Batch: 6	60-91308	Date Analyze	d: 02/24/	2010 0835			

Job Number: 660-33914-1

Client Sample ID	: 10							
Lab Sample ID:	660-33914-4					Dat	e Sampled:	02/17/2010 1230
Client Matrix:	Water					Dat	e Received:	02/19/2010 0850
Analyte		Result	Qual	Units	MDL	PQL	Dil	Method
Nitrite as N		0.10	U	mg/L	0.10	0.50	1.0	353.2
	Analysis Batch: 66	0-90874	Date Analyze	d: 02/19/	2010 0955			
Nitrate as N		0.10	U	mg/L	0.10	0.50	1.0	353.2
	Analysis Batch: 66	0-90874	Date Analyze	d: 02/19/	2010 0955			
Phosphorus, Tota	l	0.10	U	mg/L	0.10	0.30	1.0	365.4
	Analysis Batch: 66	0-91349	Date Analyzed	d: 03/03/	2010 1113			
	Prep Batch: 6	60-91250	Date Pre	pared: 03	3/01/2010 1700			
Sulfate		150		mg/L	10	25	5.0	SM 426C
	Analysis Batch: 66	0-91434	Date Analyzed	d: 03/04/	2010 1100			
Chloride		1200		mg/L	60	100	20	SM 4500 CI- E
	Analysis Batch: 66	0-91210	Date Analyzed	d: 02/27/	2010 0946			
Chemical Oxygen	Demand	49	J3	mg/L	10	20	1.0	SM 5220D
	Analysis Batch: 66	0-91052	Date Analyzed	d: 02/24/	2010 1413			
	Prep Batch: 6	60-91051	Date Pre	pared: 02	2/24/2010 1113			
Tannins and Ligni	ins	1.6		mg/L	0.037	0.10	1.0	SM 5550B
	Analysis Batch: 68	0-161926	Date Analyze	d: 02/26/	2010 1749			
Analyte		Result	Qual	Units	PQL	PQL	Dil	Method
Turbidity		4.1		NTU	0.10	0.10	1.0	180.1
	Analysis Batch: 66	0-90881	Date Analyzed	d: 02/19/	2010 1030			
Chlorophyll a		15.0	Q	ug/L	2.00	2.00	1.0	SM 10200H
	Analysis Batch: 66	0-91277	Date Analyzed	d: 02/25/	2010 0930			
Alkalinity		440		mg/L	1.0	1.0	1.0	SM 2320B
	Analysis Batch: 66	0-91047	Date Analyzed	d: 02/24/	2010 1321			
Salinity		2.5		ppt	2.0	2.0	1.0	SM 2520B
	Analysis Batch: 66	0-91136	Date Analyzed	d: 02/25/	2010 1200			
Total Suspended	Solids	8.0		mg/L	1.0	1.0	1.0	SM 2540D
	Analysis Batch: 66	0-91018	Date Analyzed	d: 02/24/	2010 0847			
Sulfide		1.0	U	mg/L	1.0	1.0	1.0	SM 4500 S2 F
	Analysis Batch: 66	0-90921	Date Analyzed	d: 02/20/	2010 1400			
Biochemical Oxyg	en Demand	2.95	Q	mg/L	2.00	2.00	1.0	SM 5210B
	Analysis Batch: 66	0-91308	Date Analyzed	d: 02/24/	2010 0835			

Job Number: 660-33914-1

Client Sample ID	: 7A							
Lab Sample ID:	660-33914-5					Da	te Sampled:	02/17/2010 1350
Client Matrix:	Water					Da	te Received:	02/19/2010 0850
Analyte		Result	Qual	Units	MDL	PQL	Dil	Method
Nitrite as N		0.10	U	mg/L	0.10	0.50	1.0	353.2
	Analysis Batch: 66	0-90874	Date Analyze	d: 02/19/	2010 0955			
Nitrate as N		0.10	U	mg/L	0.10	0.50	1.0	353.2
	Analysis Batch: 66	0-90874	Date Analyzed	d: 02/19/	2010 0955			
Phosphorus, Tota	I	0.11	I	mg/L	0.10	0.30	1.0	365.4
	Analysis Batch: 66	0-91349	Date Analyzed	d: 03/03/	2010 1113			
	Prep Batch: 6	60-91250	Date Prep	pared: 03	3/01/2010 1700			
Sulfate		160		mg/L	10	25	5.0	SM 426C
	Analysis Batch: 66	0-91434	Date Analyzed	d: 03/04/	2010 1100			
Chloride		1100		mg/L	60	100	20	SM 4500 CI- E
	Analysis Batch: 66	0-91210	Date Analyzed	d: 02/27/	2010 0946			
Chemical Oxygen	Demand	51		mg/L	10	20	1.0	SM 5220D
	Analysis Batch: 66	0-91052	Date Analyzed	d: 02/24/	2010 1413			
	Prep Batch: 6	60-91051	Date Pre	pared: 02	2/24/2010 1113			
Tannins and Ligni	ns	1.6		mg/L	0.037	0.10	1.0	SM 5550B
	Analysis Batch: 68	0-161926	Date Analyzed	d: 02/26/	2010 1749			
Analyte		Result	Qual	Units	PQL	PQL	Dil	Method
Turbidity		4.6		NTU	0.10	0.10	1.0	180.1
	Analysis Batch: 66	0-90881	Date Analyzed	d: 02/19/	2010 1030			
Chlorophyll a		37.2		ug/L	2.00	2.00	1.0	SM 10200H
	Analysis Batch: 66	0-91277	Date Analyzed	d: 02/25/	2010 0931			
Alkalinity		420		mg/L	1.0	1.0	1.0	SM 2320B
	Analysis Batch: 66	0-91047	Date Analyzed	d: 02/24/	2010 1329			
Salinity		2.5		ppt	2.0	2.0	1.0	SM 2520B
	Analysis Batch: 66	0-91136	Date Analyzed	d: 02/25/	2010 1200			
Total Suspended	Solids	11		mg/L	1.0	1.0	1.0	SM 2540D
	Analysis Batch: 66	0-91018	Date Analyzed	d: 02/24/	2010 0847			
Sulfide		1.0	U	mg/L	1.0	1.0	1.0	SM 4500 S2 F
	Analysis Batch: 66	0-90921	Date Analyzed	d: 02/20/	2010 1400			
Biochemical Oxyg	en Demand	4.20		mg/L	2.00	2.00	1.0	SM 5210B
	Analysis Batch: 66	0-91308	Date Analyzed	d: 02/24/	2010 0835			

Job Number: 660-33914-1

Client Sample ID	: 7B							
Lab Sample ID:	660-33914-6					Da	te Sampled:	02/17/2010 1430
Client Matrix:	Water					Da	te Received:	02/19/2010 0850
Analyte		Result	Qual	Units	MDL	PQL	Dil	Method
Nitrite as N		0.10	U	mg/L	0.10	0.50	1.0	353.2
	Analysis Batch: 66	60-90874	Date Analyze	d: 02/19/	2010 0955			
Nitrate as N		0.10	U	mg/L	0.10	0.50	1.0	353.2
	Analysis Batch: 66	60-90874	Date Analyze	d: 02/19/	2010 0955			
Phosphorus, Tota	I	0.10	U	mg/L	0.10	0.30	1.0	365.4
	Analysis Batch: 66	60-91349	Date Analyzed	d: 03/03/	2010 1113			
	Prep Batch: 6	60-91250	Date Pre	pared: 03	3/01/2010 1700			
Sulfate		140		mg/L	10	25	5.0	SM 426C
	Analysis Batch: 66	60-91434	Date Analyzed	d: 03/04/	2010 1100			
Chloride		1000		mg/L	60	100	20	SM 4500 CI- E
	Analysis Batch: 66	60-91210	Date Analyzed	d: 02/27/	2010 0946			
Chemical Oxygen	Demand	48		mg/L	10	20	1.0	SM 5220D
	Analysis Batch: 66	60-91052	Date Analyzed	d: 02/24/	2010 1413			
	Prep Batch: 6	60-91051	Date Pre	pared: 02	2/24/2010 1113			
Tannins and Ligni	ns	1.5		mg/L	0.037	0.10	1.0	SM 5550B
	Analysis Batch: 68	30-161926	Date Analyzed	d: 02/26/	2010 1749			
Analyte		Result	Qual	Units	PQL	PQL	Dil	Method
Turbidity		2.7		NTU	0.10	0.10	1.0	180.1
	Analysis Batch: 66	60-90881	Date Analyzed	d: 02/19/	2010 1030			
Chlorophyll a		24.2		ug/L	2.00	2.00	1.0	SM 10200H
	Analysis Batch: 66	60-91277	Date Analyzed	d: 02/25/	2010 0933			
Alkalinity		440		mg/L	1.0	1.0	1.0	SM 2320B
	Analysis Batch: 66	60-91047	Date Analyzed	d: 02/24/	2010 1336			
Salinity		2.5		ppt	2.0	2.0	1.0	SM 2520B
	Analysis Batch: 66	60-91136	Date Analyzed	d: 02/25/	2010 1200			
Total Suspended	Solids	9.6		mg/L	1.0	1.0	1.0	SM 2540D
	Analysis Batch: 66	60-91018	Date Analyzed	d: 02/24/	2010 0847			
Sulfide		1.0	U	mg/L	1.0	1.0	1.0	SM 4500 S2 F
	Analysis Batch: 66	60-90921	Date Analyzed	d: 02/20/	2010 1400			
Biochemical Oxyg	en Demand	3.93		mg/L	2.00	2.00	1.0	SM 5210B
	Analysis Batch: 66	60-91308	Date Analyzed	d: 02/24/2	2010 0835			

General Chemistry

Client Sample ID: Surface Water Blank Lab Sample ID: 660-33914-7 Date Sampled: 02/17/2010 0900 **Client Matrix:** Water Date Received: 02/19/2010 0850 PQL MDL Dil Analyte Result Qual Units Method Ammonia (as N) 0.072 0.010 0.020 1.0 350.1 mg/L Analysis Batch: 660-91786 Date Analyzed: 03/15/2010 1132 1.0 Nitrite as N 0.10 UQ mg/L 0.10 0.50 353.2 Analysis Batch: 660-90874 Date Analyzed: 02/19/2010 0955 Nitrate as N 3.3 Q mg/L 0.10 0.50 1.0 353.2 Analysis Batch: 660-90874 Date Analyzed: 02/19/2010 0955 Phosphorus, Total 0.10 11 mg/L 0.10 0.30 1.0 365.4 Date Analyzed: 03/03/2010 1113 Analysis Batch: 660-91349 Prep Batch: 660-91250 Date Prepared: 03/01/2010 1700 Sulfate 1.0 SM 426C U mg/L 2.0 5.0 2.0 Analysis Batch: 660-91434 Date Analyzed: 03/04/2010 1100 Chloride 12 mg/L 3.0 5.0 1.0 SM 4500 CI- E Analysis Batch: 660-91210 Date Analyzed: 02/27/2010 0946 1.0 Chemical Oxygen Demand U mg/L 20 SM 5220D 10 10 Analysis Batch: 660-91052 Date Analyzed: 02/24/2010 1413 Prep Batch: 660-91051 Date Prepared: 02/24/2010 1113 1.0 SM 5550B Tannins and Lignins 0.037 U mg/L 0.037 0.10 Date Analyzed: 02/26/2010 1749 Analysis Batch: 680-161926 Analyte Qual Units PQL PQI Dil Method Result Turbidity 0.10 UQ NTU 0.10 0.10 1.0 180.1 Date Analyzed: 02/19/2010 1030 Analysis Batch: 660-90881 Chlorophyll a 2.00 1.0 SM 10200H 2.00 Q,U ug/L 2.00 Analysis Batch: 660-91277 Date Analyzed: 02/25/2010 0934 1.0 Alkalinity 33 mg/L 1.0 1.0 SM 2320B Analysis Batch: 660-91047 Date Analyzed: 02/24/2010 1342 Salinity 2.0 U ppt 2.0 2.0 1.0 SM 2520B Analysis Batch: 660-91136 Date Analyzed: 02/25/2010 1200 **Total Suspended Solids** U 1.0 1.0 SM 2540D 1.0 mg/L 1.0 Analysis Batch: 660-91018 Date Analyzed: 02/24/2010 0847 Sulfide 1.0 U mg/L 1.0 1.0 1.0 SM 4500 S2 F Date Analyzed: 02/20/2010 1400 Analysis Batch: 660-90921

Biochemical Oxygen Demand 2.00 Analysis Batch: 660-0130

Analysis Batch: 660-91308

Q,U mg/L 1.0 Q,U mg/L 2.00 Date Analyzed: 02/24/2010 0835

2.00

1.0

SM 5210B

Client	Sam	ple	ID:	4F

Lab Sample ID: Client Matrix:	660-33914-8 Solid						Date Sampled: Date Received:	02/17/2010 0940 02/19/2010 0850
Analyte		Result	Qual	Units	MDL	PQL	Dil	Method
Ammonia (as N)		9.3		mg/Kg	0.26	0.60	2.0	350.1
	Analysis Batch: 680	D-161811	Date Analyzed	d: 02/26/201	0 1148		Dr	yWt Corrected: N
	Prep Batch: 68	80-161659	Date Prep	oared: 02/25	/2010 1234			
Nitrite as N-Solut	ble	1.0	U	mg/Kg	1.0	5.0	1.0	353.2
	Analysis Batch: 660	0-91352	Date Analyzed	d: 03/03/201	0 0939		Dr	yWt Corrected: N
Nitrate as N-Solu	ble	1.0	U	mg/Kg	1.0	5.0	1.0	353.2
	Analysis Batch: 660	0-91352	Date Analyzed	1: 03/03/201	0 0939		Dr	yWt Corrected: N
Phosphorus		1300		mg/Kg	22	40	2.0	365.4
	Analysis Batch: 680	0-161565	Date Analyzed	d: 02/24/201	0 1446		Dr	yWt Corrected: N
	Prep Batch: 68	80-161349	Date Prep	oared: 02/22	/2010 1258			-
Total Organic Ca	rbon	22000		mg/Kg	1000	3000	1.0	9060
-	Analysis Batch: 680	0-161519	Date Analyzed	1: 02/23/201	0 1035		Dr	yWt Corrected: N
Orthophosphate-	Soluble	3.1		mg/L	0.75	3.0	1.0	SM 4500 P E
	Analysis Batch: 660	0-91342	Date Analyzed	d: 03/02/201	0 1600		Dr	yWt Corrected: N
Analyte		Result	Qual	Units	PQL	PQL	Dil	Method
Sulfide		240		mg/Kg	25	25	1.0	9034
	Analysis Batch: 680	0-161436	Date Analyzed	d: 02/23/201	0 1430		Dr	yWt Corrected: N
	Prep Batch: 68	80-161395	Date Prep	oared: 02/23	/2010 0904			
Sulfate-Soluble		620	-	mg/Kg	97	97	1.0	9038
	Analysis Batch: 680	0-162106	Date Analyzed	d: 03/02/201	0 1720		Dr	yWt Corrected: N
pH-Soluble		7.50	Q	SU	1.00	1.00	1.0	9045C
	Analysis Batch: 660	0-91134	Date Analyzed	d: 02/20/201	0 1000		Dr	yWt Corrected: N
Percent Solids	-	68	2	%	0.10	0.10	1.0	Moisture
	Analysis Batch: 660	0-90884	Date Analyzed	d: 02/19/201	0 1236		Dr	yWt Corrected: N

General Chemistry

Client Sample ID: 4E

Lab Sample ID:	660-33914-9					Date	Sampled:	02/17/2010 1040
Client Matrix:	Solid					Date	Received:	02/19/2010 0850
Analyte		Result	Qual	Units	MDL	PQL	Dil	Method
Ammonia (as N)		30		mg/Kg	0.65	1.5	5.0	350.1
	Analysis Batch: 680	0-161811	Date Analyzed: 02/26/2010 1159				Dr	yWt Corrected: N
	Prep Batch: 68	30-161659	Date Pre	pared: 02	/25/2010 1234			
Nitrite as N-Solu	ble	1.0	U	mg/Kg	1.0	5.0	1.0	353.2
	Analysis Batch: 660	0-91352	Date Analyze	d: 03/03/2	2010 0939		Dr	yWt Corrected: N
Nitrate as N-Solu	uble	1.4	I	mg/Kg	1.0	5.0	1.0	353.2
	Analysis Batch: 660	0-91352	Date Analyze	d: 03/03/2	2010 0939		Dr	yWt Corrected: N
Phosphorus		630		mg/Kg	9.9	18	1.0	365.4
	Analysis Batch: 680	0-161565	Date Analyze	d: 02/24/2	2010 1410		Dr	wWt Corrected: N
	Prep Batch: 68	30-161349	Date Pre	pared: 02	/22/2010 1258			
Total Organic Ca	arbon	31000		mg/Kg	1000	3000	1.0	9060
	Analysis Batch: 680	0-161519	Date Analyze	d: 02/23/2	2010 1035		Dr	wWt Corrected: N
Orthophosphate	-Soluble	2.6	I	mg/L	0.75	3.0	1.0	SM 4500 P E
	Analysis Batch: 660	0-91342	Date Analyze	d: 03/02/2	2010 1600		Dr	yWt Corrected: N
Analyte		Result	Qual	Units	PQL	PQL	Dil	Method
Sulfide		30		mg/Kg	25	25	1.0	9034
	Analysis Batch: 680	0-161436	Date Analyze	2010 1430		DryWt Corrected: N		
	Prep Batch: 68	30-161395	Date Pre	pared: 02	/23/2010 0904			
Sulfate-Soluble		99	U	mg/Kg	99	99	1.0	9038
	Analysis Batch: 680	0-162106	Date Analyze	d: 03/02/2	2010 1720		Dr	yWt Corrected: N
pH-Soluble		7.73	Q	SU	1.00	1.00	1.0	9045C
	Analysis Batch: 660	0-91134	Date Analyze	d: 02/20/2	2010 1000		Dr	wWt Corrected: N
Percent Solids		49		%	0.10	0.10	1.0	Moisture
	Analysis Batch: 660	0-90884	Date Analyzed: 02/19/2010 1243				DryWt Corrected: N	

General Chemistry

Client Sample ID: 10

Lab Sample ID:	660-33914-10					Date	Sampled:	02/17/2010 1250	
Client Matrix:	Solid					Date	Received:	02/19/2010 0850	
Analyte		Result	Qual	Units	MDL	PQL	Dil	Method	
Ammonia (as N)		35		mg/Kg	0.65	1.5	5.0	350.1	
	Analysis Batch: 680	-161811 Date Analyzed: 02/26/20			2010 1206		Di	wWt Corrected: N	
	Prep Batch: 68	0-161659	Date Pre	pared: 02	/25/2010 1234				
Nitrite as N-Solu	ble	1.0	U	mg/Kg	1.0	5.0	1.0	353.2	
	Analysis Batch: 660	-91352	Date Analyze	d: 03/03/2	2010 0939		Di	yWt Corrected: N	
Nitrate as N-Solu	uble	1.0	U	mg/Kg	1.0	5.0	1.0	353.2	
	Analysis Batch: 660	-91352	Date Analyze	d: 03/03/2	2010 0939		Di	yWt Corrected: N	
Phosphorus		220		mg/Kg	9.4	17	1.0	365.4	
	Analysis Batch: 680	-161565	Date Analyzed: 02/24/2010 1417				DryWt Corrected:		
	Prep Batch: 68	0-161349	Date Pre	pared: 02	/22/2010 1258				
Total Organic Ca	arbon	140000		mg/Kg	1000	3000	1.0	9060	
	Analysis Batch: 680	-161519	Date Analyze	d: 02/23/2	2010 1035		Di	yWt Corrected: N	
Orthophosphate	-Soluble	3.9		mg/L	0.75	3.0	1.0	SM 4500 P E	
	Analysis Batch: 660	-91342	Date Analyze	d: 03/02/2	2010 1600		Di	yWt Corrected: N	
Analyte		Result	Qual	Units	PQL	PQL	Dil	Method	
Sulfide		25	U	mg/Kg	25	25	1.0	9034	
	Analysis Batch: 680	-161436	Date Analyzed: 02/23/2010 1430				DryWt Corrected: N		
	Prep Batch: 68	0-161395	Date Pre	pared: 02	/23/2010 0904				
Sulfate-Soluble		100	U	mg/Kg	100	100	1.0	9038	
	Analysis Batch: 680	-162106	Date Analyze	d: 03/02/2	2010 1720		Di	yWt Corrected: N	
pH-Soluble		7.45	Q	SU	1.00	1.00	1.0	9045C	
	Analysis Batch: 660	-91134	Date Analyze	d: 02/20/2	2010 1000		Di	yWt Corrected: N	
Percent Solids		9.8		%	0.10	0.10	1.0	Moisture	
	Analysis Batch: 660	-90884	Date Analyze	2010 1309		DryWt Corrected: N			
Job Number: 660-33914-1

General Chemistry

Client Sample ID: 7A

Lab Sample ID:	660-33914-11					Date	Sampled:	02/17/2010 1400
Client Matrix:	Solid					Date	e Received:	02/19/2010 0850
Analyte		Result	Qual	Units	MDL	PQL	Dil	Method
Ammonia (as N)		8.8		mg/Kg	0.13	0.30	1.0	350.1
	Analysis Batch: 680	-161811	Date Analyzed	d: 02/26/2	2010 1120		Dr	yWt Corrected: N
	Prep Batch: 680	0-161659	Date Pre	pared: 02	/25/2010 1234			
Nitrite as N-Solu	ble	1.0	U	mg/Kg	1.0	5.0	1.0	353.2
	Analysis Batch: 660	-91352	Date Analyzed	d: 03/03/2	2010 0939		Dr	yWt Corrected: N
Nitrate as N-Solu	ıble	1.0	U	mg/Kg	1.0	5.0	1.0	353.2
	Analysis Batch: 660	-91352	Date Analyzed	d: 03/03/2	2010 0939		Dr	yWt Corrected: N
Phosphorus		270		mg/Kg	8.9	16	1.0	365.4
	Analysis Batch: 680	-161565	Date Analyzed	d: 02/24/2	2010 1417		Dr	yWt Corrected: N
	Prep Batch: 680	0-161349	Date Pre	pared: 02	/22/2010 1258			
Total Organic Ca	irbon	30000		mg/Kg	1000	3000	1.0	9060
	Analysis Batch: 680	-161519	Date Analyzed	d: 02/23/2	2010 1035		Dr	yWt Corrected: N
Orthophosphate-	Soluble	0.91	I	mg/L	0.75	3.0	1.0	SM 4500 P E
	Analysis Batch: 660	-91342	Date Analyzed	d: 03/02/2	2010 1600		Dr	yWt Corrected: N
Analyte		Result	Qual	Units	PQL	PQL	Dil	Method
Sulfide		25	U	mg/Kg	25	25	1.0	9034
	Analysis Batch: 680	-161436	Date Analyzed	d: 02/23/2	2010 1430		Dr	yWt Corrected: N
	Prep Batch: 680	0-161395	Date Pre	pared: 02	/23/2010 0904			
Sulfate-Soluble		96	U	mg/Kg	96	96	1.0	9038
	Analysis Batch: 680	-162106	Date Analyzed	d: 03/02/2	2010 1726		Dr	yWt Corrected: N
pH-Soluble		7.51	Q	SU	1.00	1.00	1.0	9045C
	Analysis Batch: 660	-91134	Date Analyzed	d: 02/20/2	2010 1000		Dr	yWt Corrected: N
Percent Solids		41		%	0.10	0.10	1.0	Moisture
	Analysis Batch: 660	-90884	Date Analyzed	d: 02/19/2	2010 1304		Dr	yWt Corrected: N

DATA REPORTING QUALIFIERS

Client: Environmental Engineering Consultant

Lab Section	Qualifier	Description
GC VOA		
	V	Indicates the analyte was detected in both the sample and the associated method blank.
	I	The reported value is between the laboratory method detection limit and the laboratory practical quantitation limit.
GC Semi VOA		
	J3	Estimated value; value may not be accurate. Spike recovery or RPD outside of criteria.
	J1	Estimated value; value may not be accurate. Surrogate recovery outside of criteria.
	U	Indicates that the compound was analyzed for but not detected.
	I	The reported value is between the laboratory method detection limit and the laboratory practical quantitation limit.
Metals		
	J3	Estimated value; value may not be accurate. Spike recovery or RPD outside of criteria.
	U	Indicates that the compound was analyzed for but not detected.
	I	The reported value is between the laboratory method detection limit and the laboratory practical quantitation limit.
General Chemistry		
	J3	Estimated value; value may not be accurate. Spike recovery or RPD outside of criteria.
	U	Indicates that the compound was analyzed for but not detected.
	Q	Sample held beyond the accepted holding time.
	I	The reported value is between the laboratory method detection limit and the laboratory practical quantitation limit.

Method Blank - Batch: 400-104240

Job Number: 660-33914-1

Method: RSK-175 Preparation: N/A

Lab Sample ID: Client Matrix: Dilution: Date Analyzed: Date Prepared:	MB 400-104240/1 Water 1.0 02/23/2010 1943 N/A	Analysis Batch: Prep Batch: N/A Units: ug/L	400-104240	Instrument I Lab File ID: Initial Weigh Final Weigh Injection Vol	D: No Equipment Assigned N/A t/Volume: 1.0 mL t/Volume: 1.0 mL ume:
Analyte		Resu	lt Qi	ual MD	PQL
Carbon dioxide	(as CO2)	10.0	I	7.0	50
Lab Control S Lab Control S	Sample/ Sample Duplicate Recove	ry Report - Bato	:h: 400-104240	Method: R Preparatic	SK-175 on: N/A
LCS Lab Sampl Client Matrix: Dilution: Date Analyzed: Date Prepared:	e ID: LCS 400-104240/2 Water 1.0 02/23/2010 1917 N/A	Analysis Batch Prep Batch: N. Units: ug/L	n: 400-104240 /A	Instrument ID Lab File ID: Initial Weight/ Final Weight/ Injection Volu	: No Equipment Assigned N/A Volume: 1.0 mL Volume: 1.0 mL me:
LCSD Lab Sam Client Matrix: Dilution: Date Analyzed: Date Prepared:	ple ID: LCSD 400-104240/3 Water 1.0 02/23/2010 1931 N/A	Analysis Batch Prep Batch: N Units: ug/L	n: 400-104240 /A	Instrument ID Lab File ID: Initial Weight/ Final Weight/ Injection Volu	: No Equipment Assigned N/A Volume: 1.0 mL Volume: 1.0 mL me:
Analyte		<u>% Rec.</u> LCS LCSI	D Limit	RPD RPD L	imit LCS Qual LCSD Qual
Carbon dioxide	(as CO2)	107 106	80 - 120	1 50	

Method Blank - Batch: 660-90901

Client Matrix: Solid Dilution: 1.0 Date Analyzed: 02/25/2010 0349

Lab Sample ID: MB 660-90901/1-A

Date Prepared: 02/22/2010 0654

Analysis Batch: 660-91299 Prep Batch: 660-90901 Units: ug/Kg

Quality Control Results

Job Number: 660-33914-1

Method: 8081A Preparation: 3550B

Instrument ID: BSGJ Lab File ID: 1B24J035.D Initial Weight/Volume: 30.00 g Final Weight/Volume: 10 mL Injection Volume: 2 uL Column ID: PRIMARY

Analyte	Result	Qual	MDL	PQL
4,4'-DDD	0.50	U	0.50	3.3
4,4'-DDE	0.50	U	0.50	3.3
4,4'-DDT	0.50	U	0.50	3.3
Aldrin	0.50	U	0.50	2.0
alpha-BHC	0.14	U	0.14	1.7
beta-BHC	0.50	U	0.50	2.0
Chlordane (technical)	2.4	U	2.4	17
delta-BHC	0.50	U	0.50	2.0
Dieldrin	0.15	U	0.15	1.7
Endosulfan I	0.25	U	0.25	2.0
Endosulfan II	0.25	U	0.25	3.3
Endosulfan sulfate	0.25	U	0.25	3.3
Endrin	0.50	U	0.50	4.0
Endrin aldehyde	0.50	U	0.50	4.0
Endrin ketone	0.50	U	0.50	4.0
gamma-BHC (Lindane)	0.50	U	0.50	2.0
Heptachlor	0.50	U	0.50	2.0
Heptachlor epoxide	0.14	U	0.14	2.0
Methoxychlor	1.0	U	1.0	17
Toxaphene	29	U	29	170
Surrogate	% Rec		Acceptance Limits	
DCB Decachlorobiphenyl	81		30 - 150	
Tetrachloro-m-xylene	82		30 - 150	

Lab

Lab Sample ID: LCS 660-90901/2-A

1.0

Date Analyzed: 02/25/2010 0403

Date Prepared: 02/22/2010 0654

Client Matrix: Solid

Dilution:

C	Control	Sample -	Batch:	660-90901	
---	---------	----------	--------	-----------	--

		Method: 8081A Preparation: 3550B
Analysis Batch:	660-91299	Instrument ID: BSGJ

Instrument ID: BSGJ Lab File ID: 1B24J036.D Initial Weight/Volume: 30.00 g Final Weight/Volume: 10 mL Injection Volume: 2 uL Column ID: PRIMARY

Analyte	Spike Amount	Result	% Rec.	Limit	Qual
- 4 4'-חחח-''	16.7	15.1	Q1	62 - 130	
4 4'-DDE	16.7	14.5	87	60 - 130	
4.4'-DDT	16.7	15.2	91	35 - 142	
Aldrin	16.7	14.7	88	52 - 130	
alpha-BHC	16.7	14.8	89	58 - 130	
beta-BHC	16.7	14.9	89	56 - 130	
delta-BHC	16.7	15.8	95	48 - 130	
Dieldrin	16.7	14.3	86	60 - 130	
Endosulfan I	16.7	13.9	83	59 - 130	
Endosulfan II	16.7	14.2	85	60 - 130	
Endosulfan sulfate	16.7	15.5	93	49 - 130	
Endrin	16.7	14.5	87	57 - 130	
Endrin aldehyde	16.7	14.6	88	57 - 130	
Endrin ketone	16.7	16.4	98	42 - 136	
gamma-BHC (Lindane)	16.7	15.0	90	58 - 130	
Heptachlor	16.7	15.4	92	55 - 130	
Heptachlor epoxide	16.7	14.4	87	59 - 130	
Methoxychlor	16.7	16.4	98	37 - 133	I
Surrogate	% R	ec	Ace	ceptance Limits	
DCB Decachlorobiphenyl	83		30 - 150		

Prep Batch: 660-90901

Units: ug/Kg

Job Number: 660-33914-1

Client: Environmental Engineering Consultant

Matrix Spike/ Matrix Spike Duplicate Recovery Report - Batch: 660-90901

Method: 8081A Preparation: 3550B

MS Lab Sample ID: Client Matrix: Dilution: Date Analyzed: Date Prepared:	660-33914-11 Solid 1.0 02/25/2010 0657 02/22/2010 0654	Analysis Batch: 660-91299 Prep Batch: 660-90901	Instrument ID: BSGJ Lab File ID: 1B24J049.D Initial Weight/Volume: 30.20 g Final Weight/Volume: 10 mL Injection Volume: 2 uL Column ID: PRIMARY
MSD Lab Sample ID: Client Matrix: Dilution: Date Analyzed: Date Prepared:	660-33914-11 Solid 1.0 02/25/2010 0710 02/22/2010 0654	Analysis Batch: 660-91299 Prep Batch: 660-90901	Instrument ID: BSGJ Lab File ID: 1B24J050.D Initial Weight/Volume: 30.20 g Final Weight/Volume: 10 mL Injection Volume: 2 uL Column ID: PRIMARY

	<u>%</u> F	<u>Rec.</u>					
Analyte	MS	MSD	Limit	RPD	RPD Limit	MS Qual	MSD Qual
4,4'-DDD	69	75	62 - 130	9	50		
4,4'-DDE	58	62	60 - 130	6	25	J3	
4,4'-DDT	4	4	35 - 142	0	26	J3	J3
Aldrin	58	64	52 - 130	9	38		
alpha-BHC	70	73	58 - 130	3	40		
beta-BHC	57	72	56 - 130	23	40		
delta-BHC	81	90	48 - 130	10	47		
Dieldrin	70	72	60 - 130	2	30		
Endosulfan I	62	63	59 - 130	2	40		
Endosulfan II	52	55	60 - 130	5	65	J3	J3
Endosulfan sulfate	52	55	49 - 130	6	50		
Endrin	28	31	57 - 130	11	32	J3	J3
Endrin aldehyde	56	57	57 - 130	3	86	J3	
Endrin ketone	17	19	42 - 136	15	31	J3	J3
gamma-BHC (Lindane)	45	53	58 - 130	16	37	J3	J3
Heptachlor	34	51	55 - 130	42	38	J3	J3
Heptachlor epoxide	57	58	59 - 130	2	40	J3	J3
Methoxychlor	0	7	37 - 133	NC	40	J3	J3
Surrogate		MS % Rec	MSD % I	Rec	Acce	ptance Limit	S
DCB Decachlorobiphenyl		43	50		30) - 150	

Method Blank - Batch: 660-90902

...... Lab Sample Client Matri Dilution: Date Analy

Lab Sample ID:	MB 660-90902/1-A	Analysi	s Batch:	660-91104
Client Matrix:	Water	Prep Ba	atch: 660	0-90902
Dilution:	1.0	Units:	ug/L	
Date Analyzed:	02/23/2010 1225			
Date Prepared:	02/22/2010 0737			

Quality Control Results

Job Number: 660-33914-1

Method: 8081A Preparation: 3510C

Instrument ID: BSGJ Lab File ID: 1B23J016.D Initial Weight/Volume: 1000 mL Final Weight/Volume: 10 mL Injection Volume: 2 uL Column ID: PRIMARY

Analyte	Result	Qual	MDL	PQL
4,4'-DDD	0.0041	U	0.0041	0.010
4,4'-DDE	0.0055	U	0.0055	0.010
4,4'-DDT	0.0032	U	0.0032	0.010
Aldrin	0.0018	U	0.0018	0.010
alpha-BHC	0.0028	U	0.0028	0.010
beta-BHC	0.0027	U	0.0027	0.010
Chlordane (technical)	0.057	U	0.057	0.50
delta-BHC	0.0028	U	0.0028	0.010
Dieldrin	0.0014	U	0.0014	0.010
Endosulfan I	0.0034	U	0.0034	0.010
Endosulfan II	0.0033	U	0.0033	0.010
Endosulfan sulfate	0.0030	U	0.0030	0.010
Endrin	0.0031	U	0.0031	0.010
Endrin aldehyde	0.0032	U	0.0032	0.010
Endrin ketone	0.0054	U	0.0054	0.10
gamma-BHC (Lindane)	0.0026	U	0.0026	0.010
Heptachlor	0.0031	U	0.0031	0.010
Heptachlor epoxide	0.0031	U	0.0031	0.010
Methoxychlor	0.0051	U	0.0051	0.010
Toxaphene	0.72	U	0.72	3.0
Surrogate	% Rec		Acceptance Limits	
DCB Decachlorobiphenyl	73		30 - 150	
Tetrachloro-m-xylene	58		30 - 150	

Lab

Control Sample - Batch:	660-90902
-------------------------	-----------

Lab Sample ID:	LCS 660-90902/2-A	Analysis Batch: 660-91104	Instrument ID: BSGJ
Client Matrix:	Water	Prep Batch: 660-90902	Lab File ID: 1B23J017.D
Dilution:	1.0	Units: ug/L	Initial Weight/Volume: 1000 mL
Date Analyzed:	02/23/2010 1238		Final Weight/Volume: 10 mL
Date Prepared:	02/22/2010 0737		Injection Volume: 2 uL
			Column ID: PRIMARY

Analyte	Spike Amount	Result	% Rec.	Limit	Qual
4,4'-DDD	0.500	0.407	81	37 - 139	
4,4'-DDE	0.500	0.407	81	39 - 130	
4,4'-DDT	0.500	0.400	80	46 - 130	
Aldrin	0.500	0.332	66	31 - 130	
alpha-BHC	0.500	0.396	79	48 - 130	
beta-BHC	0.500	0.401	80	41 - 130	
delta-BHC	0.500	0.338	68	42 - 130	
Dieldrin	0.500	0.391	78	51 - 130	
Endosulfan I	0.500	0.383	77	40 - 130	
Endosulfan II	0.500	0.387	77	41 - 130	
Endosulfan sulfate	0.500	0.377	75	33 - 142	
Endrin	0.500	0.376	75	49 - 130	
Endrin aldehyde	0.500	0.367	73	34 - 132	
Endrin ketone	0.500	0.401	80	26 - 144	
gamma-BHC (Lindane)	0.500	0.390	78	53 - 130	
Heptachlor	0.500	0.349	70	36 - 130	
Heptachlor epoxide	0.500	0.381	76	41 - 130	
Methoxychlor	0.500	0.397	79	45 - 130	
Surrogate	% R	ec	Acc	ceptance Limits	
DCB Decachlorobiphenyl	74	74		30 - 150	

Quality Control Results

Method: 8081A Preparation: 3510C

Job Number: 660-33914-1

Client: Environmental Engineering Consultant

Matrix Spike/ Matrix Spike Duplicate Recovery Report - Batch: 660-90902

Method: 8081A Preparation: 3510C

MS Lab Sample ID: Client Matrix: Dilution: Date Analyzed: Date Prepared:	660-33904-A-2-B MS Water 1.0 02/23/2010 1318 02/22/2010 0737	Analysis Batch: 660-91104 Prep Batch: 660-90902	Instrument ID: BSGJ Lab File ID: 1B23J020.D Initial Weight/Volume: 1040 mL Final Weight/Volume: 10 mL Injection Volume: 2 uL Column ID: PRIMARY
MSD Lab Sample ID: Client Matrix: Dilution: Date Analyzed: Date Prepared:	660-33904-A-2-C MSD Water 1.0 02/23/2010 1332 02/22/2010 0737	Analysis Batch: 660-91104 Prep Batch: 660-90902	Instrument ID: BSGJ Lab File ID: 1B23J021.D Initial Weight/Volume: 1040 mL Final Weight/Volume: 10 mL Injection Volume: 2 uL Column ID: PRIMARY

<u>% Rec.</u>							
Analyte	MS	MSD	Limit	RPD	RPD Limit	MS Qual	MSD Qual
4,4'-DDD	88	82	37 - 139	7	39		
4,4'-DDE	82	77	39 - 130	6	18		
4,4'-DDT	236	218	46 - 130	8	27	J3	J3
Aldrin	63	58	31 - 130	8	25		
alpha-BHC	77	70	48 - 130	7	30		
beta-BHC	77	71	41 - 130	6	35		
delta-BHC	69	65	42 - 130	5	41		
Dieldrin	77	72	51 - 130	7	42		
Endosulfan I	73	68	40 - 130	8	24		
Endosulfan II	76	71	41 - 130	7	22		
Endosulfan sulfate	72	68	33 - 142	5	28		
Endrin	108	102	49 - 130	6	25		
Endrin aldehyde	69	64	34 - 132	8	34		
Endrin ketone	78	74	26 - 144	5	25		
gamma-BHC (Lindane)	72	67	53 - 130	7	26		
Heptachlor	69	65	36 - 130	6	26		
Heptachlor epoxide	70	64	41 - 130	7	31		
Methoxychlor	101	89	45 - 130	12	43		
Surrogate		MS % Rec	MSD %	Rec	Aco	ceptance Limit	S
DCB Decachlorobiphenyl		54	50		:	30 - 150	

Method Blank - Batch: 640-65855

Lab Sample ID:	MB 640-65855/1-A
Client Matrix:	Solid
Dilution:	1.0
Date Analyzed:	02/24/2010 0831
Date Prepared:	02/22/2010 1006

Job Number: 660-33914-1

Method: 8141A Preparation: 3550B

Instrument ID: SGF Lab File ID: 1B23F63.d Initial Weight/Volume: 00030.24 g Final Weight/Volume: 10.0 mL Injection Volume: 1 uL Column ID: PRIMARY

Analyte	Result	Qual	MDL	PQL
Azinphos-methyl	4.4	U	4.4	65
Bolstar	8.4	U	8.4	33
Chlorpyrifos	8.3	U	8.3	33
Coumaphos	8.5	U	8.5	330
Demeton, Total	13	U	13	82
Diazinon	8.7	U	8.7	33
Dichlorvos	17	U	17	65
Dimethoate	9.9	U	9.9	65
Disulfoton	11	U	11	65
EPN	9.0	U	9.0	33
Ethoprop	15	U	15	17
Fensulfothion	9.9	U	9.9	330
Hexazinone	7.6	U	7.6	33
Hexazinone	7.6	U	7.6	33
Malathion	8.9	U	8.9	33
Merphos	8.2	U	8.2	33
Mevinphos	11	U	11	65
Ethyl Parathion	8.7	U	8.7	33
Monochrotophos	84	U	84	330
Methyl parathion	5.4	U	5.4	17
Naled	5.2	U	5.2	330
Phorate	11	U	11	33
Ronnel	7.9	Ū	7.9	33
Stirophos	8.8	U	8.8	33
Sulfotepp	5.3	Ū	5.3	17
Tokuthion	7.6	Ŭ	7.6	33
Trichloronate	8.1	U	8.1	330
Surrogate	% Rec		Acceptance Limit	S
Triphenylphosphate	94		35 - 134	

Analysis Batch: 640-65935

Prep Batch: 640-65855

Units: ug/Kg

Lab Control Sample/

Lab Control Sample Duplicate Recovery Report

- Batch:	640-65855	Method: 8141A Preparation: 3550B

LCS Lab Sample ID): LCS 640-65855/2-A	Analysis Batch: 640-65935	Instrument ID: SGF			
Client Matrix: Solid		Prep Batch: 640-65855	Lab File ID: 1B23F69.d			
Dilution:	1.0	Units: ug/Kg	Initial Weight/Volume: 00030.07 g			
Date Analyzed:	02/24/2010 1004		Final Weight/Volume: 10.0 mL			
Date Prepared:	02/22/2010 1006		Injection Volume: 1 uL			
			Column ID: PRIMARY			
		Analysis Ratch: 640 65035	Instrument ID: SCE			
	D. LC3D 040-03055/3-A	Analysis Batch, 040-05955				
Client Matrix: Solid		Prep Batch: 640-65855	Lab File ID: 1B23F70.0			
Dilution:	1.0	Units: ug/Kg	Initial Weight/Volume: 00030.36 g			
Date Analyzed:	02/24/2010 1018		Final Weight/Volume: 10.0 mL			
Date Prepared:	02/22/2010 1006		Injection Volume: 1 uL			
			Column ID: PRIMARY			

	<u>% Rec.</u>						
Analyte	LCS	LCSD	Limit	RPD	RPD Limit	LCS Qual	LCSD Qual
Azinphos-methyl	102	105	50 - 130	2	50		
Bolstar	74	80	50 - 130	1	50		
Chlorpyrifos	70	76	31 - 130	7	50		
Coumaphos	87	88	50 - 130	1	50	I	I
Demeton, Total	65	70		7			
Diazinon	68	73	20 - 100	6	50		
Dichlorvos	76	82	50 - 130	7	50		
EPN	103	109	50 - 130	4	50		
Ethoprop	68	75	50 - 130	8	50		
Fensulfothion	102	107	50 - 130	4	50	I	I
Malathion	72	77	50 - 130	6	50		
Mevinphos	72	78	50 - 130	4	50		
Ethyl Parathion	80	87	22 - 116	8	50		
Monochrotophos	70	76	50 - 130	8	50		
Methyl parathion	79	84	20 - 107	3	50		
Naled	53	53	50 - 130	1	50		
Phorate	66	72	50 - 130	0	50		
Ronnel	69	74	38 - 130	6	50		
Stirophos	79	85	50 - 130	2	50		
Tokuthion	71	78	50 - 130	9	50		
Trichloronate	68	75	50 - 130	1	50	I	I

Matrix Spike/ Matrix Spike Duplicate Recovery Report - Batch: 640-65855

Method: 8141A Preparation: 3550B

MS Lab Sample ID: Client Matrix: Dilution: Date Analyzed: Date Prepared:	400-45631-C-1-A MS Solid 1.0 02/24/2010 0936 02/22/2010 1006	Analysis Batch: 640-65935 Prep Batch: 640-65855	Instrument ID: SGF Lab File ID: 1B23F67.d Initial Weight/Volume: 00030.26 g Final Weight/Volume: 10.0 mL Injection Volume: 1 uL Column ID: PRIMARY
MSD Lab Sample ID: Client Matrix: Dilution: Date Analyzed: Date Prepared:	400-45631-C-1-B MSD Solid 1.0 02/24/2010 0950 02/22/2010 1006	Analysis Batch: 640-65935 Prep Batch: 640-65855	Instrument ID: SGF Lab File ID: 1B23F68.d Initial Weight/Volume: 00030.25 g Final Weight/Volume: 10.0 mL Injection Volume: 1 uL Column ID: PRIMARY

<u>% Rec.</u>							
Analyte	MS	MSD	Limit	RPD	RPD Limit	MS Qual	MSD Qual
Azinphos-methyl	94	61	50 - 130	42	50		
Bolstar	74	58	50 - 130	34	50		
Chlorpyrifos	70	55	31 - 130	23	50		
Coumaphos	93	64	50 - 130	37	50	I	I
Demeton, Total	52	35	50 - 130	38			J3
Diazinon	62	46	20 - 100	29	50		
Dichlorvos	56	36	50 - 130	44	50		I J3
EPN	106	78	50 - 130	31	50		
Ethoprop	57	40	50 - 130	35	50		J3
Fensulfothion	58	55	50 - 130	6	50	I	I
Malathion	69	46	50 - 130	40	50		J3
Mevinphos	23	24	50 - 130	4	50	I J3	I J3
Ethyl Parathion	80	56	22 - 116	35	50		
Monochrotophos	0	0	50 - 130	NC	50	U J3	U J3
Methyl parathion	72	49	20 - 107	43	50		
Naled	36	20	50 - 130	63	50	I J3	I J3
Phorate	56	40	50 - 130	40	50		J3
Ronnel	67	51	38 - 130	26	50		
Stirophos	76	52	50 - 130	38	50		
Tokuthion	70	58	50 - 130	18	50		
Trichloronate	67	55	50 - 130	25	50	I	I

Quality Control Results

Quality Control Results

Job Number: 660-33914-1

Client: Environmental Engineering Consultant

Method Blank - Batch: 640-65857

Method: 8141A Preparation: 3520C

Lab Sample ID:	MB 640-65857/1-A	Analysis Batch: 640-659	97	Instrument ID: S	SGF	
Client Matrix:	Water	Prep Batch: 640-65857		Lab File ID: 1	B25F14.d	
Dilution:	1.0	Units: ug/L		Initial Weight/Volume: 1000 mL		
Date Analyzed:	02/25/2010 1429			Final Weight/Vo	lume: 5.0 mL	
Date Prepared:	02/22/2010 1420			Injection Volume	e: 1 uL	
				Column ID:	PRIMARY	
Analyte		Result	Qual	MDL	PQL	
Hexazinone		0.16	U	0.16	2.0	

Method Blank - Batch: 640-65857

Date Analyzed: 02/26/2010 0/39 Date Prepared: 02/22/2010 1420

Lab Sample ID:	MB 640-65857/1-A
Client Matrix:	Water
Dilution:	1.0
Date Analyzed [.]	02/26/2010 0739

Quality Control Results

Job Number: 660-33914-1

Method: 8141A Preparation: 3520C

Instrument ID: SGF Lab File ID: 1B25F55.d Initial Weight/Volume: 1000 mL Final Weight/Volume: 5.0 mL Injection Volume: 1 uL Column ID: PRIMARY

Analyte	Result	Qual	MDL	PQL
Azinphos-methyl	0.33	U	0.33	1.0
Bolstar	0.095	U	0.095	1.0
Chlorpyrifos	0.11	U	0.11	1.0
Coumaphos	0.081	U	0.081	1.0
Demeton, Total	0.15	U	0.15	2.5
Diazinon	0.11	U	0.11	1.0
Dichlorvos	0.26	U	0.26	2.0
Dimethoate	0.32	U	0.32	2.0
Disulfoton	0.12	U	0.12	2.0
EPN	0.071	U	0.071	1.0
Ethoprop	0.41	U	0.41	0.50
Fensulfothion	0.17	U	0.17	5.0
Malathion	0.092	U	0.092	1.0
Merphos	0.13	U	0.13	1.0
Mevinphos	0.15	U	0.15	2.0
Ethyl Parathion	0.080	U	0.080	1.0
Monochrotophos	2.6	U	2.6	10
Methyl parathion	0.12	U	0.12	0.50
Naled	0.36	U	0.36	5.0
Phorate	0.16	U	0.16	1.0
Ronnel	0.13	U	0.13	1.0
Stirophos	0.084	U	0.084	1.0
Sulfotepp	0.055	U	0.055	0.50
Tokuthion	0.087	U	0.087	1.0
Trichloronate	0.11	U	0.11	1.0
Surrogate	% Rec	Accep	tance Limits	
Triphenylphosphate	102	3	7 - 139	

Analysis Batch: 640-66015

Prep Batch: 640-65857

Units: ug/L

L L

Lab Control Sample/	
Lab Control Sample Duplicate Recovery Report - Batch: 64	40-65857

Job	Number:	660-33914-1

Quality Control Results

Method: 8141A	
Preparation: 3520C	

LCS Lab Sample I	D: LCS 640-65857/6-A	Analysis Batch: 640-66015	Instrument ID: SGF
Client Matrix: Water		Prep Batch: 640-65857	Lab File ID: 1B25F66.d
Dilution:	1.0	Units: ug/L	Initial Weight/Volume: 1000 mL
Date Analyzed:	02/26/2010 1015		Final Weight/Volume: 5.0 mL
Date Prepared:	02/22/2010 1420		Injection Volume: 1 uL
			Column ID: PRIMARY
LCSD Lab Sample	e ID: LCSD 640-65857/7-A	Analysis Batch: 640-66015	Instrument ID: SGF
Client Matrix:	Water	Prep Batch: 640-65857	Lab File ID: 1B25F67.d
Dilution:	1.0	Units: ug/L	Initial Weight/Volume: 1000 mL
Date Analyzed:	02/26/2010 1029		Final Weight/Volume: 5.0 mL
Date Prepared:	02/22/2010 1420		Injection Volume: 1 uL
			Column ID: PRIMARY

	<u>% F</u>	Rec.					
Analyte	LCS	LCSD	Limit	RPD	RPD Limit	LCS Qual	LCSD Qual
Azinphos-methyl	103	113	50 - 130	10	30		
Bolstar	97	98	50 - 130	1	30		
Chlorpyrifos	97	96	50 - 130	1	30		
Coumaphos	111	120	50 - 130	7	30		
Demeton, Total	77	76		1			
Diazinon	104	102	42 - 132	2	30		
Dichlorvos	112	117	50 - 130	5	30		
EPN	114	123	50 - 130	7	30		
Ethoprop	104	102	50 - 130	2	30		
Fensulfothion	93	103	50 - 130	10	30	I	I
Malathion	105	103	50 - 130	2	30		
Mevinphos	101	104	50 - 130	3	30		
Ethyl Parathion	107	107	49 - 134	0	30		
Monochrotophos	22	38	50 - 130	52	30	U J3	I J3
Methyl parathion	103	103	43 - 140	0	30		
Naled	71	70	50 - 130	0	30		
Phorate	88	94	50 - 130	7	30		
Ronnel	89	90	38 - 124	2	30		
Stirophos	111	110	50 - 130	1	30		
Tokuthion	96	94	50 - 130	1	30		
Trichloronate	102	102	50 - 130	0	30		

Quality Control Results

Job Number: 660-33914-1

Client: Environmental Engineering Consultant

Matrix Spike/ Matrix Spike Duplicate Recovery Report - Batch: 640-65857

Method: 8141A Preparation: 3520C

MS Lab Sample ID: Client Matrix: Dilution: Date Analyzed: Date Prepared:	640-26237-M-1-A MS Water 1.0 02/26/2010 0850 02/22/2010 1420	Analysis Batch: 640-66015 Prep Batch: 640-65857	Instrument ID: SGF Lab File ID: 2B25F60.d Initial Weight/Volume: 500 mL Final Weight/Volume: 2.5 mL Injection Volume: 1 uL Column ID: PRIMARY
MSD Lab Sample ID: Client Matrix: Dilution: Date Analyzed: Date Prepared:	640-26237-M-1-B MSD Water 1.0 02/26/2010 0904 02/22/2010 1420	Analysis Batch: 640-66015 Prep Batch: 640-65857	Instrument ID: SGF Lab File ID: 2B25F61.d Initial Weight/Volume: 500 mL Final Weight/Volume: 2.5 mL Injection Volume: 1 uL Column ID: PRIMARY

	<u>% Re</u>	<u>ec.</u>					
Analyte	MS	MSD	Limit	RPD	RPD Limit	MS Qual	MSD Qual
Azinphos-methyl	79	106	50 - 130	29	30		
Bolstar	74	93	50 - 130	25	30		
Chlorpyrifos	60	73	50 - 130	21	30		
Coumaphos	92	120	50 - 130	26	30		
Demeton, Total	46	56		20		I	
Diazinon	65	81	24 - 129	24	30		
Dichlorvos	61	74	50 - 130	23	30	I	I
EPN	89	121	50 - 130	30	30		
Ethoprop	64	77	50 - 130	21	30		
Fensulfothion	77	104	50 - 130	33	30	1	I J3
Malathion	70	88	50 - 130	22	30		
Mevinphos	62	75	50 - 130	25	30	I	I
Ethyl Parathion	73	93	32 - 138	24	44		
Monochrotophos	0	28	50 - 130	NC	30	U J3	I J3
Methyl parathion	66	83	32 - 137	23	48		
Naled	38	51	50 - 130	33	30	I J3	J3
Phorate	51	64	50 - 130	37	30		J3
Ronnel	50	63	30 - 135	23	30		
Stirophos	77	102	50 - 130	32	30		J3
Tokuthion	67	82	50 - 130	23	30		
Trichloronate	60	76	50 - 130	22	30		

Method Blank - Batch: 660-90999

Met	hod: 815 [.]	1A
Pre	paration:	8151A

Lab Sample ID:MB 660-90999/1-AClient Matrix:WaterDilution:1.0Date Analyzed:03/05/2010Olt4402/23/2010Date Prepared:02/23/2010	Analysis Batch: 660-91479 Prep Batch: 660-90999 Units: ug/L		Instrument ID: BSGJ Lab File ID: 1C04J0 Initial Weight/Volume: Final Weight/Volume: Injection Volume: Column ID: PRIM	131.D 1000 mL 10 mL 2 uL MARY
Analyte	Result	Qual	MDL	PQL
2,4,5-T	1.0	U	1.0	5.0
2,4-D	1.0	U	1.0	5.0
2,4-DB	1.0	U	1.0	5.0
Dalapon	25	U	25	120
Dicamba	0.25	U	0.25	1.2
Dichlorprop	1.0	U	1.0	6.0
Dinoseb	1.0	U	1.0	6.0
MCPA	34	U	34	120
MCPP	35	U	35	120
Pentachlorophenol	0.085	U	0.085	1.0
Picloram	1.0	U	1.0	5.0
Silvex (2,4,5-TP)	1.0	U	1.0	5.0
Surrogate	% Rec		Acceptance Limits	
2,4-Dichlorophenylacetic acid	59		33 - 120	

Quality Control Results

Job Number: 660-33914-1

Lab Control Sample/ Lab Control Sample Duplicate Recovery Report - Batch: 660-90999

Method: 8151A Preparation: 8151A

LCS Lab Sample I	D: LCS 660-90999/2-A	Analysis Batch: 660-91479	Instrument ID: BSGJ
Client Matrix:	Water	Prep Batch: 660-90999	Lab File ID: 1C04J032.D
Dilution:	1.0	Units: ug/L	Initial Weight/Volume: 1000 mL
Date Analyzed:	03/05/2010 0202		Final Weight/Volume: 10 mL
Date Prepared:	02/23/2010 1625		Injection Volume: 2 uL
			Column ID: PRIMARY
LCSD Lab Sample	ID: LCSD 660-90999/3-A	Analysis Batch: 660-91479	Instrument ID: BSGJ
Client Matrix:	Water	Prep Batch: 660-90999	Lab File ID: 1C04J033.D
Dilution:	1.0	Units: ug/L	Initial Weight/Volume: 1000 mL
Date Analyzed:	03/05/2010 0219		Final Weight/Volume: 10 mL
Date Prepared:	02/23/2010 1625		Injection Volume: 2 uL
			Column ID: PRIMARY
		% Bec	

<u>/// Nec.</u>							
Analyte	LCS	LCSD	Limit	RPD	RPD Limit	LCS Qual	LCSD Qual
2,4,5-T	106	101	50 - 130	5	48		
2,4-D	114	104	60 - 130	9	78		
2,4-DB	153	141	10 - 181	8	43		
Dalapon	21	70	10 - 228	107	68		J3
Dicamba	88	85	24 - 150	4	46		
Dichlorprop	84	78	13 - 130	7	95		
Dinoseb	37	14	10 - 130	94	115		
MCPA	458	369	10 - 158	21	28	J3	J3
MCPP	88	78	10 - 214	12	78		
Pentachlorophenol	67	64	25 - 134	6	34		
Picloram	112	105	10 - 150	7	56		
Silvex (2,4,5-TP)	100	96	33 - 130	5	66		

Method Blank - Batch: 660-91293

Lab Sample ID: MB 660-91293/1-A Client Matrix: Solid Dilution: 1.0 Date Analyzed: 03/07/2010 1518 Date Prepared: 03/02/2010 1410

Quality Control Results

Job Number: 660-33914-1

Method: 8151A Preparation: 8151A

Instrument ID: BSGJ Lab File ID: 1C07J012.D Initial Weight/Volume: 30.00 g Final Weight/Volume: 10 mL Injection Volume: 2 uL Column ID: PRIMARY

Analyte	Result	Qual	MDL	PQL
2,4,5-T	10	U	10	50
2,4-D	1.6	U	1.6	8.3
2,4-DB	6.4	U	6.4	8.3
Dalapon	23	U	23	2000
Dicamba	12	U	12	50
Dichlorprop	25	U	25	100
Dinoseb	8.3	U	8.3	30
MCPA	740	U	740	2000
MCPP	400	U	400	2000
Pentachlorophenol	5.0	U	5.0	17
Picloram	1.2	U	1.2	3.3
Silvex (2,4,5-TP)	10	U	10	50
Surrogate	% Rec		Acceptance Limit	S
2,4-Dichlorophenylacetic acid	59		10 - 135	

Analysis Batch: 660-91563

Prep Batch: 660-91293

Units: ug/Kg

Lab Control Sample - Batch: 660-91293

Lab Sample ID: LCS 660-91293/2-A Analysis Batch: 660-91563 Instrument ID: BSGJ Client Matrix: Solid Prep Batch: 660-91293 Lab File ID: 1C07J013.D Dilution: 1.0 Units: ug/Kg Initial Weight/Volume: 30.00 g Date Analyzed: 03/07/2010 1535 Final Weight/Volume: 10 mL Date Prepared: 03/02/2010 1410 Injection Volume: 2 uL Column ID: PRIMARY

Analyte	Spike Amount	Result	% Rec.	Limit	Qual
2,4,5-T	83.3	41.4	50	27 - 168	
2,4-D	83.3	31.7	38	26 - 159	
2,4-DB	83.3	57.9	69	10 - 181	
Dalapon	83.3	90.3	108	10 - 213	
Dicamba	83.3	78.2	94	29 - 145	
Dichlorprop	83.3	58.9	71	28 - 130	
Dinoseb	83.3	8.3	5	10 - 130	J3
MCPA	8330	3190	38	29 - 134	
MCPP	8330	4830	58	13 - 157	
Pentachlorophenol	83.3	51.5	62	16 - 132	
Picloram	83.3	72.9	88	10 - 150	
Silvex (2,4,5-TP)	83.3	54.5	65	32 - 134	

10 - 135

Method: 8151A Preparation: 8151A

Job Number: 660-33914-1

Client: Environmental Engineering Consultant

Matrix Spike/ Matrix Spike Duplicate Recovery Report - Batch: 660-91293

Method: 8151A Preparation: 8151A

MS Lab Sample ID: Client Matrix: Dilution: Date Analyzed: Date Prepared:	660-33914-11 Solid 1.0 03/08/2010 2215 03/02/2010 1410	Analysis Batch: 660-91563 Prep Batch: 660-91293	Instrument ID: BSGJ Lab File ID: 1C08J020.D Initial Weight/Volume: 29.58 g Final Weight/Volume: 10 mL Injection Volume: 2 uL Column ID: PRIMARY
MSD Lab Sample ID: Client Matrix: Dilution: Date Analyzed: Date Prepared:	660-33914-11 Solid 1.0 03/08/2010 2233 03/02/2010 1410	Analysis Batch: 660-91563 Prep Batch: 660-91293	Instrument ID: BSGJ Lab File ID: 1C08J021.D Initial Weight/Volume: 29.58 g Final Weight/Volume: 10 mL Injection Volume: 2 uL Column ID: PRIMARY

	<u>% R</u>	ec.					
Analyte	MS	MSD	Limit	RPD	RPD Limit	MS Qual	MSD Qual
2,4,5-T	110	110	27 - 168	0	59		
2,4-D	93	91	26 - 159	3	47		
2,4-DB	175	191	10 - 181	9	40		J3
Dalapon	0	0	10 - 213	NC	40	J3	J3
Dicamba	99	106	29 - 145	7	40		
Dichlorprop	103	117	28 - 130	12	40		
Dinoseb	117	143	10 - 130	20	50		J3
MCPA	102	107	29 - 134	5	50		
MCPP	111	134	13 - 157	19	50		
Pentachlorophenol	118	147	16 - 132	22	40		J3
Picloram	18	17	10 - 150	10	40		
Silvex (2,4,5-TP)	154	178	32 - 134	14	51	J3	J3

Method Blank - Batch: 660-90981

Date Prepared: 02/23/2010 1202

Method: 6010B Preparation: 3050B

Lab Sample ID:	MB 660-90981/1-A	Analysis Batch: 660-91239	Instrument ID: ICPA
Client Matrix:	Solid	Prep Batch: 660-90981	Lab File ID: 10C01A
Dilution:	1.0	Units: mg/Kg	Initial Weight/Volume: 1.00 g
Date Analyzed:	03/01/2010 1216		Final Weight/Volume: 50 mL

Analyte	Result	Qual	MDL	PQL
Aluminum	5.8	U	5.8	20
Arsenic	0.23	U	0.23	0.50
Boron	0.59	U	0.59	5.0
Barium	0.16	U	0.16	1.0
Calcium	15	U	15	50
Cadmium	0.087	U	0.087	0.50
Cobalt	0.19	U	0.19	1.0
Chromium	0.17	U	0.17	1.0
Copper	0.50	U	0.50	2.0
Iron	3.0	U	3.0	5.0
Magnesium	6.8	U	6.8	50
Manganese	0.21	U	0.21	1.0
Sodium	18	U	18	50
Lead	0.15	U	0.15	0.50
Strontium	0.098	U	0.098	1.0
Titanium	0.30	U	0.30	1.0
Vanadium	0.11	U	0.11	1.0
Zinc	0.50	Ū	0.50	2.0

Quality Control Results

Lab Control Sample - Batch: 660-90981

Lab Sample ID: LCS 660-90981/2-A

Client Matrix:SolidDilution:1.0Date Analyzed:03/01/20101222Date Prepared:02/23/20101202

60-90981/2-A Analysis Batch: 660-91239 Prep Batch: 660-90981 Units: mg/Kg 2010 1222

Quality Control Results

Job Number: 660-33914-1

Method: 6010B Preparation: 3050B

Instrument ID: ICPA Lab File ID: 10C01A Initial Weight/Volume: 1.00 g Final Weight/Volume: 50 mL

Analyte	Spike Amount	Result	% Rec.	Limit	Qual
Aluminum	50.0	48.7	97	75 - 125	
Arsenic	50.0	50.0	100	75 - 125	
Boron	50.0	48.6	97	75 - 125	
Barium	50.0	49.5	99	75 - 125	
Calcium	50.0	52.8	106	75 - 125	
Cadmium	50.0	52.2	104	75 - 125	
Cobalt	50.0	48.7	97	75 - 125	
Chromium	49.5	51.8	105	75 - 125	
Copper	50.0	50.0	100	75 - 125	
Iron	50.0	52.2	104	75 - 125	
Magnesium	50.0	50.7	101	75 - 125	
Manganese	50.0	52.3	105	75 - 125	
Sodium	500	505	101	75 - 125	
Lead	50.0	51.9	104	75 - 125	
Strontium	50.0	53.0	106	75 - 125	
Titanium	50.0	52.7	105	75 - 125	
Vanadium	50.0	51.9	104	75 - 125	
Zinc	50.0	52.3	105	75 - 125	

Quality Control Results

Job Number: 660-33914-1

Client: Environmental Engineering Consultant

Matrix Spike/ Matrix Spike Duplicate Recovery Report - Batch: 660-90981

Method: 6010B Preparation: 3050B

MS Lab Sample ID: Client Matrix: Dilution: Date Analyzed: Date Prepared:	660-33921-A-3-B MS Solid 1.0 03/01/2010 1240 02/23/2010 1202	Analysis Batch: 660-91239 Prep Batch: 660-90981	Instrument ID: ICPA Lab File ID: 10C01A Initial Weight/Volume: 1.01 g Final Weight/Volume: 50 mL
MSD Lab Sample ID:	660-33921-A-3-C MSD	Analysis Batch: 660-91239	Instrument ID: ICPA
Client Matrix:	Solid	Prep Batch: 660-90981	Lab File ID: 10C01A
Dilution:	1.0		Initial Weight/Volume: 1.01 g
Date Analyzed:	03/01/2010 1246		Final Weight/Volume: 50 mL
Date Prepared:	02/23/2010 1202		

	%	<u>Rec.</u>					
Analyte	MS	MSD	Limit	RPD	RPD Limit	MS Qual	MSD Qual
Aluminum	2230	1750	75 - 125	6	20	J3	J3
Arsenic	95	95	75 - 125	0	20		
Boron	94	94	75 - 125	0	20		
Barium	98	92	75 - 125	5	20		
Calcium	136	116	75 - 125	2	20	J3	
Cadmium	99	99	75 - 125	1	20		
Cobalt	92	92	75 - 125	0	20		
Chromium	101	101	75 - 125	0	20		
Copper	97	96	75 - 125	1	20		
Iron	158	227	75 - 125	2	20	J3	J3
Magnesium	169	168	75 - 125	0	20	J3	J3
Manganese	100	102	75 - 125	2	20		
Sodium	97	97	75 - 125	0	20		
Lead	98	98	75 - 125	1	20		
Strontium	105	94	75 - 125	7	20		
Titanium	76	76	75 - 125	0	20		
Vanadium	100	100	75 - 125	0	20		
Zinc	102	104	75 - 125	2	20		

Method Blank - Batch: 660-91157

Lab Sample ID:MB 660-91157/1-AClient Matrix:WaterDilution:1.0Date Analyzed:03/02/2010Date Prepared:02/26/2010

Quality Control Results

Job Number: 660-33914-1

Method: 6010B Preparation: 3005A Total Recoverable

Instrument ID: ICPA Lab File ID: 10C02A Initial Weight/Volume: 50 mL Final Weight/Volume: 50 mL

Analyte	Result	Qual	MDL	PQL	
Potassium	0.19	U	0.19	1.0	
Copper	0.0029	U	0.0029	0.010	
Iron	0.050	U	0.050	0.20	
Magnesium	0.020	U	0.020	0.080	
Sodium	0.31	U	0.31	0.50	
Lead	0.0020	U	0.0020	0.010	
Zinc	0.0050	U	0.0050	0.020	

Analysis Batch: 660-91268

Prep Batch: 660-91157

Units: mg/L

Lab Control Sample - Batch: 660-91157

Lab Sample ID:LCS 660-91157/2-AClient Matrix:WaterDilution:1.0Date Analyzed:03/02/2010Date Prepared:02/26/20100900

Analysis Batch: 660-91268 Prep Batch: 660-91157 Units: mg/L

Method: 6010B Preparation: 3005A Total Recoverable

Instrument ID: ICPA Lab File ID: 10C02A Initial Weight/Volume: 50 mL Final Weight/Volume: 50 mL

Analyte	Spike Amount	Result	% Rec.	Limit	Qual
Potassium	10.0	9.40	94	75 - 125	
Copper	1.00	1.01	101	75 - 125	
Iron	1.00	1.04	104	75 - 125	
Magnesium	1.00	1.02	102	75 - 125	
Sodium	10.0	10.3	103	75 - 125	
Lead	1.00	1.02	102	75 - 125	
Zinc	1.00	1.02	102	75 - 125	

Quality Control Results

Job Number: 660-33914-1

Client: Environmental Engineering Consultant

Matrix Spike/ Matrix Spike Duplicate Recovery Report - Batch: 660-91157

Method: 6010B Preparation: 3005A Total Recoverable

MS Lab Sample ID:	660-33915-F-2-B MS	Analysis Batch: 660-91268	Instrument ID: ICPA
Client Matrix:	Water	Prep Batch: 660-91157	Lab File ID: 10C02A
Dilution:	1.0		Initial Weight/Volume: 50 mL
Date Analyzed:	03/02/2010 1130		Final Weight/Volume: 50 mL
Date Prepared:	02/26/2010 0900		
MSD Lab Sample ID:	660-33915-F-2-C MSD	Analysis Batch: 660-91268	Instrument ID: ICPA
Client Matrix:	Water	Prep Batch: 660-91157	Lab File ID: 10C02A
Dilution:	1.0		Initial Weight/Volume: 50 mL
Date Analyzed:	03/02/2010 1136		Final Weight/Volume: 50 mL
Date Prepared:	02/26/2010 0900		

	<u>% Re</u>	<u>ec.</u>					
Analyte	MS	MSD	Limit	RPD	RPD Limit	MS Qual	MSD Qual
Potassium	95	95	75 - 125	0	20		
Copper	102	102	75 - 125	0	20		
Iron	116	103	75 - 125	12	20		
Magnesium	101	100	75 - 125	0	20		
Sodium	103	104	75 - 125	1	20		
Lead	101	101	75 - 125	0	20		
Zinc	100	100	75 - 125	0	20		

Method Blank - Batch: 700-79169

Method: 7470A Preparation: 7470A

Lab Sample ID:	MB 700-79169/1-A	Analysis Batch: 700-79238	li	nstrument ID: LEE	MAN HYDRA
Client Matrix:	Water	Prep Batch: 700-79169	L	ab File ID: N/A	
Dilution:	1.0	Units: mg/L	h	nitial Weight/Volum	ne: 40 mL
Date Analyzed:	02/24/2010 1748		F	inal Weight/Volum	ie: 40 mL
Date Prepared:	02/24/2010 0915				
			. .		
Analyte		Result	Qual	MDL	PQL

Analyte	Result	Qual	MDL	PQL
Mercury	0.000071	U	0.000071	0.00020

Quality Control Results

Method Blank - Batch: 700-79182

Method: 7471A
Preparation: 7471A

Dilution: 1. Date Analyzed: 02 Date Prepared: 02 Analyte	.0 2/24/2010 1647 2/24/2010 1100	Result	Final W	eight/Volume: 0. eight/Volume: 40 MDL	40 g) mL PQL
Analyte		Result	Qual	MDL	PQL
Mercury		0.014	11	0.014	0.020

Method Blank - Batch: 660-90881

Blank - Batch: 660-90881

Method: 180.1 Preparation: N/A	
	Instrument ID: Turbidity2

Turbidity	4.6		4.61	0	20	
Analyte	Sample Result/C	Qual	Result	RPD	Limit	Qual
Lab Sample ID:660-33914-5Client Matrix:WaterDilution:1.0Date Analyzed:02/19/2010Date Prepared:N/A	Analysis Batch: 66 Prep Batch: N/A Units: NTU	0-90881	Ins Lai Init Fin	trument ID: Tu b File ID: N/ ial Weight/Volu al Weight/Volu	urbidity2 /A ume: ume: 30 mL	
Duplicate - Batch: 660-90881			Me Pre	ethod: 180.1 eparation: N	/A	
Turbidity	40.0	41.5	104	90 - 1	110	
Analyte	Spike Amount	Result	% Rec.	Limit		Qual
Lab Sample ID:LCS 660-90881/4Client Matrix:WaterDilution:1.0Date Analyzed:02/19/2010Date Prepared:N/A	Analysis Batch: Prep Batch: N/A Units: NTU	660-90881	Ins Lai Init Fin	trument ID: Tu b File ID: N/ ial Weight/Volu al Weight/Volu	urbidity2 /A ume: ume: 30 mL	
Lab Control Sample - Batch: 660)-90881		Me Pro	ethod: 180.1 eparation: N	/ A	
Turbidity	0.10		U	0.10	0.10	
Analyte	Result	t	Qual	PQL	PQL	
Dilution: 1.0 Date Analyzed: 02/19/2010 1030 Date Prepared: N/A	Units: NTU		Init Fin	ial Weight/Volu al Weight/Volu	ume: ume: 30 mL	
Lab Sample ID: MB 660-90881/3 Client Matrix: Water	Analysis Batch: Prep Batch: N/A	660-90881	Ins Lai	trument ID: Τι b File ID: Ν/	urbidity2 ′A	

Quality Control Results

Job Number: 660-33914-1

Qual

Method: 350.1 Preparation: 3-154

Lab File ID:

Instrument ID: KONELAB1

N/A

Client: Environmental Engineering Consultant

Method Blank - Batch: 680-161659

Lab Sample ID: MB 680-161659/1-A

Client Matrix: Solid

Dilution: Date Analyzed: Date Prepared:	1.0 02/26/2010 1111 02/25/2010 1234	Units: mg/Kg	Units: mg/Kg			20.05 g 100 mL
Analyte		Resu	It	Qual	MDL	PQL
Ammonia (as N)		0.13		U	0.13	0.30
Lab Control S	ample - Batch: 680-16	61659		M P	lethod: 350.1 reparation: 3-154	
Lab Sample ID:LCS 680-161659/2-AClient Matrix:SolidDilution:1.0Date Analyzed:02/26/2010Date Prepared:02/25/20101234		Analysis Batch: Prep Batch: 68 Units: mg/Kg	Analysis Batch: 680-161811 Prep Batch: 680-161659 Units: mg/Kg		Instrument ID: KONELAB1 Lab File ID: N/A Initial Weight/Volume: 19.95 Final Weight/Volume: 100 m	
Analyte		Spike Amount	Result	% Rec.	Limit	
Ammonia (as N)		5.01	4.94	99	75 - 125	
Matrix Spike/ Matrix Spike I	Duplicate Recovery Re	port - Batch: 680-	161659	M P	lethod: 350.1 reparation: 3-154	
MS Lab Sample Client Matrix: Dilution: Date Analyzed: Date Prepared:	ID: 660-33863-D-2-B M Solid 10 02/26/2010 1159 02/25/2010 1234	S Analysis Batch: Prep Batch: 68	Analysis Batch: 680-161811 Prep Batch: 680-161659		strument ID: KONE ab File ID: N/A itial Weight/Volume: inal Weight/Volume:	ELAB1 19.99 g 100 mL
MSD Lab Sampl Client Matrix: Dilution: Date Analyzed: Date Prepared:	e ID: 660-33863-D-2-C M Solid 10 02/26/2010 1159 02/25/2010 1234	ISD Analysis Batch: Prep Batch: 68	680-161811 00-161659	in La Fi	strument ID: KONEL ab File ID: N/A itial Weight/Volume: inal Weight/Volume:	AB1 20.00 g 100 mL

Analysis Batch: 680-161811

Prep Batch: 680-161659

	<u>% Re</u>	<u>eC.</u>					
Analyte	MS	MSD	Limit	RPD	RPD Limit	MS Qual	MSD Qual
Ammonia (as N)	42	73	75 - 125	3	30	J3	J3

Duplicate - Batch: 680-161659

Method: 350.1 Preparation: 3-154

Lab Sample ID:	660-33914-8	Analysis Batch: 680-161811		Instrument ID: K	ONELAB1	
Client Matrix:	Solid	Prep Batch: 680-161659		Lab File ID: N	/A	
Dilution:	2.0	Units: mg/Kg		Initial Weight/Vol	lume: 20.06 g	
Date Analyzed:	02/26/2010 1148			Final Weight/Vol	ume: 100 mL	
Date Prepared:	02/25/2010 1234					
Analyte		Sample Result/Qual	Result	RPD	Limit	Qual
Ammonia (as N))	9.3	11.1	17	30	

Quality Control Results

Ammonia (as N)

Client: Environmental Engineering Consultant

Method Blank - Batch: 660-91786

Lab Sample ID: MB 660-91786/11

Client Matrix: Dilution: Date Analyzed: Date Prepared:	Water 1.0 03/15/2010 1120 N/A	Prep Batch: N/ Units: mg/L	A	Lab Initia Fina	Lab File ID: N/A Initial Weight/Volume: 10 mL Final Weight/Volume: 10 mL			
Analyte		Res	ult	Qual	MDL	PQL		
Ammonia (as N)		0.01	0	U	0.010	0.020		
Lab Control S	ample - Batch: 660-91	786		Me ^r Pre	thod: 350.1 paration: N/A			
Lab Sample ID:LCS 660-91786/12Client Matrix:WaterDilution:1.0Date Analyzed:03/15/2010 1121Date Prepared:N/A		Analysis Batch Prep Batch: N/ Units: mg/L	Analysis Batch: 660-91786 Prep Batch: N/A Units: mg/L		Instrument ID: LACHAT Lab File ID: N/A Initial Weight/Volume: 10 mL Final Weight/Volume: 10 mL			
Analyte		Spike Amount	Result	% Rec.	Limit	Qual		
Ammonia (as N)		0.500	0.511	102	90 - 110			
Matrix Spike/ Matrix Spike D	ouplicate Recovery Re	port - Batch: 660	9-91786	Me [:] Pre	thod: 350.1 paration: N/A			
MS Lab Sample Client Matrix: Dilution: Date Analyzed: Date Prepared:	ID: 660-34207-B-1 MS Water 1.0 03/15/2010 1123 N/A	Analysis Batch Prep Batch: N/	: 660-91786 A	Inst Lab Initia Fina	rument ID: LACH/ File ID: N/A al Weight/Volume: al Weight/Volume:	AT 10 mL 10 mL		
MSD Lab Sample Client Matrix: Dilution: Date Analyzed: Date Prepared:	e ID: 660-34207-B-1 MSD Water 1.0 03/15/2010 1125 N/A) Analysis Batch Prep Batch: N/	: 660-91786 A	Inst Lab Initia Fina	rument ID: LACHA ⁻ File ID: N/A al Weight/Volume: 7 al Weight/Volume: 7	Г 10 mL 10 mL		
		<u>% Rec.</u>						
Analyte		MS MSD	Limit	RPD	RPD Limit MS	Qual MSD Qual		

Analysis Batch: 660-91786

Quality Control Results

Method: 350.1 Preparation: N/A

Instrument ID: LACHAT

Job Number: 660-33914-1

90 - 110

2

30

109

107

Nitrite as N

Client: Environmental Engineering Consultant

Me hth 660 00074

Lab Sample ID: MB 660-90874/1 Client Matrix: Water

Dilution: 1.0 Date Analyzed: 02/19/2010 0955 Date Prepared: N/A

lethod	Blank	- Batch:	660-90874

Quality Control Results

Job Number: 660-33914-1

Method: 353.2 **Preparation: N/A**

Instrument ID: No Equipment Assigned
Lab File ID: N/A
Initial Weight/Volume: 10 mL
Final Weight/Volume: 10 mL

Analyte	Result	Qual	MDL	PQL
Nitrate Nitrite as N	0.10	U	0.10	0.50
Nitrite as N	0.10	U	0.10	0.50
Nitrate as N	0.10	U	0.10	0.50

Analysis Batch: 660-90874

Prep Batch: N/A

Units: mg/L

Lab Control Sample - Batch: 660-90874

Method: 353.2 **Preparation: N/A**

90 - 110

95

Lab Sample ID: LCS 660-90874/2 Analysis Batch: 660-90874 Instrument ID: No Equipment Assigned Client Matrix: Water Prep Batch: N/A Lab File ID: N/A Dilution: 1.0 Units: mg/L Initial Weight/Volume: 10 mL Date Analyzed: 02/19/2010 0955 Final Weight/Volume: 10 mL Date Prepared: N/A Analyte Spike Amount Result % Rec. Limit Qual Nitrate Nitrite as N 1.00 90 - 110 0.959 96

0.948

1.00

Quality Control Results

Job Number: 660-33914-1

Client: Environmental Engineering Consultant

Matrix Spike/ Matrix Spike Duplicate Recovery Report - Batch: 660-90874

Method: 353.2

Preparation: N/A

MS Lab Sample ID: Client Matrix: Dilution: Date Analyzed: Date Prepared:	660-33914-6 Water 1.0 02/19/2010 0955 N/A	Analysis Batch: 660-90874 Prep Batch: N/A	Instrument ID: No Equipment Assigned Lab File ID: N/A Initial Weight/Volume: 50 mL Final Weight/Volume: 50 mL
MSD Lab Sample ID: Client Matrix: Dilution: Date Analyzed: Date Prepared:	660-33914-6 Water 1.0 02/19/2010 0955 N/A	Analysis Batch: 660-90874 Prep Batch: N/A	Instrument ID: No Equipment Assigned Lab File ID: N/A Initial Weight/Volume: 50 mL Final Weight/Volume: 50 mL
		<u>% Rec.</u>	

Analyte	MS	MSD	Limit	RPD	RPD Limit	MS Qual	MSD Qual
Nitrate Nitrite as N	94	98	90 - 110	4	30		
Nitrite as N	105	97	90 - 110	8	30		

Method	Blank -	Batch:	660-91352
--------	---------	--------	-----------

Date Leached: 03/01/2010 1600

Lab Sample ID:	MB 660-91350/1-A	Analys	is Batch:	660-91352
Client Matrix:	Solid	Prep B	atch: N/A	
Dilution:	1.0	Units:	mg/Kg	
Date Analyzed:	03/03/2010 0939			
Date Prepared:	N/A			

Leachate Batch: 660-91350

Quality Control Results

Job Number: 660-33914-1

Method: 353.2 **Preparation: N/A**

Instrument ID: No Equipment Assigned					
Lab File ID:	N/A				
Initial Weight/\	/olume: 10	mL			
Final Weight/V	olume: 10	mL			

Analyte	Result	Qual	MDL	PQL
Nitrate Nitrite as N-Soluble	1.0	U	1.0	5.0
Nitrite as N-Soluble	1.0	U	1.0	5.0
Nitrate as N-Soluble	1.0	U	1.0	5.0

Lab Control Sample - Batch: 660-91352

Method: 353.2 Preparation: N/A

Lab Sample ID:	LCS 660-91350/2-A	Analysis Batch:	660-91352	Instrument	Instrument ID: No Equipment Assigned		
Client Matrix:	Solid	Prep Batch: N/A		Lab File ID	: N/A		
Dilution:	1.0	Units: mg/Kg		Initial Weig	ht/Volume: 10 mL		
Date Analyzed:	03/03/2010 0939		Final Weight/Volume: 10 mL				
Date Prepared:	N/A						
Date Leached:	03/01/2010 1600	Leachate Batch:	660-91350				
Analyte		Spike Amount	Result	% Rec.	Limit	Qual	
Nitrate Nitrite as	s N-Soluble	10.0	9.80	98	90 - 110		
Nitrite as N-Solu	uble	10.0	9.46	95	90 - 110		

Matrix Spike/ Matrix Spike Duplicate Recovery Report - Batch: 660-91352

Nitrate Nitrite as N-So	luble	106	112	90 - 110	6	20		J3
Analyte		MS <u>%</u>	<u>Rec.</u> MSD	Limit	RPD	RPD Limit	MS Qual	MSD Qual
Date Leached:	03/01/2010 1600	Leach	nate Batch:	660-91350				
Date Prepared:	N/A							
Date Analyzed:	03/03/2010 0939				Fir	nal Weight/Volu	ume: 50 ml	L
Dilution:	1.0				Ini	tial Weight/Vol	ume: 50 ml	L
Client Matrix:	Solid	Prep	Batch: N/A		La	b File ID: N	/A	
MSD Lab Sample ID:	660-33914-10	Analy	sis Batch:	660-91352	Ins	strument ID: N	o Equipment	Assigned
Date Leached:	03/01/2010 1600	Leach	nate Batch:	660-91350				
Date Prepared:	N/A							
Date Analyzed:	03/03/2010 0939				Fir	nal Weight/Volu	ume: 50 r	nL
Dilution:	1.0				Ini	tial Weight/Vol	ume: 50 r	nL
Client Matrix:	Solid	Prep	Batch: N/A		La	b File ID:	N/A	
MS Lab Sample ID:	660-33914-10	Analy	sis Batch:	660-91352	Ins	strument ID:	No Equipme	nt Assigned

Quality Control Results

Method: 353.2

Preparation: N/A

Quality Control Results

Job Number: 660-33914-1

Method: 365.4

Preparation: 365.2/365.3/365

Client: Environmental Engineering Consultant

Method Blank - Batch: 680-161349

Lab Sample ID:MB 680-161349/1-AAnalysis BatcClient Matrix:SolidPrep Batch:Dilution:1.0Units: mg/KgDate Analyzed:02/22/2010Date Prepared:02/22/20101258			-161565 1349		Instrument ID: KONELAB1 Lab File ID: N/A Initial Weight/Volume: 0.200 g Final Weight/Volume: 40 mL			
Analyte	Result		C)ual	MDL		PQL	
Phosphorus		11		l	11		20	
Lab Control Sample/ Lab Control Sample Duplicate Recove	ery Repor	rt - Batch:(680-16134	Ð	Method: 365 Preparation:	.4 365.2/3	65.3/365	
LCS Lab Sample ID: LCS 680-161349/2-AClient Matrix:SolidDilution:1.0Date Analyzed:02/24/2010Date Prepared:02/22/20101258	Analysis Batch: 680-161565 Prep Batch: 680-161349 Units: mg/Kg			Instrument ID: KONELAB1 Lab File ID: N/A Initial Weight/Volume: 0.200 g Final Weight/Volume: 40 mL				
LCSD Lab Sample ID: LCSD 680-161349/3-AClient Matrix:SolidDilution:1.0Date Analyzed:02/24/2010 1400Date Prepared:02/22/2010 1258	Analysis Batch: 680-161565 Prep Batch: 680-161349 Units: mg/Kg				Instrument ID: KONELAB1 Lab File ID: N/A Initial Weight/Volume: 0.200 g Final Weight/Volume: 40 mL			
Analyte	<u>%</u> LCS	<u>6 Rec.</u> LCSD	Limit	RP	D RPD Limi	t LCS (Qual LCSD Qual	
Phosphorus	95	97	60 - 140	3	40			
Duplicate - Batch: 680-161349					Method: 365. Preparation:	4 365.2/3	65.3/365	
Lab Sample ID:660-33914-11AClient Matrix:SolidIDilution:1.0IDate Analyzed:02/24/20101417Date Prepared:02/22/20101258	Analysis Batch: 680-161565 Prep Batch: 680-161349 Jnits: mg/Kg				Instrument ID: KONELAB1 Lab File ID: N/A Initial Weight/Volume: 0.2395 g Final Weight/Volume: 40 mL			
Analyte	Sample	Result/Qual	Res	ult	RPD	Limit	Qual	
Phosphorus	270		432		45	40	J3	
Date Prepared:

03/01/2010 1700

Client: Environmental Engineering Consultant Method Blank - Batch: 660-91250 Method: 365.4 Preparation: 365.2/365.3/365 Lab Sample ID: MB 660-91250/10-A Analysis Batch: 660-91349 Instrument ID: SEAL1 Client Matrix: Water Prep Batch: 660-91250 Lab File ID: N/A Units: mg/L Dilution: 1.0 Initial Weight/Volume: 20 mL Date Analyzed: 03/03/2010 1113 Final Weight/Volume: 20 mL Date Prepared: 03/01/2010 1700 Analyte Result Qual MDL Phosphorus, Total 0.10 U 0.10 Method: 365.4 Lab Control Sample - Batch: 660-91250 Preparation: 365.2/365.3/365 Analysis Batch: 660-91349 Lab Sample ID: LCS 660-91250/11-A Instrument ID: SEAL1 Client Matrix: Water Prep Batch: 660-91250 Lab File ID: N/A Initial Weight/Volume: 20 mL Dilution: 1.0 Units: mg/L Date Analyzed: 03/03/2010 1113 Final Weight/Volume: 20 mL Date Prepared: 03/01/2010 1700 Analyte Spike Amount Result % Rec. Limit Phosphorus, Total 3.00 3.03 101 90 - 110 Method: 365.4 Matrix Spike/ Matrix Spike Duplicate Recovery Report - Batch: 660-91250 Preparation: 365.2/365.3/365 MS Lab Sample ID: Analysis Batch: 660-91349 Instrument ID: SEAL1 660-33914-3 Client Matrix: Prep Batch: 660-91250 Lab File ID: N/A Water Initial Weight/Volume: 20 mL Dilution: 1.0 Final Weight/Volume: 20 mL Date Analyzed: 03/03/2010 1113

MSD Lab Sample ID:	660-33914-3	Analysis Batch: 660-91349	Instrument ID: SEAL1
Client Matrix:	Water	Prep Batch: 660-91250	Lab File ID: N/A
Dilution:	1.0		Initial Weight/Volume: 20 mL
Date Analyzed:	03/03/2010 1113		Final Weight/Volume: 20 mL
Date Prepared:	03/01/2010 1700		

	<u>% Re</u>	<u>ec.</u>					
Analyte	MS	MSD	Limit	RPD	RPD Limit	MS Qual	MSD Qual
Phosphorus, Total	94	105	90 - 110	9	30		

Quality Control Results

Job Number: 660-33914-1

PQI

0.30

Qual

Method Blank - Batch: 680-161395

ank	Batch:	690 161205	

Quality Control Results

Job Number: 660-33914-1

Method: 9034 Preparation: 9030B

Lab Sample ID:MBClient Matrix:SolidDilution:1.0Date Analyzed:02/2Date Prepared:02/2	680-161395/1-A d 23/2010 1430 23/2010 1144	Analy Prep Units	vsis Batch: Batch: 680 : mg/Kg	680-161436 -161395		Instrument ID: N Lab File ID: N Initial Weight/Vol Final Weight/Vol	o Equipment / /A ume: 10.00 ume: 250 m	Assigned g L
Analyte			Result		Qual	PQL	PQL	
Sulfide			25		U	25	25	
Lab Control Sam	ple - Batch: 680-1613	95				Method: 9034 Preparation: 9	030B	
Lab Sample ID: LCS Client Matrix: Soli Dilution: 1.0 Date Analyzed: 02/2 Date Prepared: 02/2	8 680-161395/2-A d 23/2010 1430 23/2010 1144	Analy Prep Units	/sis Batch: Batch: 680 : mg/Kg	680-161436 -161395		Instrument ID: N Lab File ID: N Initial Weight/Vol Final Weight/Vol	o Equipment / /A ume: 10.00 ume: 250 m	Assigned g L
Analyte		Spike	e Amount	Result	% Re	ec. Limit		Qual
Sulfide		252		207	82	50 -	150	
Matrix Spike/ Matrix Spike Dup	licate Recovery Repo	rt - Bat	tch: 680-1	61395		Method: 9034 Preparation: 9	030B	
MS Lab Sample ID: Client Matrix: Dilution: Date Analyzed: Date Prepared:	660-33863-E-4-C MS Solid 1.0 02/23/2010 1430 02/23/2010 1144	Analy Prep	vsis Batch: Batch: 680	680-161436)-161395		Instrument ID: Lab File ID: Initial Weight/Vol Final Weight/Vol	No Equipmen N/A ume: 10.03 ume: 250 r	t Assigned g nL
MSD Lab Sample ID Client Matrix: Dilution: Date Analyzed: Date Prepared:	: 660-33863-E-4-D MSD Solid 1.0 02/23/2010 1430 02/23/2010 1144	Analy Prep	vsis Batch: Batch: 680	680-161436 0-161395		Instrument ID: N Lab File ID: N Initial Weight/Vol Final Weight/Vol	o Equipment / /A ume: 10.03 ume: 250 m	Assigned g L
		<u>%</u>	Rec.					
Analyte		MS	MSD	Limit	RP	D RPD Limit	MS Qual	MSD Qual
Sulfide		84	83	50 - 150	2	50		

Method Blank - Batch: 680-162106

Job Number: 660-33914-1

Method: 9038 Preparation: N/A

Lab Sample ID: Client Matrix: Dilution: Date Analyzed: Date Prepared:	MB 680-162053/1-A Solid 1.0 03/02/2010 1707 N/A	Analysis Batcl Prep Batch: N Units: mg/Kg	n: 680-162106 /A	;	Instrument ID: K0 Lab File ID: N/ Initial Weight/Vol Final Weight/Volu	ONELAB1 /A ume: 1.0 mL ume: 1.0 mL
Date Leached:	03/02/2010 1138	Leachate Bate	ch: 680-16205	3		
Analyte		Res	sult	Qual	PQL	PQL
Sulfate-Soluble		100)	U	100	100
Lab Control S Lab Control S	Sample/ Sample Duplicate Recover	ry Report - Ba	tch: 680-162	2106	Method: 9038 Preparation: N	I/A
LCS Lab Samp Client Matrix: Dilution: Date Analyzed: Date Prepared:	e ID: LCS 680-162053/2-A Solid 1.0 03/02/2010 1707 N/A	Analysis Bat Prep Batch: Units: mg/k	ch: 680-16210 N/A (g	06	Instrument ID: Ku Lab File ID: N/A Initial Weight/Volu Final Weight/Volur	ONELAB1 me: 1.0 mL ne: 1.0 mL
Date Leached:	03/02/2010 1138	Leachate Ba	atch: 680-1620)53		
LCSD Lab Sam Client Matrix: Dilution: Date Analyzed: Date Prepared:	ple ID: LCSD 680-162053/3-A Solid 1.0 03/02/2010 1707 N/A	Analysis Bat Prep Batch: Units: mg/k	ch: 680-16210 N/A Kg	06	Instrument ID: Lab File ID: N/A Initial Weight/Volut Final Weight/Volut	KONELAB1 me: 1.0 mL ne: 1.0 mL
Date Leached:	03/02/2010 1138	Leachate Ba	atch: 680-1620)53		
Analyte		<u>% Rec.</u> LCS LCS	SD Limit	RPI	D RPD Limit	LCS Qual LCSD Qual
Sulfate-Soluble		100 100) 75 - 12	25 0	30	

Quality Control Results

Job Number

Job Number: 660-33914-1

Method: 9038 Matrix Spike/ Matrix Spike Duplicate Recovery Report - Batch: 680-162106 Preparation: N/A MS Lab Sample ID: 660-33863-D-1-C MS Analysis Batch: 680-162106 Instrument ID: KONELAB1 Client Matrix: Solid Prep Batch: N/A Lab File ID: N/A Initial Weight/Volume: 1.0 mL Dilution: 1.0 Date Analyzed: 03/02/2010 1709 Final Weight/Volume: 1.0 mL Date Prepared: N/A Date Leached: 03/02/2010 1138 Leachate Batch: 680-162053 MSD Lab Sample ID: 660-33863-D-1-D MSD Analysis Batch: 680-162106 Instrument ID: KONELAB1 Client Matrix: Solid Prep Batch: N/A Lab File ID: N/A Dilution: 1.0 Initial Weight/Volume: 1.0 mL Date Analyzed: 03/02/2010 1709 Final Weight/Volume: 1.0 mL Date Prepared: N/A Date Leached: 03/02/2010 1138 Leachate Batch: 680-162053 % Rec. MS MSD RPD MS Qual MSD Qual Analyte Limit **RPD** Limit 75 - 125 Sulfate-Soluble 113 7 119 30 Duplicate - Batch: 680-162106 Method: 9038 Preparation: N/A Lab Sample ID: 660-33914-11 Analysis Batch: 680-162106 Instrument ID: KONELAB1 Client Matrix: Prep Batch: N/A Lab File ID: Solid N/A Units: mg/Kg Initial Weight/Volume: 1.0 mL Dilution: 1.0 Date Analyzed: 03/02/2010 1726 Final Weight/Volume: 1.0 mL Date Prepared: N/A Date Leached: 03/02/2010 1138 Leachate Batch: 680-162053 Analyte RPD Sample Result/Qual Result Limit Qual Sulfate-Soluble 96 U 98 NC 30 U

Client: Environmental Engineering Consultant

Method Blank - Batch: 660-91134

itch: 660-91134

Quality Control Results

Job Number: 660-33914-1

Method: 9045C Preparation: N/A

Lab Sample ID: Client Matrix: Dilution: Date Analyzed:	MB 660-90928/1-A Solid 1.0 02/20/2010 1000	Analysis Batch: Prep Batch: N/A Units: SU	660-91134		Instrument ID: Lab File ID: Initial Weight/V Final Weight/V	No Equipme N/A /olume: 1.0 /olume: 10	ent Assigned mL mL
Date Leached:	02/20/2010 0900	Leachate Batch:	660-90928				
Analyte		Result		Qual	PQL	Р	QL
pH-Soluble		6.220			1.00	1.	00
Lab Control S	Sample - Batch: 660-9	91134			Method: 904 Preparation:	5C N/A	
Lab Sample ID: Client Matrix: Dilution: Date Analyzed: Date Prepared:	LCS 660-90928/2-A Solid 1.0 02/20/2010 1000 N/A	Analysis Batch: Prep Batch: N/A Units: SU	660-91134		Instrument ID: Lab File ID: Initial Weight/V Final Weight/V	No Equipme N/A /olume: 1.0 ′olume: 10	ent Assigned mL mL
Date Leached:	02/20/2010 0900	Leachate Batch:	660-90928				
Analyte		Spike Amount	Result	% Re	c. Lir	nit	Qual
pH-Soluble		6.00	6.000	100	98	- 102	
Duplicate - B	atch: 660-91134				Method: 904 Preparation:	5C N/A	
Lab Sample ID: Client Matrix: Dilution: Date Analyzed: Date Prepared:	660-33914-11 Solid 1.0 02/20/2010 1000 N/A	Analysis Batch: 660 Prep Batch: N/A Units: SU)-91134		Instrument ID: Lab File ID: Initial Weight/V Final Weight/V	No Equipme N/A /olume: 1.0 ′olume: 10	ent Assigned mL mL
Date Leached:	02/20/2010 0900	Leachate Batch: 66	0-90928				
Analyte		Sample Result/Q	ual F	Result	RPD	Limit	Qual
pH-Soluble		7.51	7	.530	0	20	Q

Method Blank - Batch: 680-161519

Lab Sample ID: MB 680-161519/1

Solid

1.0

Client Matrix:

Dilution:

Date Prepared:

N/A

Analysis Batch: 680-161519

Prep Batch: N/A

Units: mg/Kg

Date Analyzed: 02/23/2010 1035 Date Prepared: N/A				I	Final Weight/Volume:	1.0 mL
Analyte		Result	Result		MDL	PQL
Total Organic Carbon		1000		U	1000	3000
Lab Control Samp	le - Batch: 680-161	519			Method: 9060 Preparation: N/A	
Lab Sample ID: LCS Client Matrix: Solid Dilution: 1.0 Date Analyzed: 02/23 Date Prepared: N/A	680-161519/2 I 3/2010 1035	Analysis Batch: Prep Batch: N/A Units: mg/Kg	680-161519		Instrument ID: TOC2 Lab File ID: N/A Initial Weight/Volume: Final Weight/Volume:	20.5 mg 1.0 mL
Analyte		Spike Amount	Result	% Rec	c. Limit	Qual
Total Organic Carbor Matrix Spike/ Matrix Spike Dupl	icate Recovery Repo	408000 ort - Batch: 680-1	377000 61519	92	60 - 140 Method: 9060 Preparation: N/A	
MS Lab Sample ID: Client Matrix: Dilution: Date Analyzed: Date Prepared:	680-55167-A-8 MS Solid 1.0 02/23/2010 1035 N/A	Analysis Batch: Prep Batch: N/A	680-161519		Instrument ID: TOC2 Lab File ID: N/A Initial Weight/Volume: Final Weight/Volume:	2 113.5 mg 113.5 mg
MSD Lab Sample ID: Client Matrix: Dilution: Date Analyzed:	680-55167-A-8 MSD Solid 1.0 02/23/2010 1035	Analysis Batch: Prep Batch: N/A	680-161519		Instrument ID: TOC2 Lab File ID: N/A Initial Weight/Volume: Final Weight/Volume:	113.1 mg 113.1 mg

	<u>% Re</u>	<u>ec.</u>					
Analyte	MS	MSD	Limit	RPD	RPD Limit	MS Qual	MSD Qual
Total Organic Carbon	83	83	60 - 140	1	40		

Quality Control Results

Method: 9060

Lab File ID:

Preparation: N/A

Instrument ID: TOC2

N/A

Initial Weight/Volume: 100 mg

D

uplicate - Batch:	680-161519
-------------------	------------

Method: 9060
Preparation: N/A

Lab Sample ID:680-55167-A-2 DUClient Matrix:SolidDilution:1.0Date Analyzed:02/23/2010 1035Date Prepared:N/A		Analysis Batch Prep Batch: N Units: mg/Kg	n: 680-1615 'A	19	Instrument ID Lab File ID: Initial Weight/ Final Weight/	: TOC2 N/A Volume: 97.0 Volume: 1.0	mg mL
Analyte		Sample Re	sult/Qual	Result	RPD	Limit	Qual
Total Organic C	arbon	1500	I	1760	13	40	I

Quality Control Results

Quality Control Results

Client: Environmental Engineering Consultant

Method Blank - Batch: 660-91047

Job Number: 660-33914-1

Method: SM 2320B Preparation: N/A

Lab Sample ID: Client Matrix: Dilution: Date Analyzed: Date Prepared:	MB 660-91047/3 Water 1.0 02/24/2010 1240 N/A	Analysis Batch: Prep Batch: N/A Units: mg/L	660-91047	lı L F	nstrument ID: M ab File ID: N nitial Weight/Vo ïnal Weight/Vol	IANTECH I/A Iume: 50 mL Iume: 50 mL	
Analyte		Result		Qual	PQL	PQL	
Alkalinity		1.0		U	1.0	1.0	
Lab Control S	Sample - Batch: 660-910	47		N	/lethod: SM 2 Preparation: N	320B N/A	
Lab Sample ID: Client Matrix: Dilution: Date Analyzed: Date Prepared:	LCS 660-91047/4 Water 1.0 02/24/2010 1248 N/A	Analysis Batch: Prep Batch: N/A Units: mg/L	660-91047	li L F	nstrument ID: M ab File ID: N nitial Weight/Vo iinal Weight/Vol	IANTECH I/A Iume: 50 mL Iume: 50 mL	
Analyte		Spike Amount	Result	% Rec.	Limi	t	Qual
Alkalinity		118	119	100	80 -	120	
Duplicate - Ba	atch: 660-91047			N F	/lethod: SM 2 Preparation: N	320B N/A	
Lab Sample ID: Client Matrix: Dilution: Date Analyzed: Date Prepared:	660-33914-1 Water 1.0 02/24/2010 1259 N/A	Analysis Batch: 660 Prep Batch: N/A Units: mg/L	0-91047	lı L İı	nstrument ID: M ab File ID: N nitial Weight/Vo ïnal Weight/Vol	IANTECH I/A Iume: 50 mL Iume: 50 mL	
Analyte		Sample Result/Q	ual R	esult	RPD	Limit	Qual
Alkalinity		160	10	67	4	30	

TestAmerica Tampa

Date Prepared: N/A

1.0

Date Analyzed: 02/25/2010 1200

Dilution:

Analyte

Salinity

						Quality	Contro	א וכ
Client: Environ	mental Engineering Cor	nsultant				Job Nu	umber:	660-
Method Blank -	Batch: 660-91136				M Pi	ethod: SM 252 reparation: N/A	0B A	
Lab Sample ID: M Client Matrix: W Dilution: 1. Date Analyzed: 02 Date Prepared: N	IB 660-91136/1 /ater .0 2/25/2010 1200 /A	Analysia Prep Ba Units:	s Batch: 660- atch: N/A opt	91136	In La In Fi	strument ID: No E ab File ID: N/A itial Weight/Volun nal Weight/Volum	Equipmer ne: 1.0 r ne: 100	າt As nL mL
Analyte			Result	Qı	ual	PQL	PC	۶L
Salinity			2.0	U		2.0	2.0	1
Dilution: Date Analyzed: Date Prepared:	1.0 02/25/2010 1200 N/A	Units:	ppt		Initi Fin	ial Weight/Volume al Weight/Volume	e: 1.0 e: 100	mL ml
LCSD Lab Sample Client Matrix:	≥ ID: LCSD 660-91136/3 Water	Analy Prep I	sis Batch: 660 Batch: N/A ppt	D-91136	Inst Lat	trument ID: No File ID: N/A	o Equipm	ent /
Dilution: Date Analyzed: Date Prepared:	1.0 02/25/2010 1200 N/A	ormo.			Fin	al Weight/Volume	e: 1.0 e: 100	mL mL
Dilution: Date Analyzed: Date Prepared: Analyte	1.0 02/25/2010 1200 N/A	LCS	<u>Rec.</u> LCSD	Limit	Fin	al Weight/Volume	e: 1.0 (e: 100	mL mL
Dilution: Date Analyzed: Date Prepared: Analyte Salinity	1.0 02/25/2010 1200 N/A	LCS 2	<u>5 Rec.</u> LCSD 103	Limit 90 - 110	RPD 0	RPD Limit L	e: 1.0 e: 100 _CS Qual	mL mL LC
Dilution: Date Analyzed: Date Prepared: Analyte Salinity Duplicate - Bate	n.0 02/25/2010 1200 N/A :h: 660-91136	LCS 2	<u>5 Rec.</u> LCSD 103	Limit 90 - 110	RPD 0 M	RPD Limit L 10 ethod: SM 252 reparation: N/A	e: 1.0 e: 100 _CS Qual	mL mL LC

Units: ppt

2.0

Sample Result/Qual

U

trol Results

Result

2.0

Qual

U

Initial Weight/Volume: 1.0 mL

Final Weight/Volume: 100 mL

Limit

10

RPD

NC

Lab Sample ID: MB 660-91018/1 Analysis Batch: 660-91018 Instrument ID: No Equipment Assigned

Method Blank - Batch: 660-91018

Client: Environmental Engineering Consultant

Quality Control Results

Job Number: 660-33914-1

Method: SM 2540D **Preparation: N/A**

Total Suspended Solids		3.6		3.60	0	20	
Analyte		Sample Result/C	Jual	Result	RPD	Limit	Qual
Date Prepared: N/A	0047					volume. 20	5 IIIL
Dilution. 1.0 Date Analyzed: 02/24/2010	0847	mis. mg/L			Final Weight	Volume: 250	0 ml
Client Matrix: Water	F	rep Batch: N/A			Lab File ID:	N/A	0 ml
Lab Sample ID: 660-33892-	-A-4 DU A	nalysis Batch: 66	0-91018		Instrument ID	: No Equipn	nent Assigned
					Preparation	1: N/A	
Duplicate - Batch: 660-	91018				Method: SN	1 2540D	
Total Suspended Solids		100	92.8	93	8	0 - 120	
Analyte		Spike Amount	Result	% R	ec. L	imit	Qual
Date Prepared: N/A	0047					volume. 23	
Dilution: 1.0 Date Analyzed: 02/24/2010	0847	Units: mg/L			Final Weight	Volume: 250) mL) ml
Client Matrix: Water		Prep Batch: N/A			Lab File ID:	N/A	0 ml
Lab Sample ID: LCS 660-9	1018/2	Analysis Batch:	660-91018		Instrument ID	: No Equipn	nent Assigned
					Preparation	1: N/A	
Lab Control Sample - B	atch: 660-91018	3			Method: SN	1 2540D	
Total Suspended Solids		1.0		U	1.0		1.0
Analyte		Result	t	Qual	PQL		PQL
Date Frepared. N/A							
Date Analyzed: 02/24/2010	0847				Final Weight/	Volume: 25	0 mL
Dilution: 1.0		Units: mg/L			Initial Weight	Volume: 25	0 mL
Client Matrix: Water		Prep Batch: N/A			Lab File ID:	N/A	

TestAmerica Tampa

Quality Contr	ol Results	
Job Number:	660-33914-1	

Client: Environmental Engineering Consultant

Method Blank - Batch: 660-91434

Method: SM 426C Preparation: N/A

Lab Sample ID: M Client Matrix: W Dilution: 1 Date Analyzed: 0 Date Prepared: N	1B 660-91434/12 Vater .0 3/04/2010 1100 I/A	Analy Prep Units:	sis Batch: Batch: N/A mg/L	660-91434		Instrument ID: Tu Lab File ID: Na Initial Weight/Vol Final Weight/Volu	urbidity /A ume: 25 mL ume: 25 mL	
Analyte			Result		Qual	MDL	PQL	
Sulfate			2.0		U	2.0	5.0	
Lab Control Sa	mple - Batch: 660-914	434				Method: SM 42 Preparation: N	26C //A	
Lab Sample ID: L Client Matrix: W Dilution: 1 Date Analyzed: 0 Date Prepared: N	CS 660-91434/13 Vater .0 3/04/2010 1100 I/A	Analy Prep Units:	sis Batch: Batch: N/A mg/L	660-91434		Instrument ID: Tu Lab File ID: Na Initial Weight/Vol Final Weight/Volu	urbidity /A ume: 25 mL ume: 25 mL	
Analyte		Spike	Amount	Result	% Re	c. Limit	Qua	al
Sulfate		10.0		10.2	102	75 -	125	
Matrix Spike/ Matrix Spike Du	uplicate Recovery Rep	oort - Bat	ch: 660-9	1434		Method: SM 42 Preparation: N	26C //A	
MS Lab Sample II Client Matrix: Dilution: Date Analyzed: Date Prepared:	D: 660-33914-2 Water 5.0 03/04/2010 1100 N/A	Analy Prep	sis Batch: Batch: N/A	660-91434		Instrument ID: Lab File ID: Initial Weight/Vol Final Weight/Vol	Turbidity N/A ume: 25 mL ume: 25 mL	
MSD Lab Sample Client Matrix: Dilution: Date Analyzed: Date Prepared:	ID: 660-33914-2 Water 5.0 03/04/2010 1100 N/A	Analy Prep	sis Batch: Batch: N/A	660-91434		Instrument ID: Tu Lab File ID: N/ Initial Weight/Vol Final Weight/Vol	urbidity /A ume: 25 mL ume: 25 mL	
Analyte		<u>%</u> MS	<u>Rec.</u> MSD	Limit	RPD) RPD Limit	MS Qual MSD (Qual
Sulfate		121	106	75 - 125	5	30		

TestAmerica Tampa

Date Prepared:

N/A

Quality Control Results

Method: SM 4500 CI- E **Preparation: N/A**

Instrument ID: SEAL1

Job Number: 660-33914-1

Qual

Client: Environmental Engineering Consultant

Method Blank - Batch: 660-91210

Lab Sample ID: MB 660-91210/3

Client Matrix: Dilution: Date Analyzed: Date Prepared:	Water 1.0 02/27 N/A	er Prep Batch: N/A Units: mg/L 7/2010 0946				Lab File ID: N/A Initial Weight/Volume: 1.0 mL Final Weight/Volume: 2 mL			
Analyte			Resul	t	Qual	MDL	PQL		
Chloride	loride 3.0				U	3.0	5.0		
Lab Control S	Sampl	e - Batch: 660-9121	0			Method: SM 4500 C Preparation: N/A	I- E		
Lab Sample ID:LCS 660-91210/4Client Matrix:WaterDilution:1.0Date Analyzed:02/27/2010 0946Date Prepared:N/A		Analysis Batch: Prep Batch: N/A Units: mg/L	660-91210		Instrument ID: SEAL1 Lab File ID: N/A Initial Weight/Volume: 1.0 n Final Weight/Volume: 2 mL				
Analyte			Spike Amount	Result	% R	ec. Limit			
Chloride			25.0	25.0	100	90 - 110			
Matrix Spike/ Matrix Spike	Duplie	cate Recovery Repo	rt - Batch: 660-	91210		Method: SM 4500 C Preparation: N/A	I- E		
MS Lab Sample Client Matrix: Dilution: Date Analyzed: Date Prepared:	e ID:	660-33863-M-7 MS Water 1.0 02/27/2010 0946 N/A	Analysis Batch: Prep Batch: N/A	660-91210		Instrument ID: SEAL ⁻ Lab File ID: N/A Initial Weight/Volume: Final Weight/Volume:	1 1.0 mL 2 mL		
MSD Lab Samp Client Matrix: Dilution: Date Analyzed:	ole ID:	660-33863-M-7 MSD Water 1.0 02/27/2010 0946	Analysis Batch: Prep Batch: N/A	660-91210		Instrument ID: SEAL1 Lab File ID: N/A Initial Weight/Volume: Final Weight/Volume:	1.0 mL 2 mL		

Analysis Batch: 660-91210

	<u>% Re</u>	<u>C.</u>					
Analyte	MS	MSD	Limit	RPD	RPD Limit	MS Qual	MSD Qual
Chloride	95	91	90 - 110	0	30		

Method Blank - Batch: 660-91342

Job Number: 660-33914-1

Method: SM 4500 P E Preparation: N/A

Lab Sample ID: MB 6 Client Matrix: Solid Dilution: 1.0 Date Analyzed: 03/02 Date Prepared: N/A	660-91341/1-A I 2/2010 1600	Analysis Batch: Prep Batch: N/A Units: mg/L	660-91342 \		Instrument ID: No Lab File ID: N// Initial Weight/Volu Final Weight/Volu	Equipment Assigned A Ime: 1.0 mL me: 50 mL
Date Leached: 03/0	1/2010 1600	Leachate Batch	: 660-91341			
Analyte		Resu	lt	Qual	MDL	PQL
Orthophosphate-Solu	ble	0.75		U	0.75	3.0
Lab Control Samp	le - Batch: 660-9134	2			Method: SM 45 Preparation: N/	00 P E /A
Lab Sample ID:LCSClient Matrix:SolidDilution:1.0Date Analyzed:03/0Date Prepared:N/ADate Leached:03/0	660-91341/2-A I 2/2010 1600 1/2010 1600	Analysis Batch: Prep Batch: N/A Units: mg/L Leachate Batch	660-91342 : 660-91341		Instrument ID: No Lab File ID: N// Initial Weight/Volu Final Weight/Volu	Equipment Assigned A Ime: 1.0 mL me: 50 mL
Analyte		Spike Amount	Result	% Re	ec. Limit	Qual
Orthophosphate-Solu	ıble	3.00	3.07	102	90 - 1	10
Matrix Spike/ Matrix Spike Dupl	icate Recovery Repo	rt - Batch: 660-	91342		Method: SM 45 Preparation: N/	00 P E /A
MS Lab Sample ID: Client Matrix: Dilution: Date Analyzed: Date Prepared: Date Leached:	660-33914-8 Solid 1.0 03/02/2010 1600 N/A 03/01/2010 1600	Analysis Batch: Prep Batch: N/A Leachate Batch	660-91342 . 660-91341		Instrument ID: N Lab File ID: N Initial Weight/Volu Final Weight/Volu	lo Equipment Assigned I/A Ime: 1.0 mL me: 50 mL
MSD Lab Sample ID: Client Matrix: Dilution: Date Analyzed: Date Prepared: Date Leached:	660-33914-8 Solid 1.0 03/02/2010 1600 N/A 03/01/2010 1600	Analysis Batch: Prep Batch: N/A Leachate Batch	660-91342 : 660-91341		Instrument ID: No Lab File ID: N// Initial Weight/Volu Final Weight/Volu	Equipment Assigned A ıme: 1.0 mL me: 50 mL
Analyte		<u>% Rec.</u> MS MSD	Limit	ppr		MS Qual MSD Qual
Orthophosphate-Solu	ble	92 91	90 - 110	1	30	

Method Blank - Ba

atch:	660-90921	

Lab Sample ID: Client Matrix: Dilution: Date Analyzed: Date Prepared:	MB 660-90921/1 Water 1.0 02/20/2010 1400 N/A	Analysis Batch: 6 Prep Batch: N/A Units: mg/L	60-90921	Instrument ID: No Equipment Assigned Lab File ID: N/A Initial Weight/Volume: 1.0 mL Final Weight/Volume: 250 mL			
Analyte		Result	Qu	ual PQL	PQL		
Sulfide		1.0	U	1.0	1.0		
Lab Control S Lab Control S	Sample/ Sample Duplicate Recov	ery Report - Batch	: 660-90921	Method: SM 4 Preparation:	↓500 S2 F N/A		
LCS Lab Samp Client Matrix: Dilution: Date Analyzed: Date Prepared:	le ID: LCS 660-90921/2 Water 1.0 02/20/2010 1400 N/A	Analysis Batch: Prep Batch: N/A Units: mg/L	660-90921	Instrument ID: 1 Lab File ID: N/A Initial Weight/Volu Final Weight/Volu	No Equipment Assigned ume: 1.0 mL ume: 250 mL		
LCSD Lab Sam Client Matrix: Dilution: Date Analyzed: Date Prepared:	ple ID: LCSD 660-90921/3 Water 1.0 02/20/2010 1400 N/A	Analysis Batch: Prep Batch: N/A Units: mg/L	660-90921	Instrument ID: Lab File ID: N/ Initial Weight/Volu Final Weight/Volu	No Equipment Assigned A ume: 1.0 mL ume: 250 mL		
Analyte		<u>% Rec.</u> LCS LCSD	Limit	RPD RPD Limit	LCS Qual LCSD Qual		
Sulfide		90 88	75 - 125	3 25			

Method: SM 4500 S2 F **Preparation: N/A**

Quality Control Results

Job Number: 660-33914-1

Client: Environmental Engineering Consultant

Matrix Spike/ Matrix Spike Duplicate Recovery Report - Batch: 660-90921

Method: SM 4500 S2 F Preparation: N/A

MS Lab Sample ID: Client Matrix: Dilution: Date Analyzed: Date Prepared:	640-26232-E-1 MS Water 1.0 02/20/2010 1400 N/A	Analysis Prep Ba	Batch: 66 tch: N/A	60-90921	Inst Lab Initi Fina	rument ID: No File ID: N/ al Weight/Volur al Weight/Volur	o Equipmer /A me: 1.0 ne: 250	nt Assigned mL mL
MSD Lab Sample ID: Client Matrix: Dilution: Date Analyzed: Date Prepared:	640-26232-E-1 MSD Water 1.0 02/20/2010 1400 N/A	Analysis Prep Ba	Batch: 66 tch: N/A	60-90921	Inst Lab Initi Fina	rument ID: No File ID: N/A al Weight/Volur al Weight/Volur	Equipment me: 1.0 m ne: 250 n	Assigned L าL
Analyte		<u>% Re</u> MS	<u>ec.</u> MSD	Limit	RPD	RPD Limit	MS Qual	MSD Qual
Sulfide		84	86	75 - 125	2	25		

TestAmerica Tampa

Chemical Oxygen Demand

Quality Control Results

Method: SM 5220D Preparation: SM 5220

Job Number: 660-33914-1

Client: Environmental Engineering Consultant

Lab Sample ID:MBClient Matrix:WatDilution:1.0Date Analyzed:02/2Date Prepared:02/2	660-91051/3-A er 24/2010 1413 24/2010 1113	Analy Prep I Units:	Analysis Batch: 660-91052 Prep Batch: 660-91051 Units: mg/L			Instrument ID: HACH Lab File ID: N/A Initial Weight/Volume: 2 Final Weight/Volume: 2			
Analyte			Result		Qual		MDL	PG	L
Chemical Oxygen De	emand		10		U		10	20	
Lab Control Sam	ple - Batch: 660-9105	51				Metho Prepa	od: SM 52 ration: S	220D M 5220	
Lab Sample ID:LCSClient Matrix:WatDilution:1.0Date Analyzed:02/2Date Prepared:02/2	Analy Prep I Units:	Analysis Batch: 660-91052 Prep Batch: 660-91051 Units: mg/L			Instrument ID: HACH Lab File ID: N/A Initial Weight/Volume: 2 mL Final Weight/Volume: 2 mL				
Analyte		Spike	Amount	Result	% R	ec.	Limit		Qual
Chemical Oxygen D	emand	50.0		52.6	105		90 - 1	110	
Matrix Spike/ Matrix Spike Dup	licate Recovery Repo	ort - Bat	ch: 660-9 [,]	1051		Metho Prepa	od: SM 52 ration: S	220D M 5220	
MS Lab Sample ID: Client Matrix: Dilution: Date Analyzed: Date Prepared:	660-33914-4 Water 1.0 02/24/2010 1413 02/24/2010 1113	Analy Prep I	sis Batch: (3atch: 660	660-91052 -91051		Instrum Lab File Initial V Final W	nent ID: H e ID: N Veight/Volu /eight/Volu	HACH N/A ume: 25 ume: 25	mL mL
MSD Lab Sample ID Client Matrix: Dilution: Date Analyzed: Date Prepared:	: 660-33914-4 Water 1.0 02/24/2010 1413 02/24/2010 1113	Analysis Batch: 660-91052 Prep Batch: 660-91051			Instrument ID: HACH Lab File ID: N/A Initial Weight/Volume: 25 mL Final Weight/Volume: 25 mL				L L
		<u>%</u>	Rec.						
Analyte		MS	MSD	Limit	RP	D RF	PD Limit	MS Qual	MSD Qual
Chemical Oxygen De	emand	88	80	90 - 110	4	20		J3	J3

Method Blank - Batch: 660-91051

TestAmerica Tampa

Quality Control Results

Method: SM 5220D Preparation: SM 5220

Instrument ID: HACH

Lab File ID: N/A

Job Number: 660-33914-1

Client: Environmental Engineering Consultant

Method Blank - Batch: 660-91053

Lab Sample ID: MB 660-91053/3-A

Client Matrix: Water

Dilution: 1 Date Analyzed: 0 Date Prepared: 0	1.0)2/24/2010 1445)2/24/2010 1113	Units	Units: mg/L			Initial Weight/Volume: 2 mL Final Weight/Volume: 2 mL			
Analyte			Result		Qual	MDL F		PQL	
Chemical Oxyger	Demand		10		U	10	20	l	
Lab Control Sa	mple - Batch: 660-91	053				Method: SM Preparation:	5220D SM 5220		
Lab Sample ID:LCS 660-91053/4-AClient Matrix:WaterDilution:1.0Date Analyzed:02/24/2010Date Prepared:02/24/20101113			ysis Batch: Batch: 660 :: mg/L	660-91054)-91053		Instrument ID: HACH Lab File ID: N/A Initial Weight/Volume: 2 mL Final Weight/Volume: 2 mL			
Analyte		Spik	e Amount	Result	% Re	c. Lin	nit	Qual	
Chemical Oxyger	Demand	100		102	102	90	- 110		
Matrix Spike/ Matrix Spike D	uplicate Recovery Re	port - Ba	tch: 660-9	1053		Method: SM Preparation:	5220D SM 5220		
MS Lab Sample I Client Matrix: Dilution: Date Analyzed: Date Prepared:	D: 660-33914-1 Water 1.0 02/24/2010 1445 02/24/2010 1113	Anal <u>i</u> Prep	ysis Batch: Batch: 660	660-91054)-91053		Instrument ID: Lab File ID: Initial Weight/V Final Weight/Vo	HACH N/A olume: 25 olume: 25	mL mL	
MSD Lab Sample Client Matrix: Dilution: Date Analyzed: Date Prepared:	ID: 660-33914-1 Water 1.0 02/24/2010 1445 02/24/2010 1113	Anal Prep	ysis Batch: Batch: 660	660-91054)-91053		Instrument ID: Lab File ID: Initial Weight/V Final Weight/Vo	HACH N/A olume: 25 r olume: 25 r	nL nL	
Analyte		<u>%</u> MS	<u>o Rec.</u> MSD	Limit	RPI	D RPD Limit	MS Qua	I MSD Qual	
Chemical Oxyger	Demand	4	-23	90 - 110	6	20	J3	J3	

Analysis Batch: 660-91054

Prep Batch: 660-91053

Method Blank - Batch: 680-161926

Job Number: 660-33914-1

Method: SM 5550B **Preparation: N/A**

Lab Sample ID: MB 6 Client Matrix: Wate Dilution: 1.0 Date Analyzed: 02/26 Date Prepared: N/A	880-161926/1 er 6/2010 1749	Analysis Batch Prep Batch: N Units: mg/L	n: 680-161926 /A		Instrument ID: KC Lab File ID: N// Initial Weight/Volu Final Weight/Volu	DNELAB1 A me: 2 mL me: 2 mL
Analyte		Res	sult	Qual	MDL	PQL
Tannins and Lignins		0.03	37	U	0.037	0.10
Lab Control Samp	le - Batch: 680-1619	26			Method: SM 55 Preparation: N/	50B A
Lab Sample ID: LCS Client Matrix: Wate Dilution: 1.0 Date Analyzed: 02/26 Date Prepared: N/A	680-161926/2 er 6/2010 1749	Analysis Batch Prep Batch: N Units: mg/L	n: 680-161926 /A		Instrument ID: KC Lab File ID: N// Initial Weight/Volu Final Weight/Volu	DNELAB1 A me: 2 mL me: 2 mL
Analyte		Spike Amount	Result	% Red	c. Limit	Qual
Tannins and Lignins		1.00	1.06	106	80 - 1	20
Matrix Spike/ Matrix Spike Dupli	icate Recovery Repo	rt - Batch: 680	0-161926		Method: SM 55 Preparation: N/	50B A
MS Lab Sample ID: Client Matrix: Dilution: Date Analyzed: Date Prepared:	400-45770-A-3 MS Water 10 02/26/2010 1752 N/A	Analysis Batch Prep Batch: N	n: 680-161926 /A		Instrument ID: K Lab File ID: N Initial Weight/Volu Final Weight/Volu	ONELAB1 //A me: 10 mL me: 10 mL
MSD Lab Sample ID: Client Matrix: Dilution: Date Analyzed: Date Prepared:	400-45770-A-3 MSD Water 10 02/26/2010 1752 N/A	Analysis Batch Prep Batch: N	n: 680-161926 /A		Instrument ID: KC Lab File ID: N// Initial Weight/Volu Final Weight/Volu	DNELAB1 A me: 10 mL me: 10 mL
		<u>% Rec.</u>				
Analyte		MS MSD	Limit	RPD	RPD Limit	MS Qual MSD Qual
ratinitis and Lightlis		-213 -200	00 - 120	4	20	JJ JJ

2/26/2010 9:22:33AM

Client:	TestAmerica Tampa 6712 Benjamin Road, Suite 100 Tampa, FL 33634	Work Order: Project Name: Project Number: Date Received:	NTB1555 GHNS Barbados 660-33914 02/19/10
Attn:	Nancy Robertson		
	SAMPLE IDENTIFICATION	LAB NUMBER	COLLECTION DATE AND TIME
4F		NTB1555-01	02/17/10 09:30
4E		NTB1555-02	02/17/10 10:30
4C		NTB1555-03	02/17/10 11:20
10		NTB1555-04	02/17/10 12:30
7A		NTB1555-05	02/17/10 13:50
7B		NTB1555-06	02/17/10 14:30
Surface V	Water Blank	NTB1555-07	02/17/10 09:00

Samples were received into laboratory at a temperature of 0.60 °C.

Comments:

An executed copy of the chain of custody, the project quality control data, and the sample receipt form are also included as an addendum to this report. If you have any questions relating to this analytical report, please contact your Laboratory Project Manager. Any opinions, if expressed, are outside the scope of the Laboratory's accreditation.

This material is intended only for the use of the individual(s) or entity to whom it is addressed, and may contain information that is privileged and confidential. If you are not the intended recipient, or the employee or agent responsible for delivering this material to the intended recipient, you are hereby notified that any dissemination, distribution, or copying of this material is strictly prohibited. If you have recieved this material in error, please notify us immediately.

Results are reported on a wet weight basis unless otherwise noted

The reported results were obtained in compliance with 2003 NELAC standards unless otherwise noted.

These results relate only to the items tested

Estimated uncertainty is available upon request.

Florida Certification Number: E87358

This report has been electronically signed.

Approved By:

udith a beato

TestAmerica Nashville Judith A Beato Project Manager

Page 1 of 6

Client:	TestAmerica Tampa 6712 Benjamin Road, Suite 100 Tampa, FL 33634 Nancy Robertson		Work Order: NTB1555 Project: GHNS Barbados Project Number: 660-33914			Sampled: 02/17/10 Received: 02/19/10					
		Sample ID: 4F	LA `- La	BORATORY b Number: N	Y REPORT TB1555-01	- Matrix:	Water				
CAS #	Analyte	Result	Q	Units	MDL	PQL	Dil Factor	Analyzed Date/Time	Ву	Method	Batch
G enera l BOD	Chemistry Parameters BOD - 5 Day	88.8	Q	mg/L	2.00	2.00	1	02/24/10 08:35 Prep Date: 02/19/1	SXJ 0 13-42	SM 5210B	10B3335
IA	Chlorophyll-a Uncorrected	98.9	Q	ug/L	2.00	2.00	1	02/25/10 09:26 Filtered Date: 0	SXJ 2/19/10	SM 10200H 14:04	10B4160
		Sample ID: 4E	LA C - La	BORATORY	Y REPORT (TB1555-02	- Matrix:	Water				
CAS #	Analyte	Result	Q	Units	MDL.	PQL	Dil Factor	Analyzed Date/Tíme	Ву	Method	Batch
General IOD	Chemistry Parameters BOD - 5 Day	3.60	Q	mg/L	2.00	2.00	1	02/24/10 08:35	SXJ	SM 5210B	10B3335
IA	Chlorophyll-a Uncorrected	3.20	Q	ug/L	2.00	2.00	1	02/25/10 09:28 Filtered Date: 0	SXJ 2/19/10	SM 10200H 13:34	10B4160
		Sample ID: 40	LA C - La	BORATOR' ib Number: N	Y REPORT ∢TB1555-03	- Matrix	: Water				
CAS #	Analyte	Result	Q	Units	MDL	PQL	Dil Factor	Analyzed Date/Time	Ву	Method	Batch
G enera 30D	l Chemistry Parameters BOD - 5 Day	10.3	Q	mg/L	2.00	2.00	1	02/24/10 08:35	SXJ	SM 5210B	10B3335
١A	Chlorophyll-a Uncorrected	91.8	Q	ug/L	2.00	2.00	1	Prep Date: 02/19/1 02/25/10 09:29 Filtered Date: 0	10 13:42 SXJ 02/19/10	SM 10200H 14:33	10B4160
		Sample ID: 10	L/) - L2	ABORATOR 1b Number: N	Y REPORT VTB1555-04	- Matrix	: Water				
CAS #	Analyte	Result	Q	Units	MDL	PQL.	Dil Factor	Analyzed Date/Time	Ву	Method	Batch
G enera BOD	l Chemistry Parameters BOD - 5 Day	2.95	Q	mg/L	2.00	2.00	1	02/24/10 08:35	SXJ	SM 5210B	10B3335
IA	Chlorophyll-a Uncorrected	15.0	Q	ug/L	2.00	2.00	1	Prep Date: 02/19/. 02/25/10 09:30 Filtered Date: 0	10 13:42 SXJ 02/19/10	SM 10200H 13:38	10B4160
		Sample ID: 7/	La A - La	ABORATOR ab Number: I	Y REPORT NTB1555-05	- Matrix	: Water				
CAS #	Analyte	Result	Q	Units	MDL	PQL	Dil Factor	Analyzed Date/Time	Ву	Method	Batch
Genera	Chemistry Parameters	4 78		mg/L.	2.00	2.00		02/24/10 08:35	sxj	SM 5210B	10B3335

2960 Foster Creighton Road Nashville, TN 37204 * 800-765-0980 * Fax 615-726-3404

Client: Attn:	TestAmerica Tampa 6712 Benjamin Road, Suite 100 Tampa, FL 33634 Nancy Robertson		Wor Proj Proj	k Order: ect: ect Number:	NTB1555 GHNS Ba 660-33914	rbados I			Samp Recei	led: (ved: (02/17/10 02/19/10	
		Sample ID:	LA 7A - La	BORATOR b Number: 1	Y REPORT NTB1555-05	- Matrix:	Water					
CAS #	Analyte	Result	Q	Units	MDL	PQL	Dil Factor	Analyzed	By	Metho	od Batel	h

Genera	I Chemistry Parameters - Cont.									
NA	Chlorophyll-a Uncorrected	37.2	ug/L	2.00	2.00	M	02/25/10 09:31	SXJ	SM 10200H	10B4160
							Filtered Date:	02/19/10	13:20	

LABORATORY REPORT Sample ID: 7B - Lab Number: NTB1555-06 - Matrix: Water

CAS #	Analyte	Result	Q	Units	 MDL	PQL	Dil Factor	Analyzed Date/Time	Ву	Method	Batch
General Ch BOD	emistry Parameters BOD - 5 Day	3.93		mg/L	 2.00	2.00	1	02/24/10 08:35	SXJ	SM 5210B	10B3335
NA	Chlorophyll-a Uncorrected	24.2		ug/L	2.00	2.00	1	Prep Date: 02/19/ 02/25/10 09:33 Filtered Date:	10 13:42 SXJ 02/19/10	SM 10200H 13:24	10B4160

LABORATORY REPORT

Sample ID: Surface Water Blank - Lab Number: NTB1555-07 - Matrix: Water

CAS #	Analyte	Result	Q	Units	MDL	PQL	Dil Factor	Analyzed Date/Time	Ву	Method	Batch
General Che BOD	emistry Parameters BOD - 5 Day	2.00	Q,U	mg/L	2.00	2.00	1	02/24/10 08:35	SXJ	SM 5210B	10B3335
NA	Chlorophyll-a Uncorrected	2.00	Q,U	ug/L	2.00	2.00	1	Prep Date: 02/19/10 02/25/10 09:34 Filtered Date: 02) 13:42 SXJ 2/19/10	SM 10200H 13:41	10B4160

2960 Foster Creighton Road Nashville, TN 37204 * 800-765-0980 * Fax 615-726-3404

Client:	TestAmerica Tampa	Work Order:	NTB1555	Sampled:	02/17/10
	6712 Benjamin Road, Suite 100	Project:	GHNS Barbados	Received:	02/19/10
	Tampa, FL 33634	Project Number:	660-33914		

Attn: Nancy Robertson

SAMPLE EXTRACTION DATA

		Wt/Vol				
Parameter	Lab Number	Extracted	Extracted Vol	Date	Analyst	Method
General Chemistry Parameters	NTB1555-01	300.0 mL	300.0 mL	02/19/2010	SXJ	*** DEFAULT PREF
General Chemistry Parameters	NTB1555-02	300.0 mL	300.0 mL	02/19/2010	SXJ	*** DEFAULT PREF
General Chemistry Parameters	NTB1555-03	300.0 mL	300.0 mL	02/19/2010	SXJ	*** DEFAULT PREF
General Chemistry Parameters	NTB1555-04	300.0 mL	300.0 mL	02/19/2010	SXJ	*** DEFAULT PREF
General Chemistry Parameters	NTB1555-05	300.0 mL	300.0 mL	02/19/2010	SXJ	*** DEFAULT PREF
General Chemistry Parameters	NTB1555-06	300.0 mL	300.0 mL	02/19/2010	SXJ	*** DEFAULT PREF
General Chemistry Parameters	NTB1555-07	300.0 mL	300.0 mL	02/19/2010	\$XJ	*** DEFAULT PREF
General Chemistry Parameters	NTB1555-01	1.0 filter	1.0 filter	02/19/2010	SXJ	Filtering
General Chemistry Parameters	NTB1555-02	1.0 filter	1.0 filter	02/19/2010	SXJ	Filtering
General Chemistry Parameters	NTB1555-03	1.0 filter	1.0 filter	02/19/2010	SXJ	Filtering
General Chemistry Parameters	NTB1555-04	1.0 filter	1.0 filter	02/19/2010	SXJ	Filtering
General Chemistry Parameters	NTB1555-05	1.0 filter	1.0 filter	02/19/2010	SXJ	Filtering
General Chemistry Parameters	NTB1555-06	1.0 filter	1.0 filter	02/19/2010	SXJ	Filtering
General Chemistry Parameters	NTB1555-07	1.0 filter	1.0 filter	02/19/2010	SXJ	Filtering

2960 Foster Creighton Road Nashville, TN 37204 * 800-765-0980 * Fax 615-726-3404

Client: Attn:	TestAmerica Tampa 6712 Benjamin Road, Suite 100 Tampa, FL 33634 Nancy Robertson		Work Order: Project: Project Number:		NTB1555 GHNS Barbados 660-33914			Sampled: Received:	02/17/10 02/19/10	
			PROJECT (UALITY (Blank	CONTROL D	ATA				
analyte		Blank Value	Q Units		Q.C. Bate	Q.C. Batch Lab Number				
General 30D - 5 D	Chemistry Parameters ay	2.00		mg/L	10B3335	5 10	B3335-BLK1			
Chlorophy	I-a Uncorrected	2.00 U ug/L 10B4160) 10)B4160-BLK1					
			PROJECT (QUALITY (Duplics	CONTROL D ate	ATA				
nalyte		Orig. Val.	Duplicate	Q	Units	RPI) RPI) Limit	Q.C. Batch	Sample Duplicated
General	Chemistry Parameters				~			20	10000005	NTTO 1442 04
30D - 5 D Thiorophy	ay II.a Lincorrected	<2.00 37.2	2.00		mg/L ug/L	2		20 50	10B5555 10B4160	NTB1555-05
			PROJECT	QUALITY	CONTROL I	DATA				
Analyte		Known Val.	Anal	yzed Val	Q	Units	% R	ю.	Target Range	Q.C. Batch
General 30D - 5 D	Chemistry Parameters	198		208		mg/L	105	ŝ	85 - 115	10B3335
Chlorophy	ll-a Uncorrected	200		176		ug/L	88		80 - 120	10B4160
			PROJECT	QUALITY LCS D	CONTROL I Pup	DATA				
Analyte		Orig. Val. Duplic	ate Q	Units	Spike Conc	% Rec.	RPD	RPD Limit	Q.C. Batch	Sample Duplicated
General Chlorophy	Chemistry Parameters Il-a Uncorrected	177	77 ug/L		200	89	0.8	50	10B4160	

2960 Foster Creighton Road Nashville, TN 37204 * 800-765-0980 * Fax 615-726-3404

Client: Attn:	TestAmerica Tampa 6712 Benjamin Road Tampa, FL 33634 Nancy Robertson	, Suite 100	Wo Pro Pro	ork Order: oject: oject Number:	NTB1555 GHNS Barbados 660-33914		Sampled: Received:	02/17/10 02/19/10
			CEF	RTIFICATION	SUMMARY			
TestAm	erica Nashville							
	Method	Matrix	A2LA	AIHA	Nelac	Florida		
SN	4 10200H	Water			x	X		
SI	M 5210B	Water		N/A	x	х		
Subcont	racted Laboratories	\$						
TestAm	erica - Orlando, FL Flo	rida Cert #E83012						
8010 S	unport Drive Suite 11	6 - Orlando, FL 32809						
Ana	lysis Performed:	BOD 5 Day SM 521)B					
	Samples: NTE	31555-01, NTB1555-0	2, NTB1555-03, NTI	B1555-04, NTB15	55-05, NTB1555-06, NT	B1555-07		
Ana	lysis Performed:	Chlorophyll-a Uncor	rected SM10200H					
	Samples: NTE	31555-01, NTB1555-0	2, NTB1555-03, NTI	B1555-04, NTB15	55-05, NTB1555-06, NT	B1555-07		
	DATA QUALIFIERS AND DEFINITIONS							
Q	Sample ana	lyzed beyond accept	able holding time.					
U	U The compound was analyzed for but not detected							

ADDITIONAL COMMENTS

When insufficient sample volume is received for Matrix Spike and Matrix Spike Duplicate, Laboratory Control Spike and Laboratory Control Spike Duplicate data is used for batch QC.

4310 East Anderson Road * Orlando, FL 32812 * 407-851-2560 * Fax: 407-856-0886 * 800-851-

Client: TestAmerica Tampa	Project: <u>NTB1555</u>
Shipped By: Walk-in T	racking Number:
Cooler Received On: 02/19/10 12:35	nd Opened On (Date/time): <u>2-19-10/1235</u>
Received By: Schineidyne Joseph	Logged in by: Ryan Reich
Were custody seals on the outside of cooler? YES	NO _√ If Yes # Location
Were custody seals intact? YES NO N/	(no seals present)
Chain of Custody Complete? YES <u></u> NO Discrepancy Comments:	·
Cooler Temparture When Opened: <u>0.60</u> Degrees Temparture Blank Included: YES NO/ Packing Material: Bubblewrap NONE	Celsius Other: Plustic
Received on Ice: YES NO Other:	Total # Of Containers: /// # Vials
Any Bottles Broken? YES NO _/ If Yes Y	Which One(s)?
Any Missing Samples? YES NO _/ If Yes Y	Which One(s)?
pH Levels: H2SO4 <=2?HNO3 <=2?	HCL <=2? NaOH >=10?
# Of Containers Unpreserved between 6 and 8?	/
Any Air Bubbles in VOA Vials? YES NO	N/A/ (no VOA vials received)
Was there enough sample shipped in each container?	YES NO RAR 2-19-10
Correct Preservatives Used? YES NO	f No, see comments:
Project Manager: Judith A Beato	
Corrective Actions Taken	

RECEIVED FOR LABORATORY BY DATE TIME CUSTORY INTACT OU ISIGNATURE VES O SE NO O O	END COLOR AND AND AND THE AND	EMPTY CONTAINERS	X Bottle Broken-tests added to William	2 In the 9:00 ANSurface Watublank	2 70 2:30 75	2/17/10 #2:50 TH 1:50	2/17/10/12:30/10 A	2/17/10/11:20/40	217/10/10:30/4E	2117110 9:30 HF	DATE TIME · SAMPLE IDENTIFICATION		CULENT DORESS / I COLE	CLENT.MAME , Darbados Clect-tampahay, com BB	CLIENT FORE PM R. P. VIII CLIENT PHONE 378/ CLIENT FAX	SAMPLER'S SIGNATURE P.O. NUMBER CONTRACT NO.	PROJECT REFERENCE GHNS PROJECT NO. PROJECT LOCATION OCI PROJECT LOCATION	THE LEADER IN ENVIRONMENTAL TESTING	ANALYSIS REQUEST AND CHAIN OF CUSTODY RECO	
ADMA LUHY USE ONLY	1402 DATE THE THE OF RECEIVED BY: (SIGNATURE)	URE) DATE TIME RELIGIOUSHED BY: (SIGNATURE)	auter another NL Bett/e								AQUE SOLIL AIR NONA NUMBER OF CONTAINERS SUBMITTED		ATER) MISOLIU SILOU CONTENT HOL Phi MCC CI MA	DOD OD OD SS COD SS SS COD SS SS COD SS SS COD SS SS SS SS SS SS SS SS SS S	phos phos phos tec phos tec phos tec tran phy tes t	idit , FB , Inins I fat	TYPE REQUIRED ANALYSIS	Alternate Laboratory Name/Location Phone: Fax:	ORD TestAmerica Tampa Website: www.tes 6712 Benjamin Road, Suite 100 Phone: (813) 885-77 Tampa, FL 33634 Fax: (813) 885-77	Serial Number
AV REMARKS	DATE TIME	2/17/16 4100		07	06	20	1×0	50	C 2	10	REMARKS	PER SHIPMENT:	DATE DUE	SUPEDITED REPORT	DATE DUE	STANDARD REPORT	MGE / 20F		tamericainc.com ⊢7427)49	55

HECEIVED FOR LABORATORY BY: DATE TIME CUSTODY INTACT CUSTODY ROMATURE VIANDA	ENTER CONTINUES DATE TIME RECEIVED BY SIGNATURES	RELINQUISHED BY: (SIGNATURE) DATE TIME RELINQUISHED BY: (SIGNATURE)	* Bottle Braken-tests added to WWWWWWW	2 In 10 9:00 AM Surface Watu Black X	$\frac{2 17 10}{2} = \frac{110}{10} = \frac{110}{2} = \frac{110}{10} = \frac$	2117110 12:30 TO	217/10/0:30/1E	DATE INTE AND AT	SAMPLE SAMPLE DENTIFICATION	COMPANY CONTRACTING THIS WORK (If applicable)	CLIENT NAME / CLIENT E-MAIL IEC Darbados @ ele-tampahay, com BB	CLIENT CONTROL PM R. P. VIOI CLIENT PHONE 3781 CLIENT FAX	SAMPLER'S SIGNATURE P.O. NUMBER CONTRACT NO.	PROJECT REFERENCE GHNS PROJECT NO. OOI PROJECT LOCATION MATRIX	THE LEADER IN ENVIRONMENTAL TESTING $U(l 0 - 339/4)$	ANALYSIS REQUEST AND CHAIN OF CUSTODY RECORD	
TAMPA COOLER TEMP UPON RECEIPT LABORATORY REMARKS UOG NO (00) 0.01.5,1.2,2.3,2.3,0.3,0.3,1.3,1.3,1.0.7 1.4.5,1.0,1.3,1.3,1.3,1.3,1.3,1.3,1.3,1.3,1.3,1.3		2/17/16 9:00 UNUTURE DATE TIME	A another 1/2 bott/e						AIR 20 NUMBER OF CONTAINERS SUBMITTED REMARKS	AUEOUS LICENS SUBMITTED	COLUCIANDELIVERY COLUCIANDELIVERY Children Children Child	De la contra de la) id id id is is is is is is is is is is	REQUIRED ANALYSIS	Alternate Laboratory Name/Location Phone: Fax:	TestAmerica TampaWebsite: www.testamericainc.com6712 Benjamin Road, Suite 100Phone: (813) 885-7427Tampa, FL 33634Fax: (813) 885-7049	Serial Number

Page 153 of 160

.

RECEIVED FOR LABORATORY BY GRANTURE MICINOLO MULON	RECEIVED BY SUGADURE	RELINCUISHED BY: (SIGNATURE) EMPTY CONTAINERS			2/17/10 2:00 TA	2/17/10 12:50 10	34 OH:01 9/112	3/17/10 91:40 0/1/C	DATE TIME	COMPANY CONTRACTING THIS WORK (if applica	CLIENT ADDRESS	CUTENT PENE & VILLE	SAMPLER'S SIGNATURE	PROJECT REFERENCE	THE LEADER IN ENVIRONMENTAL TESTI	ANALYSIS	
DATE TIME CUSTODY INTACT AII9 10 0850 NO O	210/10 TIME TIME RECEIVED BY SIGN	DATE TIME RELINQUISLEEDER							SAMPLE IDENTIFICATION	able)	10005 Clechanpaby, con	CLIENT PHONE 8/3-237-378/ CLIENT FAX	P.O. NUMBER CONTRACT NO.	PROJECT NO. 1 ISTORECT INCOME	ne (000-33914)	REQUEST AND CHAIN OF CUSTODY	
LAMORATORY USE ONLY CUSTODY TAMPA (UCC) COOLER TEMP UPON RECEIN SEAL NO JOG NO (UCC) COOLER TEMP UPON RECEIN	UTUNE) DATE TIME THECEIVED BY	LANGUNTURE) DATE TIME RELAXQUISHE							COMF AQUE SOLIE AIR NONA NUMBER OF CONTAINERS SUBMIT		D) OR GRAB (TER) ISOLID LIQUID (OIL Chlor TCPT Nitra Sulpha Sulpha Sulfic Am TC He Orgaj	solven Solven Pel Tetal Tetal Tetal Solven Pel Pel Pel Pel Pel Pel Pel Pel	ATE T) ST ST TTM TTM TMO Nospi ICL	TYPE CON REQUIRED ANALYSIS	Alternate Laboratory Name/Location	RECORD 6712 Benjamin Road, Suite 100 Tampa, FL 33634	Serial Nun
173,00,0.8,1.7,\$1.0".CUUT	Y: (SIGNATURE)	HEDBY: (SIGNARDE) 1010 1100 1100 1100 1100 1100							TTED REMARKS	NUMBER OF COOLERS SUBMITTED PER SHIPMENT:	DELIVERY (SURCHARGE) DATE DUE		DELIVERY		Phone: Fax:	Website: www.testamericainc.com Phone: (813) 885-7427 Fax: (813) 885-7049	mber ·

Page 154 of 160

TestAmerica PRESERVATION CONFIRMATION FORM Tampa, FL								
IOB NUMBER: (200-33914) Logged in TALS BY: Manda Clanuson								
Cooler Received on (date) 2/19/10 And Opened By (full name) Jason Fink								
1. Shipper (circle one) FEDEX UPS DHL WALK-IN COURIER OTHER:								
2. Tracking #								
3. Temperature of rep. sample or temp blank when opened: $201.51.22.202.02$ Degrees Celsius $0.3/1.741.0$								
4. Number of H2SO4 (sulfuric acid) preserved containers:								
All containers pH < 2 ? If not please comment below:								
5. Number of HCL (hydrochloric acid) preserved containers:								
All containers pH < 2 ? If not please comment below:								
6. Number of HNO3 (nitric acid) preserved containers: $\underline{\mathcal{H}}$ All containers pH < 2 ? $\underline{\mathcal{NO}}$ If not please comment below: $\underline{\mathcal{HC}}$ $\underline{\rho}$ \underline{H} = $\underline{\mathcal{H}}$								
7. Number of NaOH (sodium hydroxide) preserved containers: $1674912-19-10$								
<u>4F pH=10, 4E pH=10, 4C pH=10, 10 pH=10, 7A pH=10</u>								
7B OH=10								
5/0								
8. Number of Unpreserved containers: Containers: Containers pH between 6 and 8? If not please comment below:								
· · · · · · · · · · · · · · · · · · ·								
9. Was chlorine present in any of the unpreserved containers?								
If yes, which samples?								
pH Strip Lot#: Childrife Strip Lot# Revision 2- 02/04/10 FWI-CU-002:02.04.10:2								

Job Number: 660-33914-1

Login Number: 33914 List Source: TestAmerica Tampa Creator: Harrison, Amanda List Number: 1 Question T / F/ NA Comment Radioactivity either was not measured or, if measured, is at or below N/A background The cooler's custody seal, if present, is intact. True The cooler or samples do not appear to have been compromised or True tampered with. True Samples were received on ice. Cooler Temperature is acceptable. True Cooler Temperature is recorded. True see recipet / info page COC is present. True COC is filled out in ink and legible. True COC is filled out with all pertinent information. True There are no discrepancies between the sample IDs on the containers and True the COC. Samples are received within Holding Time. True minimal hold time for NO2,NO3,turb,bod, chl A-will analyze ASAP Sample containers have legible labels. True Containers are not broken or leaking. True Sample collection date/times are provided. True Appropriate sample containers are used. True Sample bottles are completely filled. True There is sufficient vol. for all requested analyses, incl. any requested minimal sample for Surface Water Blank False MS/MSDs VOA sample vials do not have headspace or bubble is <6mm (1/4") in N/A diameter. If necessary, staff have been informed of any short hold time or guick TAT True needs Multiphasic samples are not present. True Samples do not require splitting or compositing. True Is the Field Sampler's name present on COC? True Sample Preservation Verified False no preservation indicated on the COC

Login Number: 33914 Creator: Isbell, Glenn List Number: 1			List Source: TestAmerica Mobile List Creation: 02/23/10 03:49 PM
Question	T / F/ NA	Comment	
Radioactivity either was not measured or, if measured, is at or below background	True		
The cooler's custody seal, if present, is intact.	N/A		
The cooler or samples do not appear to have been compromised or tampered with.	True		
Samples were received on ice.	True		
Cooler Temperature is acceptable.	True		
Cooler Temperature is recorded.	True	9 C LIA06	
COC is present.	True		
COC is filled out in ink and legible.	True		
COC is filled out with all pertinent information.	True		
There are no discrepancies between the sample IDs on the containers and the COC.	True		
Samples are received within Holding Time.	True		
Sample containers have legible labels.	True		
Containers are not broken or leaking.	True		
Sample collection date/times are provided.	True		
Appropriate sample containers are used.	True		
Sample bottles are completely filled.	True		
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True		
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True		
If necessary, staff have been informed of any short hold time or quick TAT needs	True		
Multiphasic samples are not present.	True		
Samples do not require splitting or compositing.	True		
Is the Field Sampler's name present on COC?	True		
Sample Preservation Verified	True		

Login Number: 33914			List Source: TestAmerica Pensacola
Creator: Hor, Koma List Number: 1			List Creation: 02/20/10 10:14 AM
Question	T / F/ NA	Comment	
Radioactivity either was not measured or, if measured, is at or below background	N/A		
The cooler's custody seal, if present, is intact.	True		
The cooler or samples do not appear to have been compromised or tampered with.	True		
Samples were received on ice.	True		
Cooler Temperature is acceptable.	True		
Cooler Temperature is recorded.	True	0.0°C	
COC is present.	True		
COC is filled out in ink and legible.	True		
COC is filled out with all pertinent information.	True		
There are no discrepancies between the sample IDs on the containers and the COC.	True		
Samples are received within Holding Time.	True		
Sample containers have legible labels.	True		
Containers are not broken or leaking.	True		
Sample collection date/times are provided.	True		
Appropriate sample containers are used.	True		
Sample bottles are completely filled.	True		
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True		
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True		
If necessary, staff have been informed of any short hold time or quick TAT needs	True		
Multiphasic samples are not present.	True		
Samples do not require splitting or compositing.	True		
Is the Field Sampler's name present on COC?	True		
Sample Preservation Verified	True		

Login Sample Receipt Check List

Client: Environmental Engineering Consultant

Login Number: 33914 Creator: Conner, Keaton List Number: 1			List Source: TestAmerica Savannah List Creation: 02/20/10 08:44 AM
Question	T / F/ NA	Commen	t
Radioactivity either was not measured or, if measured, is at or below background	N/A		
The cooler's custody seal, if present, is intact.	True		
The cooler or samples do not appear to have been compromised or tampered with.	True		
Samples were received on ice.	True		
Cooler Temperature is acceptable.	True		
Cooler Temperature is recorded.	True		
COC is present.	True		
COC is filled out in ink and legible.	True		
COC is filled out with all pertinent information.	True		
There are no discrepancies between the sample IDs on the containers and the COC.	True		
Samples are received within Holding Time.	True		
Sample containers have legible labels.	True		
Containers are not broken or leaking.	True		
Sample collection date/times are provided.	True		
Appropriate sample containers are used.	True		
Sample bottles are completely filled.	True		
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True		
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	N/A		
If necessary, staff have been informed of any short hold time or quick TAT needs	True		
Multiphasic samples are not present.	N/A		
Samples do not require splitting or compositing.	N/A		
Is the Field Sampler's name present on COC?	False		
Sample Preservation Verified	True		

Login Sample Receipt Check List

Client: Environmental Engineering Consultant

Login Number: 33914 Creator: Snead, Joshua List Number: 1		List Source: TestAmerica Tallahassee List Creation: 02/21/10 01:36 PM
Question	T / F/ NA	Comment
Radioactivity either was not measured or, if measured, is at or below background	N/A	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	N/A	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	N/A	
Samples do not require splitting or compositing.	N/A	
Is the Field Sampler's name present on COC?	True	
Sample Preservation Verified	True	

ATTACHMENT 15

Review of 2010 Surface Water and Sediment Sample Results
		NUTRIENTS AND OTHER IN WATER																			
										STA	TIONS										
	Proposed	1A	2A	3A	3B	4B	4C	4D	4E	4F	5A	6B	7A	7B	8A	9A	10	11A	12A	13	14
	Marine Std																				
Depth (ft) (f)		0.5	1.3	0.5	1.0	0.5	1.5	0.5	0.5	1.0	0.5	0.5	1.0	3.5	1.0	0.5	1.3	1.0	1.0	1.0	1.0
pH (s.u.) (f)	7.0-8.7	7.67	7.40	8.28	8.27	7.60	7.24	7.38	7.73	7.37	8.64	8.23	8.00	8.26	7.41	7.55	8.31	7.46	7.56	7.53	7.31
Conductivity (uS) (f)		981	824	3300	3240	2570	2060	2190	1876	811	709	3410	3230	3320	1630	1420	3280	3150	2490	970	1410
Temperature, deg C (f)	< 31	25.7	26.3	28.7	28.5	26.7	25.3	26.6	26.0	24.6	35.1	29.4	29.0	29.6	26.4	26.3	30.0	27.3	28.2	26.2	27.7
Salinity, (ppt) (f)	20-38	0.6	0.5	1.9	1.9	1.0	1.2	1.3	1.1	0.4	0.4	1.9	2.0	2.0	0.9	0.8	1.9	1.7	1.4	0.5	0.8
Dissolved Oxygen, (mg/l) (f)	90% sat.	2.56	1.02	7.82	6.67	1.20	1.60	0.83	2.36	0.20	15.44	6.82	3.17	8.32	0.50	1.62	5.99	5.01	4.50	2.50	2.42
Fecal Coliform (cols/100 ml)	200	460	460	500	160	1300	2200	2600	230	CG w/FC in 0.3ml	<100	560	53	430	100	600	2400	80	20	40	230
Fecal Streptococcus (cols/100 ml)	35	630	500	200	130	200	1800	6800	300	4500	33	170	110	140	36	240	E1200	120	36	130	2000
Enterococcus (cols/100 ml)	35	240	480	240	110	400	2300	6700	280	1600	<33	140	71	96	33	79	2300	73	15	150	1600
Nitrite as N (mg/l)	0.0098	<0.1	<0.1	<0.1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	~0.16	<0.10
Nitrate as N (mg/l)	0.0098	<0.1	~0.33	<0.1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	1.7	~0.41	5.8	~0.33
Ammonia as N (mg/l)	0.0098	0.091	0.19	~0.096	0.1	0.29	0.13	0.15	0.73	1.1	0.15	0.11	0.1	0.17	0.28	0.1	0.12	0.33	0.21	0.12	0.19
Total Phosphorous (mg/l)	0.015	~0.13	~0.21	~0.15	~0.12	~0.26	~0.21	0.55	~0.21	1.3	~0.23	<0.10	~0.11	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Sulfate (mg/l)		50	45	140	140	110	62	69	88	<2.0	48	140	160	140	82	69	150	150	120	71	90
Sulfide (mg/l)		<1.0	<1.0	<1.0	<1.0	1.3	1.1	<1.0	<1.0	5.3	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Chemical Oxygen Demand (mg/L)		44	~15	51	48	270	56	55	41	460	34	63	51	48	21	20	49	33	33	<10	30
Alkalinity (mg/l)		210	340	440	440	650	530	540	430	160	210	470	420	440	280	290	440	270	280	280	310
Total Suspended Solids (mg/L)	5	32	11	18	8.4	39	8.8	8	44	110	280	22	11	9.6	10	16	8	110.0	4.4	31	150.0
Chloride (mg/l)		140	89	1000	960	590	510	500	490	150	110	960	1100	1000	440	340	1200	950	670	160	290
Tannins and Lignins (mg/L)		0.92	0.7	1.5	1.6	4.4	3.0	4	1.5	5.9	0.51	2.3	1.6	1.5	1.2	1.2	1.6	1.0	1.1	0.5	1.0
Biochemical Oxygen Demand (mg/L)		7.38	4.38	2.58	4.64	6.55	10.3	11.5	3.6	88.8	8.84	8.72	4.2	3.93	<2.00	<2.00	2.95	<2.00	<2.00	2.16	2.73
Chlorophyll A (ug/l)	0.5	137	25.3	21.1	22.6	4.4	91.8	40.7	3.2	98.9	22	30.9	37.2	24.2	18.3	29.6	15	21.7	10.3	14.9	64.2
Turbidity (NTU)	1.5	11	4.9	2.9	2.9	12	11	8	17	280	46	15	4.6	2.7	6.5	5.7	4.1	45	3.5	17	79
Salinity (ppt)		<2.0	<2.0	2.5	2.5	2	<2.0	2	<2.0	<2.0	<2.0	3.0	2.5	2.5	<2.0	<2.0	2.5	2.5	2.0	<2.0	<2.0
Carbon Dioxide as CO2 (ug/l)		130	200	~35	~36	200	410	230	130	310	~13	63	54	<36	140	130	<42	97	100	110	170

			NUTRIENTS AND OTHER IN SEDIMENT																		
										STA	ATIONS										
		1A	2A	3A	3B	4B	4C	4D	4E	4F	5A	6B	7A	7B	8A	9A	10	11A	12A	13	14
Nitrite as N (mg/kg)	*	<1.0	~1.5	<1.0		<1.0			<1.0	<1.0		<1.0	<1.0		<1.0		<1.0	<1.0		<1.0	
Nitrate as N (mg/kg)	*	<1.0	<1.0	<1.0		<1.0			~1.4	<1.0		<1.0	<1.0		<1.0		<1.0	<1.0		<1.0	
Ammonia as N (mg/kg)	*	65	2.1	6.9		11			30	9.3		14	8.8		6.8		35	18		46	
Total Phosphorous (mg/kg)	*	690	2300	240		140			630	1300		670	270		160		220	360		360	
Orthophosphorous (mg/l)		~1.6	3.5	~0.87		~1.5			~2.6	3.1		~1.9	~0.91		<0.75		3.9	~1.4		~1.3	
Sulfate (mg/kg)		<100	<100	<98		<97			<99	620		<98	<96		<100		<100	<97		<100	
Sulfide (mg/kg)		47	25	<25		<25			30	240		<25	<25		<25		<25	29		<25	
Total Organic Carbon (TOC) (mg/kg)	*	42000	35000	210000		150000			31000	22000		39000	30000		18000		140000	38000		57000	
pH (SU)	*	7.89	8.11	7.84		7.53			7.73	7.5		7.56	7.51		7.56		7.45	7.62		7.41	
Percent Moisture (%)		22	37	6.6		8.6			49	68		22	41		32		9.8	34		26	

CG w/FC - Confluent growth with faecal coliforms also present E - Estimated result (f) - Field reading * - Proposed surface water standard exists for the compound

		1			HEAVY METALS IN WATER (mg/L)																
-										,			g/=/								
											STAT	IONS									
	Proposed	1A	2A	3A	3B	4B	4C	4D	4E	4F	5A	6B	7A	7B	8A	9A	10	11A	12A	13	14
	Marine Std																				
Copper	0.0013	~0.0045	~0.0034	< 0.0029	<0.0029	0.044	<0.0029	< 0.0029	<0.0029	0.018	0.012	<0.0029	<0.0029	<0.0029	<0.0029	< 0.0029	< 0.0029	<0.0029	< 0.0029	< 0.0029	< 0.0029
Iron	N/A	1.5	1.2	~0.068	~0.055	5.1	~0.063	~0.068	0.38	1.4	8.5	~0.16	~0.11	~0.067	~0.052	~0.12	~0.075	0.24	~0.053	0.34	0.33
Potassium	N/A	12	8.2	32	32	49	30	33	25	8.6	10	33	31	32	21	17	32	41	30	11	20
Magnesium	N/A	37	32	91	90	86	63	68	66	9.6	30	98	96	97	47	41	97	80	62	42	53
Sodium	N/A	110	85	610	600	440	320	340	300	100	97	620	580	590	280	210	590	570	410	110	210
Lead	0.0044	< 0.002	< 0.002	< 0.002	< 0.002	0.095	< 0.002	< 0.002	~0.0036	~0.0069	~0.0099	<0.0020	< 0.002	< 0.002	<0.0020	< 0.0020	< 0.002	<0.0020	< 0.0020	< 0.0020	< 0.0020
Mercury	0.0001	< 0.000072	< 0.000072	< 0.000072	< 0.000072	< 0.000072	< 0.000071	< 0.000072	< 0.000071	< 0.000071	< 0.000072	< 0.000072	< 0.000071	< 0.000071	< 0.000072	< 0.000072	< 0.000071	< 0.000072	< 0.000072	< 0.000072	< 0.000072
Zinc	0.015	0.033	0.024	< 0.005	~0.017	0.14	~0.0097	< 0.005	~0.016	0.056	0.049	~0.015	~0.0082	~0.0093	~.0076	0.022	~0.0078	~0.014	0.033	~0.018	0.03

		HEAVY METALS IN SEDIMENT (mg/kg)																			
											STAT	IONS									
		1A	2A	3A	3B	4B	4C	4D	4E	4F	5A	6B	7A	7B	8A	9A	10	11A	12A	13	14
Aluminum		9700	9100	360		1300			3200	3200		2000	1200		410		1200	1700		4200	
Arsenic		0.54	0.78	~0.25		0.64			~1.1	~1.6		~0.33	<0.89		<0.22		~0.44	0.72		0.57	
Boron		~2.9	7.5	13		7.7			~12	~8.7		10	~8.0		11.0		5.4	8.4		~4.4	
Barium		18	21	3.3		3.7			15	26		9.6	5.8		2.0		5.2	6.3		19	
Calcium		23000	92000	9100		14000			150000	210000		110,000	160000		41,000		14000	82,000		60,000	
Cadmium	*	~0.18	~0.26	< 0.086		<0.087			< 0.33	< 0.34		< 0.086	< 0.34		< 0.084		< 0.085	< 0.085		~0.097	
Cobalt		3.4	2	~0.19		~0.52			~0.82	~1.3		~0.37	<0.74		<0.18		~0.25	~0.44		~0.83	
Chromium	*	4.1	4.7	~0.41		2.2			4.8	9.2		1.8	~1.7		1.0		1.1	2.8		4.2	
Copper	*	17	12	2.1		9.2			12	23		5.5	~2.7		~1.7		3.6	9.8		6	
ron		6200	4900	290		1200			2600	2900		1100	860		280		850	1400		2500	
Magnesium		1700	2100	780		640			4200	3300		1900	1700		1600		1300	2300		2100	
Manganese		200	170	14		17			44	65		30	27		6.0		21	28		53	
Sodium		300	890	820		640			1300	970		1400	1500		620		960	880		430	
_ead	*	9.9	13	3.9		27			53	33		14	5.2		3.1		16	18		5.4	
Strontium		810	2700	380		260			2200	2000		2500	2000		630		660	1100		3100	
Titanium		68	130	7.1		25			40	27		20	~3.4		4.6		27	30		43	
Vanadium	*	14	16	2.1		5.7			5.4	6.4		3.1	~2.2		2.1		2.9	3.2		6.4	
Zinc	*	15	13	6		28			74	94		8.9	~6.2		3.9		8.2	29		21	
Mercury	*	~0.019	0.023	~0.011		0.029			~0.016	~0.015		~0.014	<0.015		~0.093		< 0.037	0.024		0.023	

* - Proposed surface water standard exists for the compound

								H	RBICIDE	S IN WAT	ER* (ug	/L)								
		1		1					S	TATIONS			1							
	1A	2A	3A	3B	4B	4C	4D	4E	4F	5A	6B	7 A	7B	8A	9A	10	11A	12A	13	14
2,4,5-T	< 1	< 1	< 0.95	< 1	< 0.95	< 0.97	< 0.96	< 1.0	< 0.97	< 1	<0.95	< 0.95	< 1.0	<0.95	<0.97	< 0.96	<0.96	<0.95	<1.0	<0.95
2,4-D	< 1	< 1	< 0.95	< 1	< 0.95	< 0.97	< 0.96	< 1.0	< 0.97	< 1	<0.95	< 0.95	< 1.0	<0.95	<0.97	< 0.96	<0.96	<0.95	<1.0	<0.95
2,4-DB	< 1	< 1	< 0.95	< 1	< 0.95	< 0.97	< 0.96	< 1.0	< 0.97	< 1	<0.95	< 0.95	< 1.0	<0.95	<0.97	< 0.96	<0.96	<0.95	<1.0	<0.95
Dalapon	< 25	< 26	< 24	< 26	< 24	< 24	< 24	< 26	< 24	< 26	<24	< 24	< 25	<24	<24	< 24	<24	<24	<25	<24
Dicamba	< 0.25	< 0.26	< 0.24	< 0.26	< 0.24	< 0.24	< 0.24	< 0.26	< 0.24	< 0.26	<0.24	< 0.24	< 0.25	<0.24	<0.24	< 0.24	<0.24	<0.24	<0.25	<0.24
Dichlorprop	< 1	< 1	< 0.95	< 1	< 0.95	< 0.97	< 0.96	< 1.0	< 0.97	< 1	<0.95	< 0.95	< 1.0	<0.95	<0.97	< 0.96	<0.96	<0.95	<1.0	<0.95
Dinoseb	< 1	< 1	< 0.95	< 1	< 0.95	< 0.97	< 0.96	< 1.0	< 0.97	< 1	<0.95	< 0.95	< 1.0	<0.95	<0.97	< 0.96	<0.96	<0.95	<1.0	<0.95
MCPA	< 34	< 35	< 32	< 35	< 32	< 33	< 33	< 35	< 33	< 35	<32	< 32	< 34	<32	<33	< 33	<33	<32	<34	<32
MCPP	< 35	< 36	< 33	< 36	< 33	< 34	< 34	< 36	< 34	< 36	<33	< 33	< 35	<33	<34	< 34	<34	<33	<35	<33
Pentachlorophenol	< 0.085	< 0.088	< 0.081	< 0.087	< 0.081	< 0.083	< 0.082	< 0.087	< 0.083	< 0.088	<0.081	< 0.081	< 0.086	<0.081	<0.083	< 0.082	< 0.082	<0.081	<0.086	<0.081
Picloram	< 1	< 1	< 0.95	< 1	< 0.95	< 0.97	< 0.96	< 1.0	< 0.97	< 1	<0.95	< 0.95	< 1.0	<0.95	<0.97	< 0.96	<0.96	<0.95	<1.0	<0.95
Silvex (2,4,5-TP)	< 1	< 1	< 0.95	< 1	< 0.95	< 0.97	< 0.96	< 1.0	< 0.97	< 1	<0.95	< 0.95	< 1.0	<0.95	<0.97	< 0.96	<0.96	<0.95	<1.0	<0.95
								HEF	BICIDES	IN SEDIM	IENT (ug	∣∕kg)								
	1Δ	24	34	3B	4B	40	4D	4F	4F	54	6B	74	7B	84	۹۸	10	11A	124	13	14
2.4.5-T	< 10	< 10	< 9.9	05	< 10			< 9.9	< 10		<10	< 10	15	<10	37	< 9.9	<9.9	140	<10	14
2,4-D	< 1.6	< 1.6	< 1.6		< 1.6			< 1.6	< 1.6		<1.6	< 1.6		<1.6		< 1.6	<1.6		<1.6	
2,4-DB	< 6.4	< 6.5	< 6.3		< 6.4			< 6.3	< 6.4		<6.5	< 6.5		<6.4		< 6.4	<6.4		<6.4	
Dalapon	< 23	< 23	< 23		< 23			< 23	< 23		<23	< 23		<23		< 23	<23		<23	
Dicamba	< 12	< 12	< 12		< 12			< 12	< 12		<12	< 12		<12		< 12	<12		<12	
Dichlorprop	< 25	< 25	< 25		< 25			< 25	< 25		<25	< 25		<25		< 25	<25		<25	
Dinoseb	< 8.3	< 8.4	< 8.2		< 8.3			< 8.2	< 8.3		<8.4	< 8.4		<8.3		< 8.3	<8.2		<8.4	
МСРА	< 740	< 750	< 730		< 740			< 730	< 740		<750	< 750		<740		< 740	<730		<740	
MCPP	< 400	< 410	< 390		< 400	1		< 390	< 400		<410	< 410		<400		< 400	<400		<400	
Pentachlorophenol	< 5	< 5.1	< 4.9		< 5	1		< 4.9	< 5		<5.1	< 5.1		<5.0		< 5	<5.0		<5.0	
Picloram	< 1.2	< 1.2	< 1.2		< 1.2	1		< 1.2	< 1.2		<1.2	< 1.2		<1.2		< 1.2	<1.2		<1.2	
Silvex (2,4,5-TP)	< 10	< 10	< 9.9		< 10			< 9.9	< 10		<10	< 10		<10		< 9.9	<9.9		<10	

* - Proposed Marine Surface Water Standard is for non-detectable quantities based upon best available technology.

		ORGANOCHLORINE PESTICIDES IN WATER* (ug/L)																		
	1									07.4710.10										
	14				40	40	40	1 45	1 45	STATIONS	60	74	70	0.4		10	44.6	104	10	14
4.4-000	IA	< 0.004	- 0.0020	3D	40	40	40	4E	4F	5A	-0.0020	7A	/ D	O 0020	-0.0020	10	<0.0020	<0.0020	-0.0041	-0.0040
4,4-DDE	< 0.0053	< 0.004	< 0.0053	< 0.0059	< 0.0059	< 0.004	< 0.0059	< 0.004	< 0.0059	< 0.0043	<0.0059	< 0.0044	< 0.0053	<0.0039	<0.0039	< 0.0059	<0.0039	<0.0053	<0.0041	<0.0040
4,4-DDE	< 0.0000	< 0.0034	< 0.0033	< 0.0033	< 0.0032	< 0.0033	< 0.0032	< 0.0033	< 0.0032	< 0.0038	<0.0032	< 0.000	< 0.0033	<0.0032	<0.0032	< 0.0032	<0.0032	<0.0032	<0.0000	<0.0034
4,4-DD1 Aldrin	< 0.003	< 0.0031	< 0.003	< 0.003	< 0.003	< 0.0031	< 0.003	< 0.0031	< 0.003	< 0.0033	<0.0030	< 0.0034	< 0.003	<0.0030	<0.0030	< 0.003	<0.0030	<0.0030	<0.0032	<0.0031
alpha-BHC	< 0.0018	< 0.0018	< 0.0018	< 0.0018	< 0.0017	< 0.0018	< 0.0017	< 0.0018	< 0.0017	< 0.0019	<0.0017	< 0.002	< 0.0018	<0.0017	<0.0017	< 0.0017	<0.0017	<0.0017	<0.0018	<0.0018
hete-BHC	< 0.0027	< 0.0027	< 0.0027	< 0.0027	< 0.0027	< 0.0027	< 0.0027	< 0.0027	< 0.0027	< 0.0023	<0.0027	< 0.003	< 0.0027	<0.0027	<0.0027	< 0.0027	<0.0027	<0.0027	<0.0020	<0.0027
Chlordane	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0023	< 0.0020	< 0.0023	< 0.0020	< 0.0023	< 0.0020	<0.0023	< 0.0023	< 0.0020	<0.0023	<0.0023	< 0.0023	<0.0023	<0.0023	<0.0027	<0.0020
delta-BHC	< 0.0027	< 0.000	< 0.000	< 0.000	< 0.004	< 0.000	< 0.004	< 0.000	< 0.004	< 0.00	<0.004	< 0.002	< 0.000	<0.004	<0.004	< 0.004	<0.004	<0.004	<0.007	<0.000
Dieldrin	~ 0.0027	0.035	< 0.0027	< 0.0027	< 0.0020	< 0.0027	< 0.0020	< 0.0027	< 0.0020	~ 0.0023	<0.0020	< 0.000	< 0.0027	<0.0020	<0.0020	< 0.0020	<0.0020	<0.0020	0.016	~0.0027
Endosulfan I	< 0.0027	< 0.0034	< 0.0010	< 0.0010	< 0.0010	< 0.0014	< 0.0010	< 0.0014	< 0.0010	< 0.0004	<0.0010	< 0.0010	< 0.0010	<0.0010	<0.0010	< 0.0010	<0.0010	<0.0010	<0.010	<0.0020
Endosulfan II	< 0.0033	< 0.0032	< 0.0032	< 0.0032	< 0.0031	< 0.0032	< 0.0031	< 0.0032	< 0.0031	< 0.0035	<0.0031	< 0.0036	< 0.0033	<0.0000	<0.0031	< 0.0031	<0.0000	<0.0031	<0.0033	<0.0032
Endosulfan sulfate	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0001	< 0.0002	< 0.0001	< 0.0002	< 0.0001	< 0.0000	<0.0001	< 0.0000	< 0.0002	<0.0028	<0.0001	< 0.0001	<0.0001	<0.0001	<0.0000	<0.0002
Endrin	< 0.0020	< 0.0023	< 0.0020	< 0.0020	< 0.0020	< 0.0023	< 0.0020	< 0.0023	< 0.0020	< 0.0033	<0.0020	< 0.0032	< 0.0020	<0.0020	<0.0020	< 0.0020	<0.0020	<0.0020	<0.0030	<0.0023
Endrin Aldebyde	< 0.000	< 0.0001	< 0.000	< 0.000	< 0.000	< 0.000	< 0.000	< 0.000	< 0.000	< 0.0000	<0.0000	< 0.0004	< 0.000	<0.0000	<0.0000	< 0.000	<0.0000	<0.0000	<0.0001	<0.0001
Endrin Ketone	< 0.0001	< 0.0053	< 0.0052	< 0.0052	< 0.000	< 0.0001	< 0.000	< 0.0052	< 0.0051	< 0.0007	<0.0051	< 0.0000	< 0.0001	<0.0051	<0.0000	< 0.000	<0.0051	<0.0051	<0.0002	<0.0053
gamma-BHC (Lindane)	< 0.0002	< 0.0000	< 0.0002	< 0.0002	< 0.0001	< 0.0002	< 0.0001	< 0.0002	< 0.0025	< 0.0007	<0.0025	< 0.0000	< 0.0002	<0.0001	<0.0001	< 0.0001	<0.0001	<0.0025	<0.0004	<0.0000
Hentachlor	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0027	<0.0020	< 0.0020	< 0.0020	<0.0020	<0.0020	< 0.0020	<0.0020	<0.0020	<0.0020	<0.0020
Hentachlor enoxide	< 0.000	< 0.000	< 0.000	< 0.000	< 0.0020	< 0.000	< 0.0020	< 0.000	< 0.0020	< 0.0002	<0.0020	< 0.0000	< 0.000	<0.0020	<0.0020	< 0.0020	<0.0020	<0.0020	<0.0001	<0.0000
Methoxychlor	< 0.000	< 0.0001	< 0.000	< 0.000	< 0.000	< 0.0001	< 0.000	< 0.0001	< 0.000	< 0.0000	<0.000	< 0.0004	< 0.000	<0.000	<0.000	< 0.000	<0.000	<0.000	<0.0001	<0.0001
Toxaphene	< 0.69	< 0.000	< 0.69	< 0.69	< 0.69	< 0.7	< 0.69	< 0.7	< 0.68	< 0.0000	<0.69	< 0.0000	< 0.69	<0.69	<0.69	< 0.69	<0.69	<0.69	<0.72	<0.000
	•				•		•					•			•	•				
		ORGANOCHLORINE PESTICIDES IN SEDIMENT (ug/kg)																		
								ORGANO	CHLORINE P	PESTICIDES I	N SEDIMEN	T (ug/kg)								
								ORGANO	CHLORINE P	ESTICIDES I	N SEDIMEN	T (ug/kg)								
	1A	2A	3A	3B	4B	4C	4D	ORGANO 4E	CHLORINE P	STATIONS	N SEDIMEN	T (ug/kg) 7A	7B	8A	9A	10	11A	12A	13	14
4,4'-DDD	1A < 0.5	2A < 0.49	3A < 0.5	3B	4B < 0.5	4C	4D	ORGANO 4E < 0.49	CHLORINE F 4F < 0.49	PESTICIDES II STATIONS 5A	N SEDIMEN 6B <0.50	T (ug/kg) 7A < 0.5	7B	8A <0.50	9A	10	11A <0.50	12A	13 <0.50	14
4,4'-DDD 4,4'-DDE	1A < 0.5 < 0.5	2A < 0.49 < 0.49	3A < 0.5 < 0.5	3B	4B < 0.5 < 0.5	4C	4D	ORGANO 4E < 0.49 ~ 0.51	CHLORINE F 4F < 0.49 < 0.49	PESTICIDES II STATIONS 5A	6B <0.50 <0.50	T (ug/kg) 7A < 0.5 < 0.5	7B	8A <0.50 <0.50	9A	10 < 0.5 < 0.5	11A <0.50 <0.50	12A	13 <0.50 <0.50	14
4,4'-DDD 4,4'-DDE 4,4'-DDT	1A < 0.5 < 0.5 < 0.5 < 0.5	2A < 0.49 < 0.49 < 0.49	3A < 0.5 < 0.5 < 0.5	3B	4B < 0.5 < 0.5 < 0.5	4C	4D	ORGANC < 0.49 ~ 0.51 < 0.49	4F < 0.49 < 0.49 < 0.49 < 0.49	STATIONS	6B <0.50 <0.50 <0.50 <0.50	T (ug/kg) 7A < 0.5 < 0.5 < 0.5	7B	8A <0.50 <0.50 <0.50	9A	10 < 0.5 < 0.5 < 0.5	11A <0.50 <0.50 <0.50	12A	13 <0.50 <0.50 <0.50	14
4,4'-DDD 4,4'-DDE 4,4'-DDT Aldrin	1A < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	2A < 0.49 < 0.49 < 0.49 < 0.49 < 0.49	3A < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	3B	4B < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	4C	4D	ORGANC < 0.49 ∼ 0.51 < 0.49 < 0.49 < 0.49	AF < 0.49 < 0.49 < 0.49 < 0.49 < 0.49	ESTICIDES II	6B <0.50 <0.50 <0.50 <0.50 <0.50	T (ug/kg) 7A < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	7B	8A <0.50 <0.50 <0.50 <0.50 <0.50	9A	10 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	11A <0.50 <0.50 <0.50 <0.50 <0.50	12A	13 <0.50 <0.50 <0.50 <0.50	14
4,4'-DDD 4,4'-DDE 4,4'-DDT Aldrin alpha-BHC	1A < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.14	2A < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.14	3A < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.14	3B	4B < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.14	4C	4D	4E < 0.49 ~ 0.51 < 0.49 < 0.49 < 0.49 < 0.49	AF < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49	PESTICIDES II	6B <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50	T (ug/kg) 7A < 0.5 < 0.5 < 0.5 < 0.5 < 0.15 < 0.5 < 0.15 < 0.5 < 0.14	7B	8A <0.50 <0.50 <0.50 <0.50 <0.50 <0.14	9A	10 < 0.5 < 0.5 < 0.5 < 0.5 < 0.14	11A <0.50 <0.50 <0.50 <0.50 <0.50 <0.14	12A	13 <0.50 <0.50 <0.50 <0.50 <0.50 <0.14	14
4,4'-DDD 4,4'-DDE 4,4'-DDT Aldrin alpha-BHC beta-BHC	1A < 0.5 < 0.5 < 0.5 < 0.5 < 0.14 < 0.5	2A < 0.49 < 0.49 < 0.49 < 0.49 < 0.14 < 0.49	3A < 0.5 < 0.5 < 0.5 < 0.5 < 0.14 < 0.5	3B	4B < 0.5 < 0.5 < 0.5 < 0.5 < 0.14 < 0.5	4C	4D	ORGANC < 0.49 ~ 0.51 < 0.49 < 0.49 < 0.14 < 0.49	4F < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.14 < 0.49	PESTICIDES II STATIONS 5A	6B <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50	T (ug/kg) 	7B	8A <0.50 <0.50 <0.50 <0.50 <0.50 <0.14 <0.50	9A	10 < 0.5 < 0.5 < 0.5 < 0.5 < 0.14 < 0.5	11A <0.50 <0.50 <0.50 <0.50 <0.50 <0.14 <0.50	12A	13 <0.50 <0.50 <0.50 <0.50 <0.14 <0.50	14
4,4'-DDD 4,4'-DDE 4,4'-DDT Aldrin alpha-BHC beta-BHC Chlordane	1A < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.14 < 0.5 < 2.4	2A < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 2.4	3A < 0.5 < 0.5 < 0.5 < 0.5 < 0.14 < 0.5 < 2.4	3B	4B < 0.5 < 0.5 < 0.5 < 0.5 < 0.14 < 0.5 < 2.4	4C	4D	ORGANC 4E < 0.49 ~ 0.51 < 0.49 < 0.49 < 0.49 < 0.14 < 0.49 < 2.4	4F < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49	PESTICIDES II STATIONS 5A 5A	6B <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <14	T (ug/kg) 7A < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.14 < 0.5 < 2.4	7B	8A <0.50 <0.50 <0.50 <0.50 <0.14 <0.50 <2.4	9A	10 < 0.5 < 0.5 < 0.5 < 0.5 < 0.14 < 0.5 < 2.4	11A <0.50 <0.50 <0.50 <0.50 <0.14 <0.50 <2.4	12A	13 <0.50 <0.50 <0.50 <0.50 <0.14 <0.50 <2.4	14
4,4'-DDD 4,4'-DDE 4,4'-DDT Aldrin alpha-BHC beta-BHC Chlordane delta-BHC	1A < 0.5 < 0.5 < 0.5 < 0.5 < 0.14 < 0.5 < 2.4 < 0.5	2A < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.14 < 0.49 < 2.4 < 0.49	3A < 0.5 < 0.5 < 0.5 < 0.14 < 0.5 < 2.4 < 0.5	3B	4B < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 2.4 < 0.5	4C	4D	ORGANC 4E < 0.49 < 0.51 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49	4F < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49	PESTICIDES II STATIONS 5A 5A	6B <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50	T (ug/kg) 7A < 0.5 < 0.5 < 0.5 < 0.5 < 0.14 < 0.5 < 2.4 < 2.4	7B	8A <0.50 <0.50 <0.50 <0.50 <0.14 <0.50 <2.4 <0.50	9A	10 < 0.5 < 0.5 < 0.5 < 0.14 < 0.5 < 2.4 < 0.5	11A <0.50 <0.50 <0.50 <0.50 <0.14 <0.50 <2.4 <0.50	12A	13 <0.50 <0.50 <0.50 <0.50 <0.14 <0.50 <2.4 <0.50	14
4,4'-DDD 4,4'-DDE 4,4'-DDT Aldrin alpha-BHC beta-BHC Chlordane delta-BHC Dieldrin	1A < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.14 < 0.5 < 2.4 < 0.5 < 0.15	2A < 0.49 < 0.49 < 0.49 < 0.49 < 0.14 < 0.49 < 2.4 < 0.49 < 2.4 < 0.49 < 2.4	3A < 0.5 < 0.5 < 0.5 < 0.5 < 0.14 < 0.5 < 2.4 < 0.5 < 2.4 < 0.5	3B	4B < 0.5 < 0.5 < 0.5 < 0.14 < 0.5 < 2.4 < 0.5 < 0.19	4C	4D	ORGANC 4E < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49	AF < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.14 < 0.49 0.49 < 0.14 < 0.49 0.49 0.49 0.49 0.49 0.49 < 0.49	ESTICIDES II	6B <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.14 <0.50 <14 <0.50 <0.50 <0.250	T (ug/kg)	7B	8A <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <2.4 <0.50 <0.50	9A	10 < 0.5 < 0.5 < 0.5 < 0.5 < 0.14 < 0.5 < 2.4 < 0.5 < 0.5	11A <0.50 <0.50 <0.50 <0.14 <0.50 <2.4 <0.50 <2.50	12A	13 <0.50 <0.50 <0.50 <0.14 <0.50 <2.4 <0.50 ~1.0	14
4,4'-DDD 4,4'-DDE 4,4'-DDT Aldrin alpha-BHC beta-BHC Chlordane delta-BHC Dieldrin Endosulfan I	1A < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.14 < 0.5 < 2.4 < 0.5 < 0.15 < 0.25	2A < 0.49 < 0.49 < 0.49 < 0.49 < 0.14 < 0.49 < 2.4 < 0.49 < 2.4 < 0.49 < 0.15 < 0.25	3A < 0.5 < 0.5 < 0.5 < 0.5 < 0.14 < 0.5 < 2.4 < 0.5 < 0.5 < 0.15 < 0.15 < 0.25	3B	4B < 0.5 < 0.5 < 0.5 < 0.14 < 0.5 < 2.4 < 0.5 < 0.19 < 0.25	4C	4D	ORGANC 4E < 0.49 ~ 0.51 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.42	4F < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.25	PESTICIDES II	6B <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.29 <0.25	T (ug/kg) 7A < 0.5 < 0.5 < 0.5 < 0.5 < 0.14 < 0.5 < 2.4 < 0.5 < 0.5 < 2.4 < 0.5 < 0.5 < 2.4 < 0.5 < 0 .5 < 0 .5	78	8A <0.50 <0.50 <0.50 <0.50 <0.14 <0.50 <2.4 <0.50 <0.15 <0.25	9A	10 < 0.5 < 0.5 < 0.5 < 0.14 < 0.5 < 2.4 < 0.5 < 0.15 < 0.25	11A <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.15 <0.25	12A	13 <0.50 <0.50 <0.50 <0.50 <0.14 <0.50 <2.4 <0.50 <2.4 <0.50 <7.10 <0.25	
4,4'-DDD 4,4'-DDE 4,4'-DDT Aldrin alpha-BHC beta-BHC Chlordane delta-BHC Chlordane delta-BHC Dieldrin Endosulfan I Endosulfan I	1A < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.24 < 0.25 < 0.25	2A < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.14 < 0.49 < 2.4 < 0.49 < 0.15 < 0.25	3A < 0.5 < 0.5 < 0.5 < 0.14 < 0.5 < 2.4 < 0.5 < 0.5 < 0.15 < 0.5 < 0.25 < 0.25	3B	4B < 0.5 < 0.5 < 0.5 < 0.14 < 0.5 < 0.4 < 0.5 < 0.14 < 0.5 < 0.14 < 0.25 < 0.25	4C	4D	ORGANC 4E < 0.49 ~ 0.51 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.42 < 0.42 < 0.25	AF < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.25	STATIONS 5A 5A	6B <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.25 <0.25	T (ug/kg) 7A < 0.5 < 0.5 < 0.5 < 0.14 < 0.5 < 0.14 < 0.5 < 0.5 < 0.14 < 0.5 < 0.5 < 0.24 < 0.25	78	8A <0.50 <0.50 <0.50 <0.50 <0.50 <0.14 <0.50 <0.14 <0.50 <0.15 <0.25	9A	10 < 0.5 < 0.5 < 0.5 < 0.14 < 0.5 < 0.14 < 0.5 < 0.14 < 0.5 < 0.15 < 0.15 < 0.25 < 0.25	11A <0.50 <0.50 <0.50 <0.14 <0.50 <2.4 <0.50 <2.4 <0.50 <0.15 <0.25 <0.25	12A	13 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.14 <0.50 <2.4 <0.50 <1.0 <0.25 <0.25	
4,4'-DDD 4,4'-DDE 4,4'-DDT Aldrin alpha-BHC beta-BHC Chlordane delta-BHC Dieldrin Endosulfan I Endosulfan II Endosulfan II Endosulfan sulfate	1A < 0.5 < 0.5 < 0.5 < 0.5 < 0.14 < 0.5 < 0.14 < 0.5 < 0.15 < 0.25 < 0.25	2A < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 2.4 < 0.49 < 0.49 < 0.49 < 0.24 < 0.25 < 0.25	3A < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.25 < 0.25 < 0.25	3B	4B < 0.5 < 0.5 < 0.5 < 0.14 < 0.5 < 0.14 < 0.5 < 0.14 < 0.5 < 0.19 < 0.25 < 0.25		4D	ORGANC 4E < 0.49 ~ 0.51 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.42 < 0.25 < 0.25	AF < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.20 0.25 < 0.25	PESTICIDES II	6B <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.25 <0.25	T (ug/kg) < 0.5 < 0.5 < 0.5 < 0.14 < 0.5 < 0.14 < 0.5 < 0.24 < 0.5 < 0.5 < 0.15 < 0.25 <	7B	8A <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.25 <0.25	98	10 < 0.5 < 0.5 < 0.5 < 0.14 < 0.5 < 0.4 < 0.5 < 0.15 < 0.15 < 0.25 < 0.25	11A <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.25 <0.25		13 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.25 <0.25	14
4,4'-DDD 4,4'-DDE 4,4'-DDT Aldrin alpha-BHC beta-BHC Chlordane delta-BHC Dieldrin Endosulfan I Endosulfan I Endosulfan sulfate Endrin	1A < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.25 < 0.25 < 0.25 < 0.5	2A < 0.49 < 0.49 < 0.49 < 0.49 < 0.14 < 0.49 < 2.4 < 0.49 < 2.4 < 0.49 < 0.15 < 0.25 < 0.25 < 0.25 < 0.49	3A < 0.5 < 0.5 < 0.5 < 0.5 < 0.14 < 0.5 < 2.4 < 0.5 < 0.5 < 0.15 < 0.25 < 0.25 < 0.25 < 0.25	3B	4B < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25	4C	4D	ORGANC 4E < 0.49 < 0.51 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.25 < 0.25 < 0.25 < 0.25 < 0.49	AF < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.25 < 0.25 < 0.25	PESTICIDES II	SEDIMEN 6B <0.50 <0.50 <0.50 <0.50 <0.70 <0.714 <0.50 <14 <0.50 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.50	T (ug/kg) 7A < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.14 < 0.5 < 0.5 < 0.14 < 0.5 < 0.15 < 0.15 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25	7B	8A <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.51 <0.50 <0.50 <0.50 <0.50 <0.50 <0.25 <0.25 <0.25 <0.25 <0.50	9A	10 < 0.5 < 0.5 < 0.5 < 0.5 < 0.14 < 0.5 < 2.4 < 0.5 < 0.15 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.5 < 2.4 < 0.5 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.5 < 0.25 < 0.5 < 0.25 < 0.5 < 0.5 < 0.25 < 0.5 < 0.5 < 0.25 < 0.5 < 0.5 < 0.5 < 0.25 < 0.5 < 0.5	11A <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.51 <0.52 <0.25 <0.25 <0.25 <0.25	12A	13 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.25 <0.25 <0.50	14
4,4'-DDD 4,4'-DDE 4,4'-DDT Aldrin alpha-BHC beta-BHC Chlordane delta-BHC Dieldrin Endosulfan I Endosulfan I Endosulfan sulfate Endrin Endrin Endrin	1A < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.25 < 0.25 < 0.25 < 0.5 < 0.5 < 0.5	2A < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 2.4 < 0.49 < 0.49 < 0.49 < 0.49 < 0.25 < 0.25 < 0.25 < 0.49 < 0.49 < 0.49	3A < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.25 < 0.25 < 0.5 < 0.5 < 0.5	3B	4B < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.25 < 0.25 < 0.25 < 0.5 < 0.5 < 0.5	4C	4D	AE < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.42 < 0.42 < 0.25 < 0.25 < 0.25 < 0.49 < 0.49	AF < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 0.49 0.49 0.25 < 0.25 < 0.25 < 0.49	STATIONS 5A	N SEDIMEN 6B <0.50 <0.50 <0.50 <0.50 <0.50 <0.14 <0.50 <0.14 <0.50 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.50 <0.25 <0.25 <0.50 <0.25 <0.25 <0.50 <0.25 <0.50 <0.50 <0.25 <0.50 <0.50 <0.25 <0.50 <0.50 <0.50 <0.25 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <0.55 <	T (ug/kg) 7A < 0.5 < 0.5 < 0.5 < 0.5 < 0.14 < 0.5 < 0.14 < 0.5 < 0.5 < 0.15 < 0.25 < 0.25 < 0.25 < 0.25 < 0.5 <	7B	8A <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.25 <0.25 <0.25 <0.25 <0.50 <0.50	9A	10 < 0.5 < 0.5 < 0.5 < 0.14 < 0.5 < 0.14 < 0.5 < 0.15 < 0.25 < 0.25 < 0.25 < 0.5 < 0.5	11A <0.50 <0.50 <0.50 <0.50 <0.14 <0.50 <2.4 <0.50 <0.15 <0.25 <0.25 <0.25 <0.25 <0.50 <0.50	12A	13 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.25 <0.25 <0.25 <0.25 <0.25 <0.50 <0.50	14
4,4'-DDD 4,4'-DDE 4,4'-DDT Aldrin alpha-BHC beta-BHC Chlordane delta-BHC Dieldrin Endosulfan I Endosulfan I Endosulfan I Endosulfan I Endosulfan sulfate Endrin Endrin Aldehyde Endrin Ketone	1A < 0.5 < 0.5 < 0.5 < 0.5 < 0.14 < 0.5 < 0.15 < 0.15 < 0.25 < 0.25 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	2A < 0.49 < 0.25 < 0.25 < 0.25 < 0.49 < 0.49 < 0.49	3A < 0.5 < 0.5 < 0.5 < 0.14 < 0.5 < 0.14 < 0.5 < 0.15 < 0.15 < 0.25 < 0.25 < 0.25 < 0.5 < 0.5 < 0.5 < 0.5	3B	4B < 0.5 < 0.5 < 0.5 < 0.14 < 0.5 < 0.14 < 0.5 < 0.14 < 0.5 < 0.25 < 0.25 < 0.25 < 0.25 < 0.5 < 0.5 < 0.5	4C	4D	ORGANC 4E < 0.49 ~ 0.51 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.25 < 0.25 < 0.25 < 0.49 < 0.49 < 0.49	AF < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.25 < 0.25 < 0.49 < 0.49 < 0.49	PESTICIDES II	SEDIMEN 6B <0.50 <0.50 <0.50 <0.51 <0.50 <0.51 <0.52 <0.52 <0.52 <0.52 <0.52 <0.52 <0.52 <0.52 <0.50 <0.50 <0.50 <0.50	T (ug/kg) 7A < 0.5 < 0.5 < 0.5 < 0.14 < 0.5 < 0.14 < 0.5 < 0.15 < 0.15 < 0.25 < 0.25 < 0.25 < 0.25 < 0.5 < 0.25 < 0.25 < 0.5 < 0.5	7B	8A <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.51 <0.50 <0.14 <0.50 <0.25 <0.25 <0.25 <0.25 <0.50 <0.50	9A	10 < 0.5 < 0.5 < 0.5 < 0.14 < 0.5 < 0.15 < 0.25 < 0.25 < 0.25 < 0.25 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	11A <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.14 <0.50 <0.15 <0.25 <0.25 <0.25 <0.50 <0.50 <0.50	12A	13 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.25 <0.25 <0.25 <0.25 <0.50 <0.50	14
4,4'-DDD 4,4'-DDE 4,4'-DDE 4,4'-DDT Aldrin alpha-BHC beta-BHC Chlordane delta-BHC Dieldrin Endosulfan I Endosulfan I Endosulfan sulfate Endrin Aldehyde Endrin Ketone gamma-BHC (Lindane)	1A < 0.5 < 0.5 < 0.5 < 0.14 < 0.5 < 0.14 < 0.5 < 0.15 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	2A < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.14 < 0.49 < 0.15 < 0.25 < 0.25 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49	3A < 0.5 < 0.5 < 0.5 < 0.14 < 0.5 < 2.4 < 0.5 < 0.5 < 0.5 < 0.25 < 0.25 < 0.25 < 0.25 < 0.5 < 0.25 < 0.5 < 0	3B	4B < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.25 < 0.25 < 0.25 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5		4D	ORGANC 4E < 0.49 < 0.51 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.25 < 0.25 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49	AF < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.25 < 0.25 < 0.49 < 0.49 < 0.49	ESTICIDES II	6B <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.25 <0.25 <0.50 <0.50 <0.50 <0.50	T (ug/kg) 7A < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.14 < 0.5 < 0.15 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	7B	8A <0.50 <0.50 <0.50 <0.50 <0.50 <0.14 <0.50 <0.15 <0.25 <0.25 <0.25 <0.25 <0.25 <0.50 <0.50 <0.50 <0.50	9A	10 < 0.5 < 0.5 < 0.5 < 0.14 < 0.5 < 0.15 < 0.15 < 0.25 < 0.25 < 0.25 < 0.25 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	11A <0.50 <0.50 <0.50 <0.14 <0.50 <2.4 <0.50 <0.15 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.25 <0.25 <0.25 <0.25 <0.50 <0.50 <0.50 <0.25 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50	12A	13 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.25 <0.25 <0.50 <0.50 <0.50 <0.50 <0.50	14
4,4'-DDD 4,4'-DDE 4,4'-DDT Aldrin alpha-BHC beta-BHC Chlordane delta-BHC Dieldrin Endosulfan I Endosulfan I Endosulfan I Endosulfan I Endosulfan I Endosulfan I Endrin Aldehyde Endrin Ketone gamma-BHC (Lindane)	1A < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.14 < 0.5 < 0.15 < 0.25 < 0.25 < 0.25 < 0.25 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	2A < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.25 < 0.25 < 0.25 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49	3A < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.25 < 0.25 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	3B	4B < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.25 < 0.25 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	4C	4D 4D 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	AE < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.42 < 0.25 < 0.25 < 0.25 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49	AF < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 0.49 0.49 0.25 < 0.25 < 0.25 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49	PESTICIDES II STATIONS 5A	N SEDIMEN 6B <0.50 <0.50 <0.50 <0.50 <0.50 <0.14 <0.50 <1.14 <0.50 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.50 <0.50 <0.25 <0.50 <0.50 <0.25 <0.25 <0.50 <0.50 <0.25 <0.25 <0.50 <0.50 <0.50 <0.50 <0.25 <0.50 <0.50 <0.50 <0.25 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <	T (ug/kg) 7A < 0.5 < 0.5 < 0.5 < 0.5 < 0.14 < 0.5 < 0.5 < 0.14 < 0.5 < 0.5 < 0.15 < 0.25 < 0.25 < 0.25 < 0.5 < 0.25 < 0.5 <	7B	8A <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.25 <0.25 <0.50 <0.50 <0.50 <0.50 <0.50	9A	10 < 0.5 < 0.5 < 0.5 < 0.14 < 0.5 < 0.14 < 0.5 < 0.15 < 0.25 < 0.25 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	11A <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.25 <0.25 <0.50 <0.50 <0.50 <0.50 <0.50		13 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.50 <0.50 <0.50 <0.50 <0.50	14
4,4'-DDD 4,4'-DDE 4,4'-DDT Aldrin alpha-BHC beta-BHC Chlordane delta-BHC Dieldrin Endosulfan I Endosulfan I Endosulfan II Endosulfan II Endosulfan II Endosulfan State Endrin Aldehyde Endrin Aldehyde Endrin Ketone gama-BHC (Lindane) Heptachlor Heptachlor	1A < 0.5 < 0.5 < 0.5 < 0.5 < 0.14 < 0.5 < 0.14 < 0.5 < 0.15 < 0.25 < 0.25 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	2A < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.25 < 0.25 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.14	3A < 0.5 < 0.5 < 0.5 < 0.14 < 0.5 < 0.15 < 0.25 < 0.25 < 0.25 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	3B	4B < 0.5 < 0.5 < 0.5 < 0.14 < 0.5 < 0.14 < 0.5 < 0.14 < 0.25 < 0.25 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	4C	4D	AE < 0.49 ~ 0.51 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.42 < 0.25 < 0.25 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49	AF < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 0.49 0.25 < 0.25 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49	PESTICIDES II	SEDIMEN 6B <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.25 <0.25 <0.25 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50	T (ug/kg) < 0.5 < 0.5 < 0.5 < 0.5 < 0.14 < 0.5 < 0.14 < 0.5 < 0.15 < 0.25 < 0.25 < 0.25 < 0.25 < 0.5 < 0.5	78	8A <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.14 <0.50 <0.15 <0.25 <0.25 <0.25 <0.25 <0.25 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50	9A	10 < 0.5 < 0.5 < 0.5 < 0.14 < 0.5 < 0.15 < 0.25 < 0.25 < 0.25 < 0.5 < 0.5 < 0.25 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	11A <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.14 <0.50 <0.15 <0.25 <0.25 <0.25 <0.25 <0.25 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50		13 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.25 <0.25 <0.25 <0.25 <0.25 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50	
4,4'-DDD 4,4'-DDE 4,4'-DDE 4,4'-DDT Aldrin alpha-BHC beta-BHC Chlordane delta-BHC Dieldrin Endosulfan II Endosulfan II Endosulfan sulfate Endrin Aldehyde Endrin Aldehyde Endrin Aldehyde Endrin Aldehyde Endrin Aldehyde Endrin Aldehyde Endrin Cktone gamma-BHC (Lindane) Heptachlor Heptachlor epoxide Methoxychlor	1A < 0.5 < 0.5 < 0.5 < 0.5 < 0.14 < 0.5 < 0.15 < 0.25 < 0.25 < 0.25 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.14 < 1	2A < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.14 < 0.49 < 0.15 < 0.25 < 0.25 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49	3A < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.25 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.14	3B	4B < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.14 < 1		4D	ORGANC 4E < 0.49 < 0.51 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.42 < 0.25 < 0.25 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49	AF < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.25 < 0.25 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.49 < 0.17 < 0.99	PESTICIDES II	SEDIMEN 6B <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.25 <0.25 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.51	T (ug/kg) 7A < 0.5 < 0.5 < 0.5 < 0.5 < 0.14 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.14 < 0.99	7B	8A <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.25 <0.25 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.14	9A	10 < 0.5 < 0.5 < 0.5 < 0.14 < 0.5 < 0.15 < 0.25 < 0.25 < 0.25 < 0.25 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.14	11A <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.25 <0.25 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.14		13 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.25 <0.25 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.14 <0.99	

* - Proposed Marine Surface Water Standard is for non-detectable quantities based upon best available technology.

								0	RGANOPHOS	PHOROUS	PESTICIDES I	N WATER* (ug	/L)							
				-				-		ST/	TIONS						-			
	1A	2A	3A	3B	4B	4C	4D	4E	4F	5A	6B	7A	7B	8A	9A	10	11A	12A	13	14
Azinphos-methyl	< 0.33	< 0.32	< 0.32	< 0.32	< 0.31	< 0.32	< 0.31	< 0.32	< 0.31	< 0.33	< 0.32	< 0.31	< 0.33	< 0.32	< 0.31	< 0.32	< 0.32	< 0.31	< 0.33	< 0.31
Bolstar	< 0.095	< 0.091	< 0.091	< 0.091	< 0.09	< 0.093	< 0.09	< 0.093	< 0.09	< 0.095	< 0.091	< 0.09	< 0.095	< 0.091	< 0.09	< 0.091	< 0.091	< 0.09	< 0.095	< 0.09
Chlorpyrifos	< 0.11	< 0.11	< 0.11	< 0.11	< 0.1	< 0.11	< 0.1	< 0.11	< 0.1	< 0.11	< 0.11	< 0.1	< 0.11	< 0.11	< 0.1	< 0.11	< 0.11	< 0.1	< 0.11	< 0.1
Coumaphos	< 0.081	< 0.078	< 0.078	< 0.078	< 0.076	< 0.079	< 0.076	< 0.079	< 0.076	< 0.081	< 0.078	< 0.076	< 0.081	< 0.078	< 0.076	< 0.078	< 0.078	< 0.076	< 0.081	< 0.076
Demeton, Total	< 0.15	< 0.14	< 0.14	< 0.14	< 0.14	< 0.15	< 0.14	< 0.15	< 0.14	< 0.15	< 0.14	< 0.14	< 0.15	< 0.14	< 0.14	< 0.14	< 0.14	< 0.14	< 0.15	< 0.14
Diazinon	< 0.11	< 0.11	< 0.11	< 0.11	< 0.1	< 0.11	< 0.1	< 0.11	< 0.1	< 0.11	< 0.11	< 0.1	< 0.11	< 0.11	< 0.1	< 0.11	< 0.11	< 0.1	< 0.11	< 0.1
Dichlorvos	< 0.26	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25	< 0.26	< 0.25	< 0.25	< 0.26	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25	< 0.26	< 0.25
Dimethoate	< 0.16	< 0.15	< 0.15	< 0.15	< 0.15	< 0.31	< 0.15	< 0.31	< 0.3	< 0.16	< 0.31	< 0.3	< 0.32	< 0.31	< 0.3	< 0.31	< 0.31	< 0.3	< 0.32	< 0.3
Disulfoton	< 0.32	< 0.31	< 0.31	< 0.31	< 0.3	< 0.12	< 0.3	< 0.12	< 0.11	< 0.32	< 0.12	< 0.11	< 0.12	< 0.12	< 0.11	< 0.12	< 0.12	< 0.11	< 0.12	< 0.11
EPN	< 0.12	< 0.12	< 0.12	< 0.12	< 0.11	< 0.07	< 0.11	< 0.07	< 0.067	< 0.12	< 0.068	< 0.067	< 0.071	< 0.068	< 0.067	< 0.068	< 0.068	< 0.067	< 0.071	< 0.067
Ethoprop	< 0.071	< 0.068	< 0.068	< 0.068	< 0.067	< 0.4	< 0.067	< 0.4	< 0.39	< 0.071	< 0.39	< 0.39	< 0.41	< 0.39	< 0.39	< 0.39	< 0.39	< 0.39	< 0.41	< 0.39
Ethyl Parathion	< 0.41	< 0.39	< 0.39	< 0.39	< 0.39	< 0.078	< 0.39	< 0.078	< 0.075	< 0.41	< 0.077	< 0.075	< 0.08	< 0.077	< 0.075	< 0.077	< 0.077	< 0.075	< 0.08	< 0.075
Fensulfothion	< 0.17	< 0.16	< 0.16	< 0.16	< 0.16	< 0.17	< 0.16	< 0.17	< 0.16	< 0.17	< 0.16	< 0.16	< 0.17	< 0.16	< 0.16	< 0.16	< 0.16	< 0.16	< 0.17	< 0.16
Hexazinone	< 0.092	< 0.088	< 0.088	< 0.088	< 0.087	< 0.16	< 0.087	< 0.16	< 0.15	< 0.092	< 0.15	< 0.15	< 0.16	< 0.15	< 0.15	< 0.15	< 0.15	< 0.15	< 0.16	< 0.15
Malathion	< 0.13	< 0.12	< 0.12	< 0.12	< 0.12	< 0.09	< 0.12	< 0.09	~ 0.25	< 0.13	< 0.088	< 0.087	< 0.092	< 0.088	< 0.087	< 0.088	< 0.088	< 0.087	< 0.092	< 0.087
Merphos	< 0.15	< 0.14	< 0.14	< 0.14	< 0.14	< 0.13	< 0.14	< 0.13	< 0.12	< 0.15	< 0.12	< 0.12	< 0.13	< 0.12	< 0.12	< 0.12	< 0.12	< 0.12	< 0.13	< 0.12
Methyl parathion	< 2.6	< 2.5	< 2.5	< 2.5	< 2.5	< 0.12	< 2.5	< 0.12	< 0.11	< 2.6	< 0.12	< 0.11	< 0.12	< 0.12	< 0.11	< 0.12	< 0.12	< 0.11	< 0.12	< 0.11
Mevinphos	< 0.36	< 0.35	< 0.35	< 0.35	< 0.34	< 0.15	< 0.34	< 0.15	< 0.14	< 0.36	< 0.14	< 0.14	< 0.15	< 0.14	< 0.14	< 0.14	< 0.14	< 0.14	< 0.15	< 0.14
Monochrotophos	< 0.08	< 0.077	< 0.077	< 0.077	< 0.075	< 2.5	< 0.075	< 2.5	< 2.5	< 0.08	< 2.5	< 2.5	< 2.6	< 2.5	< 2.5	< 2.5	< 2.5	< 2.5	< 2.6	< 2.5
Naled	< 0.12	< 0.12	< 0.12	< 0.12	< 0.11	< 0.35	< 0.11	< 0.35	< 0.34	< 0.12	< 0.35	< 0.34	< 0.36	< 0.35	< 0.34	< 0.35	< 0.35	< 0.34	< 0.36	< 0.34
Phorate	< 0.16	< 0.15	< 0.15	< 0.15	< 0.15	< 0.16	< 0.15	< 0.16	< 0.15	< 0.16	< 0.15	< 0.15	< 0.16	< 0.15	< 0.15	< 0.15	< 0.15	< 0.15	< 0.16	< 0.15
Ronnel	< 0.13	< 0.12	< 0.12	< 0.12	< 0.12	< 0.13	< 0.12	< 0.13	< 0.12	< 0.13	< 0.12	< 0.12	< 0.13	< 0.12	< 0.12	< 0.12	< 0.12	< 0.12	< 0.13	< 0.12
Stirophos	< 0.055	< 0.053	< 0.053	< 0.053	< 0.052	< 0.082	< 0.052	< 0.082	< 0.079	< 0.055	< 0.081	< 0.079	< 0.084	< 0.081	< 0.079	< 0.081	< 0.081	< 0.079	< 0.084	< 0.079
Sulfotepp	< 0.084	< 0.081	< 0.081	< 0.081	< 0.079	< 0.054	< 0.079	< 0.054	< 0.052	< 0.084	< 0.053	< 0.052	< 0.055	< 0.053	< 0.052	< 0.053	< 0.053	< 0.052	< 0.055	< 0.052
Tokuthion	< 0.087	< 0.084	< 0.084	< 0.084	< 0.082	< 0.085	< 0.082	< 0.085	< 0.082	< 0.087	< 0.084	< 0.082	< 0.087	< 0.084	< 0.082	< 0.084	< 0.084	< 0.082	< 0.087	< 0.082
Trichloronate	< 0.11	< 0.11	< 0.11	< 0.11	< 0.1	< 0.11	< 0.1	< 0.11	< 0.1	< 0.11	< 0.11	< 0.1	< 0.11	< 0.11	< 0.1	< 0.11	< 0.11	< 0.1	< 0.11	< 0.1

								OR	GANOPHOSP	HOROUS PES	TICIDES IN	SEDIMENT (ug	J/kg)							
	-																			
		-								STAT	IONS									
	1A	2A	3A	3B	4B	4C	4D	4E	4F	5A	6B	7A	7B	8A	9A	10	11A	12A	13	14
Azinphos-methyl	< 4.4	< 4.3	< 4.4		< 4.3			< 4.4	< 4.3		< 4.4	< 4.4		< 4.3		< 4.4	< 4.3		< 4.4	
Bolstar	< 8.5	< 8.4	< 8.5		< 8.4			< 8.5	< 8.4		< 8.5	< 8.4		< 8.4		< 8.4	< 8.4		< 8.5	
Chlorpyrifos	< 8.4	< 8.3	< 8.4		< 8.3			< 8.4	< 8.3		< 8.4	< 8.3		< 8.3		< 8.3	< 8.3		< 8.4	
Coumaphos	< 8.6	< 8.5	< 8.6		< 8.5			< 8.6	< 8.5		< 8.6	< 8.5		< 8.5		< 8.5	< 8.5		< 8.6	
Demeton, Total	< 13	< 13	< 13		< 13			< 13	< 13		< 13	< 13		< 13		< 13	< 13		< 13	
Diazinon	< 8.8	< 8.7	< 8.8		< 8.7			< 8.8	< 8.7		< 8.8	< 8.7		< 8.7		< 8.7	< 8.7		< 8.8	
Dichlorvos	< 17	< 17	< 17		< 17			< 17	< 17		< 17	< 17		< 17		< 17	< 17		< 17	
Dimethoate	< 9.9	< 9.9	< 10		< 9.8			< 10	< 9.9		< 10	< 9.9		< 9.9		< 9.9	< 9.9		< 10	
Disulfoton	< 11	< 11	< 11		< 11			< 11	< 11		< 11	< 11		< 11		< 11	< 11		< 11	
EPN	< 9	< 9	< 9.1		< 9			< 9.1	< 9		< 9.1	< 9		< 9		< 9	< 9		< 9.1	
Ethoprop	< 15	< 15	< 15		< 15			< 15	< 15		< 15	< 15		< 15		< 15	< 15		< 15	
Ethyl Parathion	< 8.8	< 8.7	< 8.8		< 8.7			< 8.8	< 8.7		< 8.8	< 8.7		< 8.7		< 8.7	< 8.7		< 8.8	
Fensulfothion	< 9.9	< 9.9	< 10		< 9.8			< 10	< 9.9		< 10	< 9.9		< 9.9		< 9.9	< 9.9		< 10	
Hexazinone	< 7.7	< 7.6	< 7.7		< 7.6			< 7.7	< 7.6		< 7.7	< 7.6		< 7.6		< 7.6	< 7.6		< 7.7	
Malathion	< 8.9	< 8.9	< 9		< 8.9			< 9	< 8.9		< 9	< 8.9		< 8.9		< 8.9	< 8.9		< 9	
Merphos	< 8.3	< 8.2	< 8.3		< 8.2			< 8.3	< 8.2		< 8.3	< 8.2		< 8.2		< 8.2	< 8.2		< 8.3	
Methyl parathion	< 5.4	< 5.3	< 5.4		< 5.3			< 5.4	< 5.3		< 5.4	< 5.4		< 5.3		< 5.4	< 5.3		< 5.4	
Mevinphos	< 11	< 11	< 11		< 11			< 11	< 11		< 11	< 11		< 11		< 11	< 11		< 11	
Monochrotophos	< 85	< 84	< 85		< 84			< 85	< 84		< 85	< 84		< 84		< 84	< 84		< 85	
Naled	< 5.2	< 5.1	< 5.2		< 5.1			< 5.2	< 5.1		< 5.2	< 5.2		< 5.1		< 5.2	< 5.1		< 5.2	
Phorate	< 11	< 11	< 11		< 11			< 11	< 11		< 11	< 11		< 11		< 11	< 11		< 11	
Ronnel	< 8	< 7.9	< 8		< 7.9			< 8	< 7.9		< 8	< 7.9		< 7.9		< 7.9	< 7.9		< 8	
Stirophos	< 8.8	< 8.8	< 8.9		< 8.8			< 8.9	< 8.8		< 8.9	< 8.8		< 8.8		< 8.8	< 8.8		< 8.9	
Sulfotepp	< 5.3	< 5.2	< 5.3		< 5.2			< 5.3	< 5.2		< 5.3	< 5.3		< 5.2		< 5.3	< 5.2		< 5.3	
Tokuthion	< 7.7	< 7.6	< 7.7		< 7.6			< 7.7	< 7.6		< 7.7	< 7.6		< 7.6		< 7.6	< 7.6		< 7.7	
Trichloronate	< 8.2	< 8.1	< 8.2		< 8.1			< 8.2	< 8.1		< 8.2	< 8.1	1	< 8.1		< 8.1	< 8.1		< 8.2	

* - Proposed Marine Surface Water Standard is for non-detectable quantities based upon best available technology.

ATTACHMENT 16

Review of Average Surface Water and Sediment Analytical Results in

- A) Lake and South Pond
- B) Bisecting Canal
- C) South Ditch
- D) Freshwater Ponds/ Springs
- E) Eastern Offsite

ATTACHMENT 16A COMPARISON OF SURFACE WATER AND SEDIMENT QUALITY, LAKE AND SOUTH POND 2001

Surf. Wat. Feb/Mar/ Apr-01	Average	6A	6B	7A	7B	10
Ammonia (mg/l)	0.21	0.22		0.19		0.21
Temperature (deg C)	29.26	28.3	29.8	28.9	29.6	29.7
Dissolved Oxygen (mg/l)	15.08	20	12.14	14.61	13.8	14.84
BOD (mg/l)	19.62	n/a	14.38	18.78	24.02	21.28
Fecal (cols/ 100 ml)	330	100		560		330
Streptococci (cols/ 100 ml)	1840	320		700		4500
TSS (mg/l)	2	2		3	2	1
pH (su)	8.70	9.12	8.62	8.57	8.62	8.57
Salinity (ppt)	4.6	0	0	7.6	7.6	7.6
Nitrate (mg/l)	0.00	0.01		<.01		<.01
Phosphates (mg/l)	0.03	0.04		0.04		0.02
Sediment 2001						
Sodium (mg/kg)	5610	4640			6580	
Aluminum (mg/kg)	5765	3950			7580	
Arsenic (mg/kg)	2.7	2.6			2.7	
Barium (mg/kg)	80	16.5			144	
Calcium (mg/kg)	141100	234000			48200	
Cadmium (mg/kg)	0.2	<0.2			0.4	
Cobalt (mg/kg)	5.55	3.2			7.9	
Chromium (mg/kg)	10.15	7.5			12.8	
Copper (mg/kg)	12.15	8.7			15.6	
Iron (mg/kg)	10770	7140			14400	
Magnesium (mg/kg)	3115	3910			2320	
Manganese (mg/kg)	302	93.8			510	
Lead (mg/kg)	6	6			6	
Strontium (mg/kg)	2069	3900			237	
Titanium (mg/kg)	16.0	<0.3			32	
Vanadium (mg/kg)	20.6	13.9			27.3	
Zinc (mg/kg)	44.3	39.2			49.3	
Mercury (mg/kg)	< 0.05	<0.05			<0.05	
Phosphorous (mg/kg)	954	957			950	

ATTACHMENT 16A COMPARISON OF SURFACE WATER AND SEDIMENT QUALITY, LAKE AND SOUTH POND 2002

Surface Water Apr-02	Average	6A	6B	7A	7B	10
Ammonia	0.15	0.016	0.011	0.24	0.184	0.318
Temperature (deg C)	32.22	33.4	32.8	31.3	31.5	32.1
Dissolved Oxygen (mg/l)	13.73	16.32	15.47	10.84	9.62	16.39
BOD (mg/l)	6.65	5.26	6.71	6.53	8.29	6.46
Fecal (cols/ 100 ml)	667	191	615	644	424	1463
Streptococci (cols/ 100 ml)	318	480	374	109	103	523
TSS (mg/l)	32	20	20	15	32.5	70
pH (su)	8.69	8.94	8.69	8.57	8.58	8.68
Salinity (ppt)	8.4	8.98	8.85	8.03	8.25	8.05
Sodium (mg/l)	2426	2540	2610	2410	2340	2230
Nitrate (mg/l)	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Phosphates (mg/l)	0.06	0.01	<0.005	0.071	0.098	0.131
Copper (mg/l)	0.0190	0.019	0.0209	0.0186	0.019	0.0173
Iron (mg/l)	0.087	0.058	0.309	0.012	0.007	0.05
Potassium (mg/l)	96	100	101	96	92	91
Magnesium (mg/l)	287	300	301	287	274	272
Sodium (mg/l)	2426	2540	2610	2410	2340	2230
Lead (mg/l)	0.0011	0.0006	0.0034	<0.0005	<0.0005	0.0013
Mercury (mg/l)	< 0.00005	< 0.00005	< 0.00005	< 0.00005	<0.00005	<0.00005
Zinc (mg/l)	< 0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Sediment Dec 02						
Sodium (mg/kg)	9540	3960		4060		20600
Aluminum (mg/kg)	6703	3130		4680		12300
Arsenic (mg/kg)	1.8	0.3		0.3		4.8
Barium (mg/kg)	27	18.5		15.1		48.3
Calcium (mg/kg)	261000	297000		348000		138000
Cadmium (mg/kg)	0.73	0.08		0.06		0.36
Cobalt (mg/kg)	1.9	1.2		1.4		3.1
Chromium (mg/kg)	5.2	2		2.7		10.8
Copper (mg/kg)	18	5.2		6.7		41.5
Iron (mg/kg)	4597	2420		2620		8750
Magnesium (mg/kg)	8590	4160		5010		16600
Manganese (mg/kg)	109	68.7		57		202
Lead (mg/kg)	73	15.7		14.1		189
Strontium (mg/kg)	5030	5080		4780		5230
Titanium (mg/kg)	61	36		35		113
Vanadium (mg/kg)	24	8		12		53
Zinc (mg/kg)	48	14		9.1		121
Mercury (mg/kg)	0.04	< 0.05		<0.05		0.11

ATTACHMENT 16A COMPARISON OF SURFACE WATER AND SEDIMENT QUALITY, LAKE AND SOUTH POND 2010

Surface Water	Average	3A	3B	6B	7A	7B	10
Ammonia as N (mg/l)	0.12	~0.096	0.1	0.11	0.1	0.17	0.12
Temperature (deg C)	29.20	28.7	28.5	29.4	29.0	29.6	30.0
Dissolved Oxygen (mg/l)	6.47	7.82	6.67	6.82	3.17	8.32	5.99
BOD (mg/l)	4.50	2.58	4.64	8.72	4.2	3.93	2.95
Fecal (cols/ 100 ml)	684	500	160	560	53	430	2400
Streptococci (cols/ 100 ml)	325	200	130	170	110	140	E1200
Enterococci (cols/ 100 ml)	493	240	110	140	71	96	2300
TSS (mg/l)	13	18	8.4	22	11	9.6	8
pH (su)	8.23	8.28	8.27	8.23	8.00	8.26	8.31
Salinity (ppt)	1.9	1.9	1.9	1.9	2.0	2.0	1.9
Sodium (mg/l)	598	610	600	620	580	590	590
Nitrate (mg/l)	<0.1	<0.1	<0.10	<0.10	<0.10	<0.10	<0.10
Phosphorous (mg/l)	0.07	~0.15	~0.12	<0.10	~0.11	<0.10	<0.10
Copper (mg/l)	< 0.0029	<0.0029	< 0.0029	< 0.0029	<0.0029	<0.0029	<0.0029
Iron (mg/l)	0.09	~0.068	~0.055	~0.16	~0.11	~0.067	~0.075
Potassium (mg/l)	32	32	32	33	31	32	32
Magnesium (mg/l)	94.83	91	90	98	96	97	97
Sodium (mg/l)	598	610	600	620	580	590	590
Lead (mg/l)	< 0.002	< 0.002	<0.002	<0.0020	<0.002	<0.002	<0.002
Mercury (mg/l)	< 0.000072	< 0.000072	< 0.000072	< 0.000072	< 0.000071	< 0.000071	< 0.000071
Zinc (mg/l)	0.010	<0.005	~0.017	~0.015	~0.0082	~0.0093	~0.0078
Nitrite as N (mg/l)	<0.1	<0.1	<0.10	<0.10	<0.10	<0.10	<0.10
Sulfate (mg/l)	145	140	140	140	160	140	150
Sulfide (mg/l)	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
COD (mg/L)	52	51	48	63	51	48	49
Alkalinity (mg/l)	442	440	440	470	420	440	440
Chloride (mg/l)	1037	1000	960	960	1100	1000	1200
Tannins and Lignins (mg/L)	1.7	1.5	1.6	2.3	1.6	1.5	1.6
Chlorophyll A (ug/l)	25.2	21.1	22.6	30.9	37.2	24.2	15
Turbidity (NTU)	5.4	2.9	2.9	15	4.6	2.7	4.1
CO2 (ug/l)	47	~35	~36	63	54	<36	<42
Sediment							
pH (su)	7.59	7.84		7.56	7.51		7.45
Nitrate (mg/kg)	<1.0	<1.0		<1.0	<1.0		<1.0
Phosphorous (mg/kg)	350	240		670	270		220
Sodium (mg/kg)	1170	820		1400	1500		960
Aluminum (mg/kg)	1190	360		2000	1200		1200
Arsenic (mg/kg)	0.26	~0.25		~0.33	<0.89		~0.44
Barium (mg/kg)	6.0	3.3		9.6	5.8		5.2
Calcium (mg/kg)	73275	9100		110,000	160000		14000
Cadmium (mg/kg)	< 0.086	< 0.086		< 0.086	< 0.34		< 0.085
Cobalt (mg/kg)	0.20	~0.19		~0.37	<0./4		~0.25
	1.3	~0.41		1.8	~1.7		1.1
Copper (mg/kg)	3.5	2.1		5.5	~2.7		3.6
Iron (mg/kg)	//5	290		1100	860		850
Magnesium (mg/kg)	1420	/80		1900	1700		1300
Manganese (mg/kg)	23	14		30	27 5 0		21
Stroptium (mg/kg)	1295	3.9		2500	2000		660
Titanium (mg/kg)	14.0	7 1		2000	~2.000		27
Vanadium (mg/kg)	26	21		<u>∠</u> 0 २.1	~0.4		21
Zinc (mg/kg)	2.0	<u>د م</u>		3.1 8 Q	~6.2		2.9
Mercury (mg/kg)	ann n	~0.011		~0.014	<0.15		<0.2
Ammonia as N (mg/kg)	16	6 9		14	20.013		
Total Phosphorous (mg/kg)	350	240		670	270		220
Orthophosphorous (mg/l)	1.9	~0.87		~1.9	~0.91		3.9
Sulfate (mg/kg)	<98	<98		<98	<96		<100
Sulfide (mg/kg)	<25	<25		<25	<25		<25
TOC (mg/kg)	104750	210000		39000	30000		140000

ATTACHMENT 16B COMPARISON OF SURFACE WATER AND SEDIMENT QUALITY, BISECTING CANAL 2001

Surf. Wat. Feb/Mar/ Apr-01	Average	8	11
Ammonia (mg/l)	>0.73	n/a	>0.73
Temperature (deg C)	29.10	31,4	29.1
Dissolved Oxygen (mg/l)	9.43	9.74	9.11
BOD (mg/l)	12.91	14.82	11
Fecal (cols/ 100 ml)	395	590	200
Streptococci (cols/ 100 ml)	420	n/a	420
TSS (mg/l)	4	3	4
pH (su)	8.13	8.09	8.16
Salinity (ppt)	0.1	0.1	0.1
Nitrate (mg/l)	0.26	<.01	0.51
Phosphates (mg/l)	0.05	0.01	0.09
Sediment 2001			
Sodium (mg/kg)			
Aluminum (mg/kg)			
Arsenic (mg/kg)			
Barium (mg/kg)			
Calcium (mg/kg)			
Cadmium (mg/kg)			
Cobalt (mg/kg)			
Chromium (mg/kg)			
Copper (mg/kg)			
Iron (mg/kg)			
Magnesium (mg/kg)			
Manganese (mg/kg)			
Lead (mg/kg)			
Strontium (mg/kg)			
Titanium (mg/kg)			
Vanadium (mg/kg)			
Zinc (mg/kg)			
Mercury (mg/kg)			
Phosphorous (mg/kg)			

ATTACHMENT 16B COMPARISON OF SURFACE WATER AND SEDIMENT QUALITY, BISECTING CANAL 2002

Surface Water Apr-02	Average	8	11
Ammonia	0.42	0.024	0.813
Temperature (deg C)	31.30	31.4	31.2
Dissolved Oxygen (mg/l)	6.83	5.46	8.2
BOD (mg/l)	8.48	8.38	8.58
Fecal (cols/ 100 ml)	805	618	991
Streptococci (cols/ 100 ml)	297	174	419
TSS (mg/l)	36	27.5	45
pH (su)	8.21	8.27	8.14
Salinity (ppt)	4.0	3.4	4.55
Sodium (mg/l)	1237	973	1500
Nitrate (mg/l)	< 0.02	<0.02	< 0.02
Phosphates (mg/l)	< 0.005	< 0.005	< 0.005
Copper (mg/l)	0.0109	0.0081	0.0136
Iron (mg/l)	0.084	0.031	0.137
Potassium (mg/l)	53	39	67
Magnesium (mg/l)	163	136	189
Sodium (mg/l)	1237	973	1500
Lead (mg/l)	0.0012	0.0009	0.00029
Mercury (mg/l)	<0.00005	<0.00005	<0.00005
Zinc (mg/l)	<0.005	<0.005	<0.005
Sediment Dec 02			
Sodium (mg/kg)	4160	4200	4120
Aluminum (mg/kg)	2638	426	4850
Arsenic (mg/kg)	1.1	0.4	1.8
Barium (mg/kg)	17	9.6	24
Calcium (mg/kg)	372000	389000	355000
Cadmium (mg/kg)	2.50	<0.05	5
Cobalt (mg/kg)	1.1	0.6	1.6
Chromium (mg/kg)	7.2	5	9.4
Copper (mg/kg)	14	0.8	28
Iron (mg/kg)	2036	211	3860
Magnesium (mg/kg)	14450	18000	10900
Manganese (mg/kg)	138	192	83
Lead (mg/kg)	60	1.5	119
Strontium (mg/kg)	4175	5110	3240
Titanium (mg/kg)	44	9	78
Vanadium (mg/kg)	9	4	14
Zinc (mg/kg)	52	1.3	102
Mercury (mg/kg)	<0.05	<0.05	<0.05

ATTACHMENT 16B COMPARISON OF SURFACE WATER AND SEDIMENT QUALITY, BISECTING CANAL 2010

Feb 2010				
Surface Water	Average	8A	11A	12
Ammonia as N (mg/l)	0.27	0.28	0.33	0.21
Temperature (deg C)	27.30	26.4	27.3	28.2
Dissolved Oxygen (mg/l)	3.34	0.50	5.01	4.50
BOD (mg/l)	<2.00	<2.00	<2.00	<2.00
Fecal (cols/ 100 ml)	67	100	80	20
Streptococci (cols/ 100 ml)	64	36	120	36
Enterococci (cols/ 100 ml)	40	33	73	15
TSS (mg/l)	41	10	110.0	4.4
pH (su)	7.48	7.41	7.46	7.56
Salinity (ppt)	1.3	0.9	1.7	1.4
Sodium (mg/l)	420	280	570	410
Nitrate (mg/l)	0.70	<0.10	1.7	~0.41
Phosphorous (mg/l)	<0.10	<0.10	<0.10	<0.10
Copper (mg/l)	< 0.0029	<0.0029	< 0.0029	<0.0029
Iron (mg/l)	0.12	~0.052	0.24	~0.053
Potassium (mg/l)	31	21	41	30
Magnesium (mg/l)	63	47	80	62
Sodium (mg/l)	420	280	570	410
Lead (mg/l)	<0.0020	<0.0020	<0.0020	<0.0020
Mercury (mg/l)	< 0.000072	< 0.000072	< 0.000072	< 0.000072
Zinc (mg/l)	0.018	~.0076	~0.014	0.033
Nitrite as N (mg/l)	<0.10	<0.10	<0.10	<0.10
Sulfate (mg/l)	117	82	150	120
Sulfide (mg/l)	<1.0	<1.0	<1.0	<1.0
COD (mg/L)	29	21	33	33
Alkalinity (mg/l)	277	280	270	280
Chloride (mg/l)	687	440	950	670
Tannins and Lignins (mg/L)	1.1	1.2	1.0	1.1
Chlorophyll A (ug/l)	16.8	18.3	21.7	10.3
Turbidity (NTU)	18.3	6.5	45	3.5
CO2 (ug/l)	112	140	97	100
Sediment				
pH (su)	7.59	7.56	7.62	
Nitrate (mg/kg)	<1.0	<1.0	<1.0	
Phosphorous (mg/kg)	260	160	360	
Sodium (mg/kg)	750	620	880	
Aluminum (mg/kg)	1055	410	1700	
Arsenic (mg/kg)	0.36	<0.22	0.72	
Barium (mg/kg)	4.2	2.0	6.3	
Calcium (mg/kg)	61500	41,000	82,000	
Cadmium (mg/kg)	< 0.084	< 0.084	< 0.085	
Cobalt (mg/kg)	0.22	<0.18	~0.44	
Chromium (mg/kg)	1.9	1.0	2.8	
Copper (mg/kg)	5.8	~1.7	9.8	
Iron (mg/kg)	840	280	1400	
Magnesium (mg/kg)	1950	1600	2300	
Manganese (mg/kg)	17	6.0	28	
Lead (mg/kg)	11	3.1	18	
Strontium (mg/kg)	865	630	1100	
Titanium (mg/kg)	17	4.6	30	
Vanadium (mg/kg)	6	2.1	3.2	
Zinc (mg/kg)	19	3.9	29	
Mercury (mg/kg)	0.059	~0.093	0.024	
Ammonia as N (mg/kg)	12	6.8	18	
Total Phosphorous (mg/kg)	260	160	360	
Orthophosphorous (mg/l)	0.7	<0.75	~1.4	
Sulfate (mg/kg)	<97	<100	<97	
Sulfide (mg/kg)	15	<25	29	
TOC (mg/kg)	28000	18000	38000	

ATTACHMENT 16C COMPARISON OF SURFACE WATER AND SEDIMENT QUALITY, SOUTH DITCH 2001

Surf. Wat. Feb/Mar/ Apr-01	Average	4A	4B	4C	4D
Ammonia (mg/l)	0.02	0.02			
Temperature (deg C)	29.33	30.8	31,6	26.6	30.6
Dissolved Oxygen (mg/l)	8.27	14.11	6.12	2.68	10.18
BOD (mg/l)	11.63	21.47	5.65	0.55	18.85
Fecal (cols/ 100 ml)	200	200			
Streptococci (cols/ 100 ml)	120	120			
TSS (mg/l)	11	11			
pH (su)	7.93	7.94	7.83	7.68	8.26
Salinity (ppt)	0.1	0.1	0	0	0.1
Nitrate (mg/l)	<.01	<.01			
Phosphates (mg/l)	0.05	0.05			

ATTACHMENT 16C COMPARISON OF SURFACE WATER AND SEDIMENT QUALITY, SOUTH DITCH 2002

Surface Water Apr-02	Average	4A	4B	4C	4D
Ammonia	0.18	0.07	0.01	0.168	0.482
Temperature (deg C)	29.28	30.1	27.9	26.7	32.4
Dissolved Oxygen (mg/l)	3.81	5.62	0.38	0.78	8.47
BOD (mg/l)	8.35	6.96	10.76	10.83	4.84
Fecal (cols/ 100 ml)	965	557	1434	909	961
Streptococci (cols/ 100 ml)	690	191	375	1841	354
TSS (mg/l)	23	15	10	25	40
pH (su)	8.01	8.38	7.65	7.74	8.26
Salinity (ppt)	2.4	0.65	2.5	2.65	3.95
Sodium (mg/l)	947	625	1090	933	1140
Nitrate (mg/l)	< 0.02	<0.02	< 0.02	< 0.02	<0.02
Phosphates (mg/l)	< 0.005	<0.005	<0.005	<0.005	<0.005
Copper (mg/l)	0.0089	0.0064	0.0101	0.0083	0.0109
Iron (mg/l)	0.105	0.035	0.043	0.066	0.277
Potassium (mg/l)	41	27	45	41	49
Magnesium (mg/l)	126	89.3	145	122	147
Sodium (mg/l)	947	625	1090	933	1140
Lead (mg/l)	0.0025	0.001	0.0018	0.0012	0.0059
Mercury (mg/l)	< 0.00005	<0.00005	< 0.00005	<0.00005	< 0.00005
Zinc (mg/l)	0.001	<0.005	<0.005	<0.005	0.005
Sediment Dec 02					
Sodium (mg/kg)	1630	1630			
Aluminum (mg/kg)	4420	4420			
Arsenic (mg/kg)	0.6	0.6			
Barium (mg/kg)	35	35			
Calcium (mg/kg)	339000	339000			
Cadmium (mg/kg)	0.12	0.12			
Cobalt (mg/kg)	1.4	1.4			
Chromium (mg/kg)	3.9	3.9			
Copper (mg/kg)	13.3	13.3			
Iron (mg/kg)	3000	3000			
Magnesium (mg/kg)	4800	4800			
Manganese (mg/kg)	98	98			
Lead (mg/kg)	72.8	72.8			
Strontium (mg/kg)	5090	5090			
Titanium (mg/kg)	68	68			
Vanadium (mg/kg)	10	10			
Zinc (mg/kg)	26.5	26.5			
Mercury (mg/kg)	< 0.05	<0.05			

ATTACHMENT 16C COMPARISON OF SURFACE WATER AND SEDIMENT QUALITY, SOUTH DITCH 2010

Feb 2010					
Surface Water	Average	4B	4C	4D	4E
Ammonia as N (mg/l)	0.33	0.29	0.13	0.15	0.73
Temperature (deg C)	26.15	26.7	25.3	26.6	26.0
Dissolved Oxygen (mg/l)	1.50	1.20	1.60	0.83	2.36
BOD (mg/l)	7.99	6.55	10.3	11.5	3.6
Fecal (cols/ 100 ml)	1583	1300	2200	2600	230
Streptococci (cols/ 100 ml)	2275	200	1800	6800	300
Enterococci (cols/ 100 ml)	2420	400	2300	6700	280
TSS (mg/l)	25	39	8.8	8	44
	7 49	7 60	7 24	7.38	7 73
Salinity (ppt)	1.40	1.0	1.24	1.00	11
Sodium (mg/l)	350	440	320	340	300
Nitrate (mg/l)	<0.10	<0.10	<0.10	<0.10	<0.10
Phosphorous (mg/l)	0.10	~0.10	~0.21	0.10	~0.21
Copper (mg/l)	0.011	0.20	<0.21	~0.0029	<0.21
Iron (mg/l)	1.40	5.1	~0.063	~0.068	0.0020
Potassium (mg/l)	1.40	J.1	30	33	0.30
Magnasium (mg/l)	70 75	45	50	55	23
Redium (mg/l)	70.75	00	00	00	200
	350	440	320	340	300
	0.025	0.095	<0.002	<0.002	~0.0036
Mercury (mg/l)	<0.000072	<0.000072	<0.000071	<0.000072	<0.000071
	0.041	0.14	~0.0097	<0.005	~0.016
Nitrite as N (mg/l)	<0.10	<0.10	<0.10	<0.10	<0.10
Sulfate (mg/l)	82	110	62	69	88
Sulfide (mg/l)	0.6	1.3	1.1	<1.0	<1.0
COD (mg/L)	106	270	56	55	41
Alkalinity (mg/l)	538	650	530	540	430
Chloride (mg/l)	523	590	510	500	490
Tannins and Lignins (mg/L)	3.2	4.4	3.0	4	1.5
Chlorophyll A (ug/l)	35	4.4	91.8	40.7	3.2
Turbidity (NTU)	12	12	11	8	17
CO2 (ug/l)	243	200	410	230	130
Sediment					
pH (su)	7.63	7.53			7.73
Nitrate (mg/kg)	0.70	<1.0			~1.4
Phosphorous (mg/kg)	385	140			630
Sodium (mg/kg)	970	640			1300
Aluminum (mg/kg)	2250	1300			3200
Arsenic (mg/kg)	0.87	0.64			~1.1
Barium (mg/kg)	9.4	3.7			15
Calcium (mg/kg)	82000	14000			150000
Cadmium (mg/kg)	< 21	< 0.087			< 0.33
Cobalt (mg/kg)	~0.67	~0.52			~0.82
Chromium (mg/kg)	3.50	22			4.8
Copper (mg/kg)	10.60	9.2			12
Iron (mg/kg)	1900	1200			2600
Magnesium (mg/kg)	2420	640			4200
Manganese (mg/kg)	2420	17			4200
Lood (mg/kg)	40	27			52
Strontium (mg/kg)	1230	260			2200
Titonium (mg/kg)	1200	200			2200
Managium (mg/Kg)	33	20			40
	6	5.7			5.4
	51	28			/4
iviercury (mg/kg)	0.023	0.029			~0.016
Ammonia as N (mg/kg)	21	11			30
Total Phosphorous (mg/kg)	385	140			630
Orthophosphorous (mg/l)	2.1	~1.5			~2.6
Sulfate (mg/kg)	<97	<97			<99
Sulfide (mg/kg)	15	<25			30
TOC (mg/kg)	90500	150000			31000

ATTACHMENT 16D COMPARISON OF SURFACE WATER AND SEDIMENT QUALITY, SPRINGS 2001

Surf. Wat. Feb/Mar/ Apr-01	Average	1 A	2A
Ammonia (mg/l)	0.08	0.1	0.05
Temperature (deg C)	26.4	27.5	25.3
Dissolved Oxygen (mg/l)	4.45	6.37	2.52
BOD (mg/l)	5.15	5.43	4.87
Fecal (cols/ 100 ml)	4475	8700	250
Streptococci (cols/ 100 ml)	3380	6500	260
TSS (mg/l)	14	14	
pH (su)	7.90	7.92	7.88
Salinity (ppt)	0	0	0
Nitrate (mg/l)	0.01	0.01	0.01
Phosphates (mg/l)	0.05	0.08	0.02
Sediment 2001			
Sodium (mg/kg)	2020	2020	
Aluminum (mg/kg)	19500	19500	
Arsenic (mg/kg)	1.5	1.5	
Barium (mg/kg)	99.3	99.3	
Calcium (mg/kg)	65900	65900	
Cadmium (mg/kg)	0.7	0.7	
Cobalt (mg/kg)	14.8	14.8	
Chromium (mg/kg)	9.5	9.5	
Copper (mg/kg)	52.5	52.5	
Iron (mg/kg)	12400	12400	
Magnesium (mg/kg)	5490	5490	
Manganese (mg/kg)	809	809	
Lead (mg/kg)	25	25	
Strontium (mg/kg)	1270	1270	
Titanium (mg/kg)	16.8	16.8	
Vanadium (mg/kg)	43.3	43.3	
Zinc (mg/kg)	34	34	
Mercury (mg/kg)	0.08	0.08	
Phosphorous (mg/kg)	1360	1360	

ATTACHMENT 16D COMPARISON OF SURFACE WATER AND SEDIMENT QUALITY, SPRINGS 2002

Surface Water Apr-02	Average	1A	2A
Ammonia	0.021	0.011	0.03
Temperature (deg C)	30.8	31.7	29.9
Dissolved Oxygen (mg/l)	6.73	7.31	6.15
BOD (mg/l)	7.87	7.32	8.41
Fecal (cols/ 100 ml)	978	902	1053
Streptococci (cols/ 100 ml)	174	109	239
TSS (mg/l)	11	6	16
pH (su)	8.20	8.37	8.03
Salinity (ppt)	1.17	1.28	1.05
Sodium (mg/l)	252	250	254
Nitrate (mg/l)	< 0.02	<0.02	< 0.02
Phosphates (mg/l)	< 0.005	< 0.005	< 0.005
Copper (mg/l)	0.0030	0.0027	0.0032
Iron (mg/l)	0.110	0.105	0.114
Potassium (mg/l)	10	10	10
Magnesium (mg/l)	58.7	58.5	58.8
Sodium (mg/l)	252	250	254
Lead (mg/l)	<0.0005	<0.0005	<0.0005
Mercury (mg/l)	< 0.00005	<0.00005	<0.00005
Zinc (mg/l)	<0.005	<0.005	<0.005
Sediment Dec 02			
Sodium (mg/kg)	2605	2490	2720
Aluminum (mg/kg)	24150	24300	24000
Arsenic (mg/kg)	2.5	3.1	1.8
Barium (mg/kg)	69	67.7	71.1
Calcium (mg/kg)	115150	149000	81300
Cadmium (mg/kg)	0.48	0.52	0.44
Cobalt (mg/kg)	10	8.7	11.5
Chromium (mg/kg)	10	9.8	9.5
Copper (mg/kg)	41	34.7	46.9
Iron (mg/kg)	17750	18100	17400
Magnesium (mg/kg)	7130	7290	6970
Manganese (mg/kg)	948	805	1090
Lead (mg/kg)	41	47.1	35.4
Strontium (mg/kg)	2870	3780	1960
Titanium (mg/kg)	82	103	60
Vanadium (mg/kg)	50	50	49
Zinc (mg/kg)	45.6	48.3	42.8
Mercury (mg/kg)	< 0.05	< 0.05	< 0.05

ATTACHMENT 16D COMPARISON OF SURFACE WATER AND SEDIMENT QUALITY, SPRINGS 2010

Feb-10			
Surface Water		1	2A
Ammonia as N (mg/l)	0.141	0.091	0.19
Temperature (deg C)	26.0	25.7	26.3
Dissolved Oxygen (mg/l)	1.79	2.56	1.02
BOD (mg/l)	5.88	7.38	4.38
Fecal (cols/ 100 ml)	460	460	460
Streptococci (cols/ 100 ml)	565	630	500
Enterococci (cols/ 100 ml)	360	240	480
	22	270	11
nH (su)	7.54	7 67	7.40
Solipity (pot)	7.54	1.07	7.40
Sodium (mg/l)	0.0	110	0.5
Nitrato (mg/l)	0.17	-0.1	~0.33
Phosphorous (mg/l)	0.17	~0.12	~0.00
Coppor (mg/l)	0.10	~0.0045	~0.0021
	1.004	1 5	1.0
Deteopium (mg/l)	1.30	1.0	1.2
	10	12	8.2
Magnesium (mg/l)	35	3/	32
	98	110	85
	<0.002	< 0.002	<0.002
Iviercury (mg/l)	<0.0000/2	<0.0000/2	<0.0000/2
	0.029	0.033	0.024
Nitrite as N (mg/l)	<0.1	<0.1	<0.1
Sulfate (mg/l)	48	50	45
Sulfide (mg/l)	<1.0	<1.0	<1.0
COD (mg/L)	30	44	~15
Alkalinity (mg/l)	275	210	340
Chloride (mg/l)	115	140	89
Tannins and Lignins (mg/L)	0.8	0.92	0.7
Chlorophyll A (ug/l)	81	137	25.3
Turbidity (NTU)	8	11	4.9
CO2 (ug/l)	165	130	200
Sediment			
pH (su)	8.0	7 89	8 11
Nitrate (mg/kg)	<10	<10	<10
Phosphorous (mg/kg)	1495	690	2300
Sodium (mg/kg)	595	300	890
Aluminum (mg/kg)	9400	9700	9100
Arsonic (mg/kg)	0.7	0.54	0.78
Barium (mg/kg)	20	18	0.70
Calcium (mg/kg)	57500	22000	02000
Calcium (mg/kg)	57500	23000	92000
Cabilt (mg/kg)	0.22	~0.10	~0.20
Cobalt (IIIg/Kg)	2.1	3.4	2
	4.4	4.1	4./
	14.5	1/	12
Magnagium (m = // =)	5550	6200	4900
Magnesium (mg/kg)	1900	1700	2100
Manganese (mg/kg)	185	200	1/0
Lead (mg/kg)	11.5	9.9	13
Strontium (mg/kg)	1755	810	2700
Litanium (mg/kg)	99	68	130
Vanadium (mg/kg)	15	14	16
Zinc (mg/kg)	14	15	13
Mercury (mg/kg)	0.021	~0.019	0.023
Ammonia as N (mg/kg)	34	65	2.1
Total Phosphorous (mg/kg)	1495	690	2300
Orthophosphorous (mg/l)	2.6	~1.6	3.5
Sulfate (mg/kg)	<100	<100	<100
Sulfide (mg/kg)	36	47	25
TOC (mg/kg)	38500	42000	35000

ATTACHMENT 16E COMPARISON OF SURFACE WATER AND SEDIMENT QUALITY, EASTERN OFFSITE 2001

Surf. Wat. Feb/Mar/ Apr-01	Average	9	12
Ammonia (mg/l)	0.04	0.04	n/a
Temperature (deg C)	28.2	27.4	28.9
Dissolved Oxygen (mg/l)	7.335	3.26	11.41
BOD (mg/l)	9.34	0.75	17.93
Fecal (cols/ 100 ml)	295	440	150
Streptococci (cols/ 100 ml)	455	510	400
TSS (mg/l)	8.5	3	14
pH (su)	7.98	7.62	8.34
Salinity (ppt)	0.15	0.3	0
Nitrate (mg/l)	2.36	4.72	<.01
Phosphates (mg/l)	0.08	0.13	0.03
Sediment 2001			
Sodium (mg/kg)	2020	2020	
Aluminum (mg/kg)	7050	7050	
Arsenic (mg/kg)	3.9	3.9	
Barium (mg/kg)	44.3	44.3	
Calcium (mg/kg)	179000	179000	
Cadmium (mg/kg)	0.5	0.5	
Cobalt (mg/kg)	2.5	2.5	
Chromium (mg/kg)	70.3	70.3	
Copper (mg/kg)	54.2	54.2	
Iron (mg/kg)	6180	6180	
Magnesium (mg/kg)	6670	6670	
Manganese (mg/kg)	77.1	77.1	
Lead (mg/kg)	55	55	
Strontium (mg/kg)	5730	5730	
Titanium (mg/kg)	0.5	0.5	
Vanadium (mg/kg)	108	108	
Zinc (mg/kg)	198	198	
Mercury (mg/kg)	0.11	0.11	
Phosphorous (mg/kg)	2410	2410	

ATTACHMENT 16E COMPARISON OF SURFACE WATER AND SEDIMENT QUALITY, EASTERN OFFSITE 2002

Surface Water Apr-02	Average	9	12
Ammonia	0.045	0.017	0.072
Temperature (deg C)	29.9	27.3	32.5
Dissolved Oxygen (mg/l)	5.16	3.22	7.09
BOD (mg/l)	8.83	9.58	8.07
Fecal (cols/ 100 ml)	644	962	326
Streptococci (cols/ 100 ml)	383	494	272
TSS (mg/l)	20	10	30
pH (su)	7.84	7.53	8.15
Salinity (ppt)	2.09	0.6	3.58
Sodium (mg/l)	677	104	1250
Nitrate (mg/l)	5.3	10.6	< 0.02
Phosphates (mg/l)	0.019	0.037	<0.005
Copper (mg/l)	0.0064	0.0018	0.011
Iron (mg/l)	0.07	0.05	0.088
Potassium (mg/l)	29	7	51
Magnesium (mg/l)	102	38	166
Sodium (mg/l)	677	104	1250
Lead (mg/l)	0.001	<0.0005	0.0021
Mercury (mg/l)	< 0.00005	<0.00005	< 0.00005
Zinc (mg/l)	0.004	0.008	<0.005
Sediment Dec 02			
Sodium (mg/kg)	3700	1600	5800
Aluminum (mg/kg)	13900	11400	16400
Arsenic (mg/kg)	2.7	2.3	3.1
Barium (mg/kg)	73	69.1	77
Calcium (mg/kg)	270500	275000	266000
Cadmium (mg/kg)	0.37	0.33	0.41
Cobalt (mg/kg)	3.1	2.9	3.2
Chromium (mg/kg)	20.5	24.7	16.2
Copper (mg/kg)	25.3	27.7	22.8
Iron (mg/kg)	9905	9610	10200
Magnesium (mg/kg)	11800	8400	15200
Manganese (mg/kg)	143	111	175
Lead (mg/kg)	105.6	91.2	120
Strontium (mg/kg)	6400	4280	8520
Titanium (mg/kg)	110	87	133
Vanadium (mg/kg)	72	97	47
Zinc (mg/kg)	52.6	76.3	28.9
Mercury (mg/kg)	< 0.05	<0.05	<0.05

ATTACHMENT 16E COMPARISON OF SURFACE WATER AND SEDIMENT QUALITY, EASTERN OFFSITE 2010

Feb-10				
Surface Water		9A	13	14
Ammonia as N (mg/l)	0.14	0.1	0.12	0.19
Temperature (deg C)	26.7	26.3	26.2	27.7
Dissolved Oxygen (mg/l)	2.18	1.62	2.50	2.42
BOD (mg/l)	1.63	<2.00	2.16	2.73
Fecal (cols/ 100 ml)	290	600	40	230
Streptococci (cols/ 100 ml)	790	240	130	2000
Enterococci (cols/ 100 ml)	610	79	150	1600
TSS (mg/l)	66	16	31	150.0
pH (su)	7.46	7.55	7.53	7.31
Salinity (ppt)	0.7	0.8	0.5	0.8
Sodium (mg/l)	177	210	110	210
Nitrate (mg/l)	2.04	<0.10	5.8	~0.33
Phosphorous (mg/l)	< 0.10	< 0.10	< 0.10	<0.10
Copper (mg/l)	<0.0029	<0.0029	<0.0029	<0.0029
Iron (mg/l)	0.26	~0.12	0.34	0.33
Potassium (mg/l)	16	17	11	20
Magnesium (mg/l)	45	41	42	53
Sodium (mg/l)	177	210	110	210
Lead (mg/l)	<0.0020	<0.0020	<0.0020	<0.0020
Mercury (mg/l)	<0.0020	<0.0020	<0.0020	<0.0020
	0.000072	0.022	~0.018	0.03
Nitrite as N (mg/l)	0.025	<0.022	~0.16	<0.00
Sulfate (mg/l)	0.03	<0.10 69	70.10	<0.10
Sulfido (mg/l)	-10	-1 0	/1	-1.0
	17	<1.0	<1.0	<1.0
	17	20	200	210
Chlorido (mg/l)	293	290	260	200
	203	340	160	290
Chlerenbyll A (ug/l)	0.9	1.2	0.5	1.0
	30	29.0	14.9	04.2
	34	5.7	110	/9
	137	130	110	170
Sediment				
pH (su)	7 41		7 41	
Nitrate (mg/kg)	<10		<10	
Phosphorous (mg/kg)	360		360	
Sodium (ma/ka)	430		430	
Aluminum (mg/kg)	4200		4200	
Arsenic (mg/kg)	0.57		0.57	
Barium (mg/kg)	10		10	
Calcium (mg/kg)	60,000		60 000	
Cadmium (mg/kg)	~0.007		~0.007	
Cabalt (mg/kg)	~0.097		~0.097	
Cobait (Ing/Kg)	4.0		4.0	
Coppor (mg/kg)	4.2		4.2	
	2500		2500	
Magraacium (mag/kg)	2500		2500	
Magnesium (mg/kg)	2100		2100	
Manganese (mg/kg)	53		53	
Lead (mg/kg)	5.4		5.4	
Strontium (mg/kg)	3100		3100	
litanium (mg/kg)	43		43	
Vanadium (mg/kg)	6.4		6.4	
Zinc (mg/kg)	21		21	
Mercury (mg/kg)	0.023		0.023	
Ammonia as N (mg/kg)	46		46	
Total Phosphorous (mg/kg)	360		360	
Orthophosphorous (mg/l)	~1.3		~1.3	
Sulfate (mg/kg)	<100		<100	
Sulfide (mg/kg)	<25		<25	
TOC (mg/kg)	57000		57000	

ATTACHMENT 17

Pesticide Uses, Effects and Standards

ATTACHMENT 17 PESTICIDE USES, EFFECTS AND STANDARDS

Compound	Target	Use	Barbados Proposed Marine Std	Florida SW Std.	Florida GW Cleanup
	Organ			FDEP Rule 62-302	Target Level
Dieldrin	Carcinogen - Liver	Insecticide used extensively on crops such as cotton from the 1950's	Any Laboratory Detection	<0.00014 ug/l	0.002 ug/l
		and for termites, Barbados asceeded to the Stockholm Convention on			
		Persistent Organic Chemicals (POPs), banning their use, in 1984			
		Fish or animals that eat dieldrin-contaminated materials store a large amount			
		of the dieldrin in their fat. Animals or fish that eat other animals have levels			
		of dieldrin in their fat many times higher than animals or fish that eat plants.			
Chlordano	Caroinogon Livor	Similar to dialdrin	Any Laboratory Detection	<0.00050.ug/l	2* ug/l
Chiordane	Garcinogen - Liver		Any Laboratory Detection	<0.00039 ug/1	2 ug/i
Malathion	Neurological	Commonly used to control mosquitoes and a variety of insects that attack	Any Laboratory Detection	0.1 ug/l	140 ug/l
	×	fruits, vegetables, landscaping plants, and shrubs			~
4,4 DDE	Carcinogen	Biodegradation product of DDT. DDT was commonly used on cotton, field crops	Any Laboratory Detection	N/A	0.1 ug/l
		vegetables and livestock. DDT is part of the Stockholm Convention on POPs			
Heptachlor epoxide	Carcinogen - Liver	Heptachlor epoxide is formed when heptachlor breaks down in the environment.	Any Laboratory Detection	N/A	0.2* ug/l
		Heptachlor is used primarily against soil insects and termites, but also against			
		cotton insects, grasshoppers, and malaria mosquitoes			
		Heptachlor is part of the Stockholm Convention on POPs			

* - Florida Drinking Water Standard

ATTACHMENT 18

Benthic Analysis Terra Environmental Report

Analysis of Benthic Samples Collected from the Graeme Hall Nature Preserve, Barbados

Submitted to: Environmental Engineering Consultants, Inc. 5119 N. Florida Avenue Tampa, Florida 33603

> Submitted by: Terra Environmental Services, Inc. 101 16th Avenue S. Suite 4 St. Petersburg, Florida 33701

April 9, 2010

BACKGROUND

Terra Environmental Services, Inc. (Terra) was contracted by Environmental Engineering Consultants, Inc. (EEC) to process and analyze benthic grab samples collected from the lagoon located in the Graeme Hall Nature Preserve, Barbados, as part of a comprehensive assessment of current environmental conditions in the Preserve. The Graeme Hall Nature Preserve supports the only red mangrove (*Rhizophora mangle*) and herbaceous marsh community in Barbados (Ramcharan, 2005). Although originally open to the ocean, tidal flow into the lagoon has been reduced over time.

Samples were collected by EEC from 10 locations throughout the preserve (see map) on February 11 and 12, 2010 with a petite ponar grab sampler (0.023 m^2) deployed from a small boat. At each location, replicate grab samples of sediment were collected. One replicate was sieved (500 µm) and fixed with 10% buffered formalin for identification and enumeration of benthic macroinvertebrates. The second replicate (unsieved and not fixed) was collected for sediment analysis (grain size, calcium carbonate, and total organic matter).

Samples were received by Terra on February 16, 2010. Analysis of sediment characteristics was performed at the Eckerd College Sediment Laboratory, under the direction of Dr. Gregg Brooks.

METHODS

Benthic Macroinvertebrates

In the laboratory, samples were rinsed to remove formalin and separated (with sieves) into "coarse" (>5 mm) and "fine" (>500 μ m) fractions. Aliquots of material (organisms and sediment) were placed onto 18" x 14" fiberglass sorting trays and examined closely; organisms were carefully removed with forceps and placed into one of four labeled vials (Annelids, Molluscs, Arthropods, and Other) containing 70% ethanol. This process was repeated until the entire sample was sorted.

Following sorting, organisms were enumerated and identified to the lowest practical taxonomic level using appropriate taxonomic keys, and results were recorded on laboratory bench sheets and entered into Excel spreadsheets.

A diversity index is a statistic intended to measure the biodiversity of an ecosystem. The simplest estimate of diversity is species richness (S), calculated as the number of identified species (or in this case, taxa). The higher the value of S, the greater the diversity. Species richness, however, does not consider the relative abundances of the various taxa. Shannon's Diversity Index (H') takes into account both the number of species and the evenness of the species (how the number of individuals is distributed among the taxa). Thus the index is increased by either having more species or a greater evenness. Similarly, Simpson's Diversity Index (1-D) takes into account both the number of species and the relative abundance of each species. It can range from 0 (no diversity) to 1 (infinite diversity). The Bray-Curtis Similarity is a statistic used to quantify the compositional similarity (based on common taxa) among sampling

sites. A value of 0 indicates two sites have no shared species and a value of 1 indicates that two sites have the same composition. For this project, Shannon's Index (H') and Simpson's Index (1-D) values were calculated for each station and a Bray-Curtis similarity dendogram was produced using the PAST statistical software package.

Sedimentology

Grain size was determined by initially wet sieving the sample through a 63 μ m screen. The sand and gravel-size (>63 μ m) fractions were then analyzed using a settling tube (Gibbs, 1974), and the percentage of each size interval within the sand/gravel fraction was calculated using the settling rate (Stoke's Law). The fine-size (<63 μ m) fractions were also determined based on settling rates using a pipette (Folk, 1965). From this the percentages of silt and clay-size sediments were calculated. Data from both analyses were combined, and results were expressed as mean grain size, % gravel, % sand, % silt ,% clay and % mud (silt+clay). Note, mean grain size is expressed in phi (Φ) units, where $\Phi = -\log_2$ (grain diameter in mm). Hence, the larger the Φ value the finer the grain size. For reference, the sand/mud boundary is 4 Φ .

Calcium carbonate content was determined by the acid leaching method of Milliman (1974). A 10% hydrochloric acid solution was added to a pre-weighed sample. After the reaction reached completion (all calcium carbonate was dissolved), each sample was washed four times, dried and weighed again. The difference in weight represented the calcium carbonate fraction.

Total organic matter (TOM) was determined as weight loss on ignition (Dean, 1974). Approximately 1.0 g of insoluble residue (i.e. the sediment remaining after acid leaching) was ashed in a muffle furnace at 550° C for at least 2.5 hours. The sample was weighed again and the difference in weight represented the total organic matter in the sample.

RESULTS

Benthic Macroinvertebrates

A total of 777 benthic macroinvertebrates comprising 17 taxa was identified in the ten samples (Table 1). Only two taxa were recovered from Station B-9. The greatest number of taxa (seven) was found at Station B-8. The greatest number of individuals (244) occurred at Station B-7 and the lowest number of individuals (seven) was found at Station B-2. Accordingly, the number of individuals m^{-2} ranged from 304 at Station B-2 to 10,609 at Station B-7 (Table 2). The average density of organisms (all stations) was 3,378 individuals m^{-2} .

Of the 17 taxa identified, eight were Annelids (oligochaetes), four were Molluscs (gastropods), and five were Arthropods (insect larvae).

Biodiversity values are summarized in Table 2. The lowest biodiversity occurred at Station B-9, which had the fewest number of taxa (2), the lowest Shannon Index (0.133), and the lowest Simpson Index (0.057). The greatest biodiversity was found at Station B-4, where Shannon's Index was 1.257 and Simpson's Index was 0.656.

Calculation of the Bray-Curtis Similarity Index revealed that Stations B-6 and B-10 were most similar and Stations B-6, B-7, B-8, B-9, and B-10 were more similar than the other stations (Figure 1).

Sedimentology

Results of the sediment analyses are provided in Table 3. Although there was a fair amount of variability, the sediments of the Graeme Hall lagoon were relatively fine, had a high organic content and a high carbonate content. The mean phi value was over 4.0 at six of the ten stations, and ranged from 2.2 to 7.5. Total organic matter ranged from 5.3 to 41.3 percent. Percent carbonate ranged from 43.1 to 86.7.

SYNTHESIS

The benthic macroinvertebrates found in the Graeme Hall Nature Preserve lagoon were exclusively freshwater taxa, primarily oligochaetes, gastropods, and chironomids (larval insects). This was supported by the field measurements of salinity, which ranged from 0.9 to 2.0 ppt at the ten locations.

The number of taxa collected in the samples and both Shannon and Simpson diversity indices all indicate a relatively low biodiversity in the Graeme Hall lagoon. According to Bass (2003), however, this is not unusual for freshwater communities on small Caribbean islands, such as Barbados, given their small size, isolated nature, and frequent disturbances to freshwater environments. There is evidence of sudden disturbance to the freshwater community of the Graeme Hall Nature Preserve. Eight of the ten samples examined for this project contained numerous dead gastropod shells (mostly *Melanoides tuberculatus* and *Hydrobiidae* spp.) that appeared to be in otherwise good condition. This might be the result of low dissolved oxygen levels occurring at night and exacerbated by the high organic content of sediments and high water temperature.

The most similar stations (B-6 through B-10), as indicated by the Bray-Curtis analysis, were all located in the central portion of the lagoon. The remaining stations were in surrounding canals. Station B-2, located far up the canal on the eastern side of the lagoon had the greatest diversity and was least similar to all other stations, probably because of its relatively isolated location.

The sediment analyses supported the taxonomy. The high organic content was observed as leaves and filamentous algae. The high carbonate content in several of the samples could be attributed at least in part to the large number of gastropod shells. The station with the highest carbonate content (B-1) was located in the canal closest to the original connection to the ocean, so it is also possible that most, if not all of the carbonates were deposited as marine sediments before the tidal flow was restricted. The relatively small grain size overall is indicative of sediment derived from land drainage and poor circulation in the lagoon itself. The station with the highest percent mud was station B-5, located in the northeastern corner of the lagoon where there is probably minimal circulation. Station B-3 had the highest organic content, possibly

because of its location in a restricted portion (southwest corner) of the canal surrounding that portion of the lagoon.

The lagoon in the Graeme Hall Nature Preserve originated as a marine embayment that supported establishment of the red mangrove community (Ramcharan, 2005). Over time, connectivity to the ocean has been reduced by natural and anthropogenic processes. At present, the lagoon supports a freshwater benthic community that is typical of a pond or lagoon on a Caribbean island characterized by high organic input and poor circulation, resulting in low biodiversity (Bass, 2003). If connectivity to the ocean were re-established, it is likely that the biodiversity of the lagoon would increase. For example, Sheridan (1997) examined the benthos of red mangrove and associated habitats in Rookery Bay, Florida, and found over 300 taxa at densities averaging from 22,591 to 52,914 individuals m⁻². Red mangroves communities normally function to provide high densities of small prey items for mobile consumers, including commercially important species such as oysters, blue crabs, pink shrimp, mullet, and snook (Odum et al., 1982).

LITERATURE CITED

- Bass, D., 2003. A comparison of freshwater macroinvertebrate communities on small Caribbean islands. BioScience 53: 1094-1100.
- Dean, W.E., 1974. Determination of carbonate and organic matter in calcareous sediments and sedimentary rocks by loss on ignition: comparison with other methods. Journal of Sedimentary Petrology 44(M): 242-248.
- Folk, R.L. (Editor), 1965. Petrology of sedimentary rocks. Hemphills, Austin. 170 pp.
- Gibbs, R.J., 1974. A settling tube for sand-size analysis. Journal of Sedimentary Petrology 44: 583-588.
- Milliman, J.D., 1974. Marine carbonates. Springer-Verlag, New York. 375 pp.
- Odum, W.E., C.C. McIvor, and T.J. Smith, III, 1982. The ecology of the mangroves of south Florida: a community profile. U.S. Fish and Wildlife Service, Office of Biological Services, Washington, D.C. FWS/OBS-81/24. 144 pp.
- Ramcharan, E.K., 2005. Late Holocene ecological development of the Graeme Hall Swamp, Barbados, West Indies. Caribbean Journal of Science 41: 147-150.
- Sheridan, P., 1997. Benthos of adjacent mangrove, seagrass and non-vegetated habitats in Rookery Bay, Florida, U.S.A. Estuarine, Coastal and Shelf Science 44: 455-469.

Table 1.

.

Numbers of benthic macroinvertebrates by taxa found at each station in the Graeme Hall Nature Preserve

Taxa	(Phylum) *	6−1, [(<u>8</u> 2)	B-3	B-4	B-5	B-6	B-7.	B-8	B-9 🦽	B-10
Tubificoid Naididae spp.	Annelida	20		212	1						
Limnodriloidinae spp.	Annelida	1									
Limnodrilus hoffmeisteri	Annelida			3							
Naidinae spp.	Annelida		1					5	6		2
Pristina nr. plumaseta	Annelida	•		4	6						1
Dero furcata	Annelida								1		
Dero pectinata	Annelida					1	19	19	12	1	28
Dero nr. obtusa	Annelida				_			1	6		
Haitia cubensis	Mollusca		4								
Pyrgophorus platyrachis	Mollusca	4				4		7	3		3
Melanoides tuberculatus	Mollusca	_			1						
Planorbidae spp.	Mollusca		1								
Talitridae spp.	Arthropoda			1							
Hyalella spp.	Arthropoda				12						
Chironomidae spp.	Arthropoda						1	9	1	_	1
Chironomus spp.	Arthropoda				4	8	35	203	63	33	25
Goeldichironomus spp.	Arthropoda		1	3	•						

Table 2.

Number of macroinvertebrate taxa (S), individuals, individuals per m², Shannon's Diversity Index (H') and Simpson's Diversity Index (1-D) found at each station in the Graeme Hall Nature Preserve

Parameter	B-1 ™ 1	B-2	B-3	B:4	⊧ B- 5 ₀, ,	B-6	_B ¹ 7/	(B :8)	B-9". *	B-10*
Number of Taxa	3	4	5	5	3	3	6	7	2	6
Number of Individuals	25	7	223	24	13	55	244	92	34	60
Shannon's Index (H')	0.601	1.154	0.260	1.257	0.859	0.728	0.678	1.091	0.133	1.120
Simpson's Index (1-D)	0.333	0.612	0.096	0.656	0.521	0.475	0.299	0.504	0.057	0.604

Table 3.

Station	% Gravel	% Sand	% Silt	% Clay	% Mud	Mean Φ*	% CaCO ₃	% TOM
B-1	1.5	61.3	2.2	1.3	3.4	4.35	86.7	5.3
B-2	0.0	89.3	0.3	0.3	0.6	2.75	85.8	11.3
B-3	56	25.8	0.8	0.4	12	5.85	43.1	41.3
B-4	15.2	41.6	16	0.8	24	3.91	81.6	14.9
B-5	1.2	12.7	3.2	1.4	46	6.53	51.0	28.5
B.6	4.6	10.9	0.5	0.9	1.5	7.45	46.6	31.8
B-7	<u></u>	19.6	0.0	0.7	2.8	5.47	60.8	14.6
	<u></u>	80.5	1.2	0.7	2.0	2.07	84.0	5.8
D-0	40:2	19.6	0.5	0.5	1.0	2.51	69.E	15.0
D-9	49.2	20.0	0.5	0.5	1.0	2.10	60.7	- 15.8
В-10	21.4	30.2	1.0	0.7	2.3	4.04	52.7	25.7
	49.2	10.0	0.3	0.3	4.6	2.2	43.1	41.3

Grain size, percent CaCO₃, and percent total organic matter for sediment collected at each benthic station

 $^{*}\Phi$ = -log₂ (grain dia. in mm)

•

Figure 1. Dendogram of Bray-Curtis Similarity Index based on distribution of macroinvertebrate taxa found at the Graeme Hall Nature Preserve

ATTACHMENT 19

GHNS Biological Report Comments Regarding Fishkill Events 2000-2003

and

Ryan Chenery Log of Fishkills 2006-2009

ATTACHMENT FISH KILL DATA

Date	Precipitation (mm)	Dead fish counted
May'00	90.44	
June'00	74.66	
July'00	92.72	
August'00	69.84	8
September'00	163.84	56
October'00	108.99	128
November'00	345.44	
December	134.89	
January'01	33.78	
February'01	43.42	
March'01	5.84	
April'01	18.53	
May'01	41.42	
June'01	61.62	
July'01	258.84	36
August'01	139.43	
September'01	91.93	3000*
August'06	148.9	88
August-October'07	489	110
October'08	330.8	200
Summer 2009	n/a	50

* 2010 Email from S. Heaslet

September, 2001: The recent fish kill appears to have been so dramatic because of changes in the water flow pattern of storm water drainage following works by the Drainage unit from the Ministry of Transport and Public Works earlier this year.

Evidence now indicates that oxygen depletion was the cause of the fish kill event. Tests of dissolved oxygen in the swamp on Monday showed extremely low levels of dissolved oxygen at the base of the lake. Further experiments showed that when sediment was stirred from the floor, an almost instant decrease on dissolved oxygen resulted. The primary cause of this effect would be the exposure of previously buried sediments to the water column, creating an instant increase in biological oxygen demand. A secondary effect from the stirring of these sediments being the exposure of additional nutrients creating increased aerobic bacterial growth. The new flow pattern of storm water drainage into the lake appears to have created significant disturbance to established layers of sediment from the eastern side of the swamp, with the freshly exposed sediment being carried into the lake.

It also appears that the new inflow pattern of this water into the lake had the effect of stirring the sediment from the floor of the lake itself resulting in the effects described above. These factors culminating in the death of up to 3,000 fish.

Sweeney (the Assistant Director of the Sanctuary at the time) commented on this subject "Given the complex problems of managing the swamp environment in a way that protectsnature and local biodiversity, but which also allows for the interests of other local stake holders to be taken into account, will require continued cooperation between the sanctuary and government environmental agencies and the future assistance of government when ecological problems are identified".

ATTACHMENT

GHNS Biological Repoi	rts Notable Comments
-----------------------	----------------------

Date	Page	Topic	Noted or discussed
08/00	5	Fish	8 dead fish. Rainfall had been heavy
08/00 09/00 09/00 10/00	5 15 18 9	Fish Fish Fish Fish K Analytics Fish	 8 dead fish. Rainfall had been heavy 56 dead tilapia and tarpon "mainly in the lake and pond number one (which is connected to the lake. The fish were predominantly large fish (approximately 0.5 to 1.0 m in length) of tilapia species and tarpon species although some were not identified. More dead fish were found following heavy rainfall and the number decreased as the month progressed and the rainy conditions cleared." Two tables: Fish kills & Water Quality Analysis 128 dead "in the lake and the pond connected to the lake (see appendix 1). This generally follows heavy rainfall and high temperatures. The rainfall may increase mixing within the water column and hence the demand for oxygen, high water temperature is associated with reduced gas retention. These factors
			may have contributed to the death of the fish."
4/01		Fish	No fish kill
5/01		Fish	No dead fish
6/01	5	Fish	"no major fish kill"
7/01	4	Fish	36 dead tilapia
04/00	8	Effluent	Laundry
04/00	12	Table	List of wild plants
05/00	7	Bio-indicators	Discussed
05/00	6-7	Effluent	Section 2.1.2 "The biggest concern of the Site Diclosist
		Linuent	Section 2.1.2. The biggest concern of the Site Biologist
		Linuent	is that in the event of effluent outfall from the South
		Emuent	is that in the event of effluent outfall from the South Coast Sewerage Project into the Eastern side, sewage
		Emuent	is that in the event of effluent outfall from the South Coast Sewerage Project into the Eastern side, sewage can enter the west side more easily. In response to the concern about the holding container for the sewerage
		Emuent	is that in the event of effluent outfall from the South Coast Sewerage Project into the Eastern side, sewage can enter the west side more easily. In response to the concern about the holding container for the sewerage adjacent to the sluice gate in the event of an
		Lindent	is that in the event of effluent outfall from the South Coast Sewerage Project into the Eastern side, sewage can enter the west side more easily. In response to the concern about the holding container for the sewerage adjacent to the sluice gate in the event of an emergency"
05/00		more	is that in the event of effluent outfall from the South Coast Sewerage Project into the Eastern side, sewage can enter the west side more easily. In response to the concern about the holding container for the sewerage adjacent to the sluice gate in the event of an emergency"
05/00	5	more Effulent	is that in the event of effluent outfall from the South Coast Sewerage Project into the Eastern side, sewage can enter the west side more easily. In response to the concern about the holding container for the sewerage adjacent to the sluice gate in the event of an emergency"
05/00 06/00 06/00	<u> </u>	more Effulent Mangroves	is that in the event of effluent outfall from the South Coast Sewerage Project into the Eastern side, sewage can enter the west side more easily. In response to the concern about the holding container for the sewerage adjacent to the sluice gate in the event of an emergency"
05/00 06/00 06/00 06/00	5 18 20	more Effulent Mangroves Mangroves	is that in the event of effluent outfall from the South Coast Sewerage Project into the Eastern side, sewage can enter the west side more easily. In response to the concern about the holding container for the sewerage adjacent to the sluice gate in the event of an emergency" laundry Discussion of the "Ecological Significance and Uses" Lists mangrove associates
05/00 06/00 06/00 06/00 06/00	5 18 20 21	more Effulent Mangroves Mangroves Mongoose	is that in the event of effluent outfall from the South Coast Sewerage Project into the Eastern side, sewage can enter the west side more easily. In response to the concern about the holding container for the sewerage adjacent to the sluice gate in the event of an emergency" laundry Discussion of the "Ecological Significance and Uses" Lists mangrove associates Life history
05/00 06/00 06/00 06/00 06/00 06/00	5 18 20 21 9	more Effulent Mangroves Mangroves Mongoose Tadpoles	is that in the event of effluent outfall from the South Coast Sewerage Project into the Eastern side, sewage can enter the west side more easily. In response to the concern about the holding container for the sewerage adjacent to the sluice gate in the event of an emergency" laundry Discussion of the "Ecological Significance and Uses" Lists mangrove associates Life history still present
05/00 06/00 06/00 06/00 06/00 06/00 07/00	5 18 20 21 9 18	more Effulent Mangroves Mangroves Mongoose Tadpoles History	is that in the event of effluent outfall from the South Coast Sewerage Project into the Eastern side, sewage can enter the west side more easily. In response to the concern about the holding container for the sewerage adjacent to the sluice gate in the event of an emergency" laundry Discussion of the "Ecological Significance and Uses" Lists mangrove associates Life history still present Of Graeme Hall Swamp includes intro of tilapia in the
05/00 06/00 06/00 06/00 06/00 06/00 07/00	5 18 20 21 9 18 19	more Effulent Mangroves Mangroves Mongoose Tadpoles History	Section 2.1.2. The biggest concern of the Site Biologist is that in the event of effluent outfall from the South Coast Sewerage Project into the Eastern side, sewage can enter the west side more easily. In response to the concern about the holding container for the sewerage adjacent to the sluice gate in the event of an emergency" laundry Discussion of the "Ecological Significance and Uses" Lists mangrove associates Life history still present Of Graeme Hall Swamp includes intro of tilapia in the 20's and 50's
			water through the sluice gate."
-------	----	-------------------	--
08/00	5	<mark>Fish</mark>	8 dead fish. Rainfall had been heavy
08/00		more	
09/00	15	<mark>Fish</mark>	56 dead tilapia and tarpon "mainly in the lake and pond
			number one (which is connected to the lake. The fish
			were predominantly large fish (approximately 0.5 to 1.0
			m in length) of tilapia species and tarpon species
			although some ere not identified. More dead fish were
			found following heavy rainfall and the number
			decreased as the month progressed and the rainy
			conditions cleared."
09/00	18	Fish & Analytics	Two tables: Fish kills & Water Quality Analysis
09/00		more	
10/00	4	Algae	"The aquatic areas are becoming overgrown with algae
			and water lilies."
10/00	8	Ammonia	"Ammonia was added to the parameters ("to be
			investigated") since birds produce a significant amount
			of uric acid in their waste for which ammonia is a
			component. Ammonia is also toxic in significant
			amounts."
10/00	10	Birds	"There appear to be more ospreyssemi-palmated
			ploversgreen-backed heronsgreat blue herons
			and belted kingfishers"
10/00	9	Fish	128 dead "in the lake and the pond connected to the
			lake (see appendix 1). This generally follows heavy
			rainfall and high temperatures. The rainfall may
			increase mixing within the water column and hence the
			demand for oxygen, high water temperature is
			associated with reduced gas retention. These factors
			may have contributed to the death of the fish."
10/00	6	Sampling	"The sampling regime was further altered following
			discussions with Prof. Wayne Hunte (Director, Natural
			Resources Management Unit, University of the West
			Indies)"
11/00	7	Data	"data from the heavy metal and microbial analysis
			will be displayed in a separate document"
11/00	4	Sluice gate	"The sluice gate was open for some time and the water
			levels have dropped considerably with some loss of
			aquatic algae."
12/00	7	Ammonia	Notes "some substations where high levels of
			ammonia" were measured "including substation 10, the
			egret roost. The faeces from the birds contain uric acid
			that is a source of ammonia via the nitrogen cycle."
12/00	4	Ammonia &	More justification for modifications to tests
		nitrate	
12/00	6	Ammonia	"The amounts of nitrate, ammonia and nitrite (not

		nitrate & nitrite	measured) can vary depending on the amount of		
			animals, nitrifying bacteria with the nitrogen cycle and		
			the buffering capacity of the water.		
12/00	6	Nitrate	Describes measurement methodology		
01/01	5	Algae	Tray still overgrown with macro-algae		
1/01	5	DO	Irregular DO readings		
2/01	5	Data	Accuracy of new vs inaccuracy of old water quality data		
2/01	5	DO	DO meter problems – data not provided		
3/01	5	mangrove	Seedlings planted on boardwalk berm had died		
3/01	6	Metals	Heavy metals were detected		
3/01	4	mosquito	No larvae found – feeder ponds had dried up		
3/01	7	Objectives	1) Changes in water quality related to Sanctuary		
		5	activities		
			2) Identify water quality of input sources		
			3) Compliance to relavent water quality standards		
3/01	6	Recom-	"Pesticides, herbicides and heavy metals should be		
		mendation	scanned once again in the wet season"		
4/01	4	data	Discussion about the inaccuracy of data.		
4/01		fish	No fish kill		
4/01		Water quality	Degraded swamp comment: "it would be rash to apply		
		&	stringent (water quality) standards to a degraded swamp		
		swamp	without further investigation."		
		-	Comment found		
5/01		<mark>fish</mark>	No dead fish		
5/01	3,4	Questionable	A BMT for the government of Barbados outlined the		
	-	government	problems experienced on the South coast and gave		
		comments	recommendations for the restoration of coastal and		
			associated habitats. It highlighted the problems facing		
			the Sanctuary. "The document is strongly worded and		
			there were some questionable statements, speculations		
			and generalizations within the document pertaining to		
			water quality, type of fish, function of the swamp and		
			the connection to the sea."		
6/01	5	fish	"no major fish kill"		
7/01	4	fish	36 dead tilapia		
07/05			Several hundred thousand gallons of effluent		
			discharged from WWTP		

Email from Stuart Heaslet:

* September, 2001: The recent fish kill appears to have been so dramatic because of changes in the water flow pattern of storm water drainage following works by the Drainage unit from the Ministry of Transport and Public Works earlier this year.

Evidence now indicates that oxygen depletion was the cause of the fish kill event. Tests of dissolved oxygen in the swamp on Monday showed extremely low levels of dissolved

oxygen at the base of the lake. Further experiments showed that when sediment was stirred from the floor, an almost instant decrease on dissolved oxygen resulted. The primary cause of this effect would be the exposure of previously buried sediments to the water column, creating an instant increase in biological oxygen demand. A secondary effect from the stirring of these sediments being the exposure of additional nutrients creating increased aerobic bacterial growth. The new flow pattern of storm water drainage into the lake appears to have created significant disturbance to established layers of sediment from the eastern side of the swamp, with the freshly exposed sediment being carried into the lake. It also appears that the new inflow pattern of this water into the lake had the effect of stirring the sediment from the floor of the lake itself resulting in the effects described above. These factors culminating in the death of up to 3,000 fish.

Sweeney (the Assistant Director of the Sanctuary at the time) commented on this subject "Given the complex problems of managing the swamp environment in a way that protects nature and local biodiversity, but which also allows for the interests of other local stake holders to be taken into account, will require continued cooperation between the sanctuary and government environmental agencies and the future assistance of government when ecological problems are identified".

Ryan Chenery's Log of Fish Kills 2006 - 2009

From: Ryan Chenery

Sent: Thursday, April 08, 2010 7:58 PM

To: Richard pryor

Subject: RE: Septic

Hi Richard,

Stuart called to ask whether i had any info. on fish and crab kill numbers and dates. My records show that there were fish kills in 2006, 2007 and 2008.

August 2006 --- 88 dead Tilapia

August - October 2007 --- 110 dead Tilapia

October 2008 --- 200 dead Tilapia

There was another fish kill in 2009 but i can't seem to find the numbers or date. But as i was the one who had to collect and dump the dead fish i do however have an idea of the numbers. c. 50 dead Tilapia were removed. All Tilapia died in the shallow side of the lake i.e. the area of water west of the boardwalk. The majority were fully grown adults.

In terms of crab deaths, the figures that i have state that between late April and early May -- 22 dead Blue Land Crabs were discovered in and around the canal by the office and along the path which runs from the gift shop and stretches towards the Migratory Exhibit. Between June and July a further 28 Blue Land Crabs died in the area behind Lucky Horseshoe and outside the office and in the parking lot.

Hope this is helpful.

Ryan

ATTACHMENT 20

University of Florida – Tilapia and Crab Analysis

Dr. Denise Petty - March 30, 2010

College of Veterinary Medicine Department of Large Animal Clinical Sciences Finfish and Shellfish Health Laboratory 7922 NW 71st St. PO Box 100136 Gainesville, FL 32653 352-273-3612 Phone 352-392-3672 Fax

March 30, 2010

Environmental Engineering Consultants 5119 N Florida Ave. Tampa, FL 33603

Seven dead tilapia (appeared to be *Oreochromis mossambicus*) were submitted to my laboratory February 11, 2010. All 7 fish appeared to be in good body condition, ranging in total length from 210-335 mm, and in weight from 162-628 g. All fish had abrasions and associated scale loss just above the operculum (see Photo 1). One fish was missing one eye; however, the orbit did not appear to be inflamed. Otherwise, no significant lesions were observed on the external surface of the fish.

Microscopic examination:

All fish had excessive mucus on skin, fins and gills. This could be a result of handling. A moderate number of granular cells (white blood cells) and heavy amount of nonmotile bacteria were observed on the gills of one fish. No parasites were observed on any external tissue. Low numbers of metacercariae (encysted trematode larvae) were observed in the mesentery, liver, spleen, and posterior kidney of all fish examined. Metacercariae are commonly found in most fish grown in the natural environment, whether wild or cultured, and rarely cause significant disease in the infested fish. Some species can potentially infect humans if fish are not properly cooked prior to consumption, but such infection is rarely reported in Central America. Species identification of metacercariae can be difficult and costly, so the risk of the ones seen in these fish is unknown. See the attached CDC document "Emerging Foodborne Trematodiasis" for more detailed information. When fish are properly cooked (155-165°F for 15 seconds according to CDC guidelines), metacercariae are rendered nonviable and no longer present a potential danger.

Small granulomas, low in number, were observed in the liver, spleen, anterior and posterior kidneys of all fish examined. All other organs of all fish examined appeared to be within normal limits.

Bacterial cultures of spleen and kidney of the tilapia were negative for growth.

Tissues were processed for histology using standard techniques, and evaluated under a light microscope. Except for granulomas in some organs, no significant lesions were observed. Bacteria were observed in some of the granulomas, so acid-fast stains were applied. No acid-fast positive bacteria were present. *Francisella* sp. is an emerging bacterial pathogen that has been detected in tilapia in Hawaii, Costa Rica, and other countries. It can cause acute or chronic disease, and typically results in severe granulomatous disease primarily in kidney and spleen, but can occur in other tissues. Specialized media and molecular techniques are required to confirm the presence of *Francisella* sp. The tilapia submitted to my lab did not present with obvious lesions, and the granulomas were small and probably had little impact on these particular animals.

Tissues from the tilapia were analyzed for lead, mercury, zinc, copper and toxic organic compounds (see attached lab reports). Zinc was higher than anticipated (91.82 ppm). In an experiment by Hilmy, *Tilapia zilli* were more susceptible to zinc toxicity when water temperature was 25°C, and less susceptible with lower water temperatures. Despite the zinc accumulation, the submitted tilapia did not appear to be affected; however, that may change during the summer with higher water temperatures. The levels of the other compounds tested were within normal limits or zero.

The tilapia tissues were also examined by electron microscopy for viral particles; none were observed.

Two land crabs *Cardiosoma guanhumi*, and tissues of one crab in 10% buffered formalin were received on February 17, 2010.

The tissues of the two land crabs were partially autolyzed. No significant pathogens were observed on light microscopy of crab tissues.

Bacterial cultures of the two land crabs were performed; an environmental organism (*Halomonas* sp.) was cultured from one crab. The culture from the other crab had no growth.

The fixed crab tissues were processed for histology using standard techniques. No significant lesions were observed, however many tissues were autolyzed.

Tissues from crabs were submitted for toxic organic compounds; results were negative (see attached lab report).

In conclusion, the tilapia appeared to be in good health, despite a mild granulomatous disease and zinc accumulation in the gills. No significant pathogens were observed in the land crabs, but their partially autolyzed condition complicates diagnosis.

Ideally, the tilapia and crabs should be analyzed during the summer months, when water temperatures may accelerate pathogen growth and zinc toxicity.

Sincerely,

B. Denise Petty, DVM

Reference:

Center for Disease Control, HAACP Process 3. http://www.cdc.gov/nceh/vsp/training/videos/activity/processthree.pdf

Hilmy AM, El-Domiaty NA, Daabees AY, Latifen HAA. Toxicity in *Tilapia zilli* and *Clarias lazera* (Pisces) induced zinc, seasonally, *Camp Biochem Physiol* Vol. 86C, No. 2, pp. 263-265, 1987

Photographs:

Anterior kidney, H & E, 40x magnification: arrows denote small granulomas.

Anterior kidney, H & E, 1000x magnification: bacteria (small pale blue objects) within center of granuloma.

Spleen, H & E, 100x magnification: yellow arrows point to granulomas, white arrow to metacercariae.

Posterior kidney, H & E, 400x magnification: metacercariae within cyst

Director: Dr. Carole Bolin 4125 Beaumont Road Lansing, MI 48910-8104 Phone: 617-353-1683 Fax: 517-353-5096 www.animalhealth.msu.edu

Gender: Unknown

REPORT OF LABORATORY EXAMINATION

Client: Finfish and Shellfish Hlth Lab (81184) University of Fiorida 7922 NW 71st Street Gainesville, FL 32653		C	wner: Finfi	Finfish & Shellfish Health Lab, University of Floric		
Rcvd Date:	3/4/2010 11:51:00 AM	Anim	al: F100)17	MRN:	Fish, Other
Admitted By:	Petty, Dr.	Spec	ies: Aqua	Itic	Breed:	

Age:

Tag/Reg ID:

Other ID:

TOXICOJOJY

Unknown

General Toxicology

Collected Date/Time (If Provided)	02/11/2010 11:51:00		
Procedure	-	Ref Range	Units
GCMS Specimen	other		
GCMS	Negative		
GCMS Interpretation	See Below		1

02/11/2010 11:51:00 GCMS Interpretation

Please note that the muscle sample tested negative for toxic organic compounds by GC/MS. Wilson K. Rumbeiha BVM, PhD Clinical Toxicologist

3/19/2010 3:16 PM

MICHIGAN STATE

UNIVERSITY

N/A

GL

00946024

Ordered By:

Encounter: CR#:

L =:Low Result; H = High Result; @ = Critical Result; * = Corrected Result; * = Interpretive Data; # = Result Footnote

FLORIDA DEPARTMENT OF AGRICULTURE & CONSUMER SERVICES **DIVISION OF ANIMAL INDUSTRY BUREAU OF DIAGNOSTIC LABORATORIES**

Kissimmee Diagnostic Laboratory PO Box 458006 Kissimmee, FL 34745-8006 Phone: (321) 697-1499 Fax: (321) 697-1467

Live Oak Diagnostic Laboratory PO Drawer O Live Oak, FL 32064-0898 Phone: (386) 330-5700 Fax: (386) 330-5710

Veterinarian/Submitter Dr. Denise Petty University of Florida **Fishery and Aquatic Science** 7922 NW 71st St Gainesville, FL 32653

Owner UF: F10-017 FL

Fax: (352)392-3672

Accession: 10-002131

Date received 2/16/2010

Specimens: Fresh Tissue

Species: Aquatic

TESTS REQUESTED AND HISTORY ON FILE. COPY AVAILABLE UPON REQUEST. **REPORT HISTORY-**

PRELIMINARY

FINAL Email 3/5/2010, Mail 3/5/2010

Status
Completed

*****Toxicology

Analysis: Zinc (Zn) Date Completed: 2/26/2010 Method: Flame AAS **Basis:** Wet weight basis Specimen/Animal ID Specimen Result E10-017 - Gill Gill 91.82 ppm **Comment:** No known normal values for this species. Analysis: Copper (Cu) Date Completed: 2/26/2010 Method: Flame AAS **Basis**: Wet weight basis Specimen/Animal ID Specimen Result F10-017 - Liver Liver 6.38 ppm

Comments:

No known normal values for this species.

Analysis: Method: Basis:	Mercury (Hg) Hydride generation AAS Wet weight basis		Date Completed: 2/26/2010	
	Specimen/Animal ID F10-017 - Liver F10-017 - Muscle	Specimen Liver Muscle	Result 0.039 ppm 0.011 ppm	
Comments: No known no	rmal values for this species.			
Analysis:	Lead (Pb)		Date Completed: 2/26/2010	
Method: Basis:	Graphite Furnace AAS Wet weight basis			
Method: Basis:	Graphite Furnace AAS Wet weight basis Specimen/Animal ID F10-017 - Liver	Specimen Liver	Result 0.77 [°] ppm	

Virology

Test: Negative stain electron microscopic examination for viruses.

Animal ID	Specimen	Result	Date Completed
F10-017 - Kidney	Kidney	Negative	2/19/2010
F10-017 - Spleen	Spleen	Negative	2/19/2010

End of Report Veterinary Bulletin:

Alice Agasan, PhD - Bureau Chief / James Maxwell, DVM - Laboratories Director

Director: Dr. Carole Bolin 4125 Beaumont Road Lansing, MI 48910-8104 Phone: 517-353-1683 Fax: 517-353-5096 www.animalheath.msu.edu

REPORT OF LABORATORY EXAMINATION

Client:		Owner:	
	Finfish and Shellfish Hlth Lab (81184) University of Florida		Finfish & Shellfish Health Lab, University of Florida
	7922 NW 71st Street		
	Gainesville, FL 32653		

Rcvd Date:	3/4/2010 11:52:00 AM	Animal:	F10020	MRN:
Admitted By:	Petty, Dr.	Species:	Aquatic	Breed: Crab
Ordered By:	N/A	Age:	Unknown	Gender: Unknown
Encounter:	00946028	Tag/Reg ID:		
CR#:	GL	Other ID:		

TOXICOJOY

General Toxicology

Collected Date/Time (If Provided)	02/17/2010 11:53:00		
Procedure		Ref Range	Units
GCMS Specimen	other		
GCMS	Negative		
GCMS Interpretation	See Below		

02/17/2010 11:53:00 GCMS Interpretation

Please note that the msucle sample tested negative for toxic organic compounds by the DCPAH GC/MS. Wilson K. Rumbeiha BVM, PhD

Clinical Toxicologist 3/19/2010 3:20 PM

MICHIGAN STATE

UNIVERSITY

Emerging Foodborne Trematodiasis

Jennifer Keiser* and Jürg Utzinger*

Foodborne trematodiasis is an emerging public health problem, particularly in Southeast Asia and the Western Pacific region. We summarize the complex life cycle of foodborne trematodes and discuss its contextual determinants: Currently, 601.0, 293.8, 91.1, and 79.8 million people are at risk for infection with Clonorchis sinensis, Paragonimus spp., Fasciola spp., and Opisthorchis spp., respectively. The relationship between diseases caused by trematodes and proximity of human habitation to suitable freshwater bodies is examined. Residents living near freshwater bodies have a 2.15-fold higher risk (95% confidence interval 1.38-3.36) for infections than persons living farther from the water. Exponential growth of aquaculture may be the most important risk factor for the emergence of foodborne trematodiasis. This is supported by reviewing aquaculture development in countries endemic for foodborne trematodiasis over the past 10-50 years. Future and sustainable control of foodborne trematodiasis is discussed.

Foodborne trematodiasis, which is caused by liver flukes (*Clonorchis sinensis*, *Fasciola* spp., *Opisthorchis* spp.), lung flukes (*Paragonimus* spp.), and intestinal flukes (*Echinostoma* spp., *Fasciolopsis buski*, heterophyids), is an emerging public health problem. In China, clonorchiasis infections have more than tripled over the past decade; ≈ 15 million people were infected with *C. sinensis* in 2004 (1).

The epidemiology of foodborne trematodiasis has changed in recent years. In some settings, the prevalence of foodborne trematode infections decreased significantly, which can be explained by factors such as social and economic development, urbanization, adequate food inspections, health education campaigns, use of chemical fertilizers, and water pollution (2–5). In many other areas, however, higher frequencies and transmission dynamics have been observed, which is probably the result of expansion of aquaculture for production of freshwater fish and crustaceans and improved transportation and distribution systems to bring these aquatic foods to local and international markets (5,6).

*Swiss Tropical Institute, Basel, Switzerland

The contribution of aquaculture to global fisheries increased from 5.3% in 1970 to 32.2% in 2000 (7). By 2030, at least half of the globally consumed fish will likely come from aquaculture farming (8). Total global registered aquaculture production in 2000 was 45.7 million tons, of which 91.3% was farmed in Asia (7). Freshwater aquaculture production has increased at a particularly high rate; currently, it accounts for 45.1% of the total aquaculture production. For example, the global production of grass carp (Ctenopharyngodon idellus), an important species cultured in inland water bodies and a major intermediate host of foodborne trematodes, increased from 10,527 tons in 1950 to >3 million tons in 2002, accounting for 15.6% of global freshwater aquaculture production (http://www.fao.org). The major producer of grass carp is China, where it is traditionally eaten raw as sushi or vusheng zhou (1).

As the world's population continues to grow, efforts to increase annual fish production are essential to maintain food with a high protein value. To meet the projected demand, global production of aquatic products needs to double over the next 25 years (9). Because wild stocks are being increasingly overfished, ~50% of marine fisheries are being used at maximum capacity, the aquaculture sector must expand to meet future needs (8,9). Aquaculture production is expected to grow at an annual rate of 5% to 7% at least until 2015 (10). Aquaculture development will provide employment and spur economic growth, both important factors for reducing poverty. However, this expansion and intensification of aquaculture should be monitored carefully in countries where foodborne trematodes are endemic because their frequencies might increase, leading to more subclinical and clinical disease.

To our knowledge, no comprehensive analysis of the relationship between occurrence of foodborne trematodiasis and development of water resources has been conducted. This situation motivated us to update estimates of people at risk for the major foodborne trematodes, to quantify the changes in freshwater fish and crustacean production in the past 10–50 years in trematodiasis-endemic countries, and to examine the relationship between

PERSPECTIVES

proximity of human habitation to freshwater bodies and infections with liver, lung, or intestinal flukes. Our work will contribute to strengthening and expanding the current evidence base of contextual determinants of water-related, vectorborne diseases, including malaria (11), lymphatic filariasis (12), and Japanese encephalitis (13).

Life Cycle

The complex life cycle of foodborne trematodes has been summarized in recent publications (1,5). Briefly, parasite eggs from infected humans or animals reach freshwater bodies through contaminated fecal matter, e.g., through nonhygienic defecating habits of humans or the use of human feces for fertilizer (night soil) (4). Foodborne trematodes have widespread zoonotic reservoirs. Cats, dogs, foxes, pigs, and rodents are definitive hosts for C. sinensis, and domestic ruminants serve as reservoirs for Fasciola hepatica infections (1,14). Once eggs have reached a suitable body of fresh water, they develop and release a miracidium. It enters an aquatic snail, which acts as first intermediate host. Inside the snail, within several weeks, the miracidium transforms into cercariae. They are released into the freshwater environment and attach, penetrate, and encyst as metacercariae in susceptible second intermediate hosts. Infection with foodborne trematodes is accomplished through ingestion of metacercariae by eating raw or insufficiently cooked freshwater fish (C. sinensis, Opisthorchis spp., Echinostoma spp., heterophyids, Metagonimus spp.), freshwater crab or crayfish (Paragonimus spp.), aquatic plants (Fasciola spp., Fasciolopis buski), snails or tadpoles (Echinostoma spp.), or by drinking contaminated water (Fasciola spp.).

Contextual Determinants

Figure 1 depicts the contextual determinants of foodborne trematodiasis. The most important epidemiologic features responsible for transmission of foodborne trematodes include 1) ecologic and environmental factors, 2) behavioral factors, and 3) socioeconomic and cultural factors.

Population dynamics of the first intermediate host snails are affected by several environmental factors, particularly the quality, current, and temperature of the fresh water. For example, *Fossaria cubensis* and *Pseudosuccinea columella*, first intermediate hosts of *F hepatica*, were studied in Cuba. While the former snail was more abundant in polluted habitats, the latter snail prefers clean water (15). Rainfall or evapotranspiration also show a correlation with intermediate host snail populations. In many countries, a seasonal distribution of facioliasis affected by temperature and rainfall has been observed (16).

More than 100 fish species are secondary intermediate hosts for *C. sinensis* and 35 are secondary intermediate hosts for *Opisthorchis* spp. (17). More than 50 species of

Figure 1. Contextual determinants of foodborne trematodiasis. Solid arrows, negative impact; dashed arrows, positive impact.

crustacean have been identified as secondary intermediate hosts for *Paragonimus* spp. (17). With the exception of the second intermediate host of the heterophyids (mullets, perches, and gobies), which thrive in brackish water (4), the second intermediate hosts of the other foodborne trematodes are confined to stagnant or slow-flowing fresh water (Table 1). Irrigation schemes, particularly those for rice growing, are also highly suitable reservoirs for the intermediate hosts.

Behavioral determinants include unsanitary defecation habits, use of human excreta as fertilizer, and food consumption and cooking habits. In villages near the Nam Pong water resources development project in Thailand, no correlation was found between households with latrines and the extent of opisthorchiasis (21). Cooking and food consumption-related determinants are complex and include economic and sociocultural (i.e., beliefs and tradition) factors. Traditional local dishes include raw or partially cooked aquatic products. They are frequently eaten in areas endemic for foodborne trematodiasis and are part of deeply rooted cultures. Examples of typical local fish dishes include raw crab soaked in soy sauce (ke-jang) in the Republic of Korea, raw drunken crabs and raw grass carp in China, and raw fish (lab-pla and plasom) in Thailand (1,17). Conversely, in industrialized countries (e.g., Japan), infections are often coupled with foreign travel and eating imported aquatic foods or exotic delicacies (22).

Public health interventions, such as chemotherapy, access to improved sanitation, food inspections, and education campaigns to teach proper cooking methods for fish and other potentially contaminated aquatic foods, will affect the pool of parasites. They will also reduce the prevalence of major foodborne trematode infections.

Foodborne trematodes	Species	Geographic distribution	Second intermediate hosts: babitats	Population at risk (× 10 ⁶)
Liver flukes	Clonorchis sinensis	China (except for Inner Mongolia, Ningxia, Qinghai, Tibet, Xinjiang), Republic of Korea, Taiwan, Vietnam*	>100 species of freshwater fish; freshwater habitats with stagnant or slow-moving waters (ponds, river, aquaculture, swamps, rice fields)	601.0†
	Opisthorchis felineus	Kazakhstan, Russian Federation, Siberia, Ukraine‡	>35 species of fréshwater fish; freshwater habitats with stagnant or	12.5§
	Opisthorchis viverrini	Cambodia, Lao People's Democratic Republic, Thailand, Vietnam‡	slow-moving waters (ponds, river, aquaculture, swamps, rice fields)	67.3¶
	Fasciola hepatica Fasciola gigantica	Altiplano of Bolivia, Cuba, highlands of Ecuador and Peru, Nile delta of Egypt, northern Islamic Republic of Iran, Portugal, Spain‡	Watercress and other water plants (drinking water); irrigation channels, pastures, banks of rivers, ponds, pools	91.1#
Lung flukes	Paragonimus spp.	Southwestern Cameroon, China, Ecuador, eastern Nigeria, Peru, the Philippines, Republic of Korea**	>50 species of freshwater crab and crayfish; freshwater habitats with stagnant or slow-moving water (ponds, aquaculture)	292.8††
Intestinal flukes	Fasciólopsis buski	Bangladesh, China, India, Indonesia, Malaysia, Taiwan, Thailand‡‡	Water caltrop, water chestnut, water hyacinth, water bamboo, duckweed, water mimosa, water spinach; drainage systems of pig farms, freshwater habitats with stagnant or slow-moving waters	Not known
	Echinostoma spp.	China, Indonesia, Malaysia, the Philippines, Republic of Korea, Taiwan, Thailand‡‡	Molluscs, fish, snails and tadpoles; freshwater or brackish habitats with stagnant or slow-moving waters	Not known
	Heterophyes heterophyes	China, Egypt (Nile delta), India, Indonesia, Islamic Republic of Iran, Philippines, Sudan, Taiwan, Tunisia, Turkey‡‡	Brackish water fish (mullets, perches, gobies); brackish water habitats	Not known
	Metagonimus yokogawai	The Balkans, China, Indonesia, Islamic Republic of Iran, Israel, Japan, Republic of Korea, Spain, Taiwantt	Freshwater (Cyprinid) fish; freshwater habitats	Not known

Table 1. Geographic distribution and population at risk for major foodborne trematode infections

*References 1 and 18.

†Obtained by adding population at risk in China (including Taiwan) (1), Vietnam (10 million; J.Y. Chai, pers. comm.), and Republic of Korea (44% of 2005 population (17,19).

TRefèrence 17

Sobtained by adding 8% of 2005 population in Russian Federation, 1.3% in Kazakhstan, and 2% in Ukraine (17,19).

Contained by adding 2005 population in the Lao People's Democratic Republic, population at risk in Vietnam (10 million; J.Y. Chai, pers. comm.), and 80% of 2005 population in Thailand (17,19).

#Obtained by adding 23% of 2005 population in Bolivia, 20.6% in Ecuador, 35.3% in Peru, 24.3% in Spain, 44.2% in Portugal, 50.7% in Egypt, 10.8% in the Islamic Republic of Iran, and total 2005 population in Cuba (17,19):

**References 4, 17, and 18.

++Obtained by adding 15.9% of 2005 population in China, 18.9% in Ecuador, 1.4% in Peru, and 14% in Republic of Korea (17,19). Population at risk in Cameroon estimated at 2.7 million (population of the South and Central province, known foci for paragonimiasis [20], estimated at 1.5 million in 1982 [http://www.absoluteastronomy.com/encyclopedia/C/Ce/Centre_Province_Cameroon.htm]), which we standardized to 2005 (19). No estimate was provided for population at risk in eastern Nigeria. Http://www.absoluteastronomy.com/encyclopedia/C/Ce/Centre_Province_Cameroon.htm]), which we standardized to 2005 (19). No estimate was provided for population at risk in eastern Nigeria.

Geographic Distribution and Population at Risk

Table 1 summarizes the disease endemic countries and estimated populations at risk for the major foodborne trematodes. For China and Vietnam, we used recent estimates of their at-risk population (1) (J.Y. Chai, pers. comm.). For other countries, estimates of at-risk populations have been obtained by multiplying the fraction of a previous estimate of the population at risk provided by an expert committee of the World Health Organization (17) by the most recent population figures available (19). For example, in 1995, an estimated 19 million people (44%) in the Republic of Korea were at risk for clonorchiasis. Applying the latest United Nations national population statistics (19), we estimate that 21 million people are now at risk for infection with *C. sinensis* in the Republic of Korea.

We found that 601 million people are currently at risk for infection with *C. sinensis*, of whom 570 million are in China and Taiwan. *C. sinensis* is also prevalent in Vietnam. *Opisthorchis viverrini* is endemic in Cambodia, the Lao People's Democratic Republic, Thailand, and Vietnam, and *O. felineus* is endemic in the former Soviet Union, Kazkastan, and Ukraine (17,18). An estimated 67.3 million people are at risk for infection with *O. viverrini* and 12.5 million are at risk for infection with *O. felineus*.

Human fascioliasis is a major public health problem in the Andean countries, western Europe, the Islamic

PERSPECTIVES

Republic of Iran, Egypt, and Cuba (16), with an estimated 91 million people at risk. This figure is half the previous estimate (17) because China has not been included in our calculation. Although *F hepatica* is of considerable veterinary significance in China, human infections are rare (23). This finding supports our position not to include this country in the estimate. At least 292.8 million people are at risk for infection with *Paragonimus* spp., with 195 million residing in China. Paragonimiasis also occurs in the Republic of Korea and the Philippines, parts of Africa (eastern Nigeria and southwestern Cameroon), and South America (Ecuador and Peru) (17,18).

No estimates are currently available regarding populations at risk for intestinal flukes. *F. buski* is common in Bangladesh, China, India, Indonesia, Malaysia, Taiwan, and Thailand (17,18). Echinostomes have been reported in China, Indonesia, Malaysia, the Philippines, the Republic of Korea, Taiwan, and Thailand (18). Among the heterophyids, *Heterophyes heterophyes* and *Metagonimus yokogawai* are the 2 species of greatest medical importance. They are prevalent in the Balkans, China, Egypt, India, Indonesia, the Islamic Republic of Iran, Israel, Japan, the Republic of Korea, the Philippines, Spain, Sudan, Taiwan, Thailand, Tunisia, and Turkey (4).

Aquaculture Development in Trematode-endemic Countries

Aquaculture is the most rapidly growing food sector and global consumption of aquatic products has exceeded that of meat products (24). Numerous aquatic products are available at affordable prices to most population segments in the developing world. For ≈ 1 billion people, these foods provide more than one fourth of their total animal protein supply (24). We compiled data on the development of freshwater fish and crustacean production in the past 10–50 years with an emphasis on those countries where *C. sinensis*, *O. felineus*, *O. viverrini*, and *Paragonimus* spp. are endemic. Data were obtained from the Food and Agricultural Organization (http://www.fao.org/fi/default. asp).

Freshwater fish aquaculture has increased exponentially from an annual production of 136,000 tons in 1952 to 16.6 million tons (Figure 2) 50 years later in China, the Republic of Korea, and Vietnam. Most (97.6%, 16.2 million tons) of this fish is produced in China. In China, the amount of land used for aquaculture has increased by 75% from 2.8 million hectares in 1970 to 4.9 million hectares in 1997 (7). Freshwater crustacean production in China has increased 48-fold over the past decade from 9,509 tons in 1992 to 453,696 tons in 2002. These developments are of considerable health concern because fish and crustaceans act as second intermediate hosts of clonorchiasis and paragonimiasis, respectively.

Figure 2. Development of freshwater fish production in China, 1952-2002.

Figure 3 shows that a large increase in aquaculture has also occurred in the *O. viverrini*-endemic countries of Cambodia, the Lao People's Democratic Republic, Thailand, and Vietnam. In Vietnam, freshwater fish production increased from 41,750 tons in 1962 to 390,000 tons 40 years later (a 9.3-fold increase). Conversely, fish production has decreased by 29.4% in the *O. felineus*endemic countries of Kazakhstan, Ukraine, and the Russian Federation from 171,542 tons in 1992 to 121,032 tons in 2002.

Available aquaculture statistics are underestimated because small-scale aquaculture or rice field fisheries are not included in officially reported annual production. For example, although the officially reported annual number of inland fish produced in the Lao People's Democratic Republic in 1999 was 25,521 tons, the estimated total figure was 5.9- and 7.8-fold higher (150,000–200,000 tons) (25).

Figure 3. Development of freshwater fish production in Opisthorchis viverrini-endemic countries, 1962–2002.

Freshwater aquaculture is often largely dispersed, characterized by an informal nature, and usually operated in remote rural areas. Part-time fishing is the rule rather than the exception and, most importantly, the dominant share of the production is eaten within the communities where freshwater fish and other aquatic products are cultivated (25).

Relationship between Foodborne Trematodiasis and Proximity to Freshwater Bodies

We systematically reviewed the literature with an emphasis on proximity of human habitation to any form of freshwater body and its relationship to foodborne trematodiasis. Our search included the National Library of Medicine's Medline, Scielo, Biosis previews, and the Web of Science. We used the following keywords: *Opisthorchis, Clonorchis, Fasciola, Echinostoma, Fasciolopsis,* foodborne trematodes, and foodborne trematodiasis in combination with prevalence, water, river, irrigation, dam, aquaculture, pond, and stream. Papers published in English, French, and German were considered. We also included manuscripts in Chinese, Japanese, Korean, and Russian if there was an English abstract of these papers on the aforementioned electronic databases.

Information from 12 studies on the prevalence of foodborne trematode infections in villages located close to freshwater bodies (i.e., rivers, streams, dam reservoirs, and irrigation schemes) and more distant villages is shown in Table 2. Five studies were conducted in the Republic of Korea, 4 in Thailand, 2 in Peru, and 1 in Vietnam. Five studies analyzed *C. sinensis*, 4 analyzed *O. viverrini*, and 2 analyzed *F. hepatica*. *M. yokogawai* was examined in 2 settings.

Relative risk (RR) calculations were attainable for 10 studies. We calculated RR and 95% confidence intervals (CIs) by using EasyMA software (36). A random-effects model was used for calculation of pooled RR because the interventions and conditions in these studies were expected to be heterogeneous (37). The results are summarized in Table 2 and shown as Forrest plots in Figure 4. The random summary RR measure was 2.15 (95% CI 1.38-3.36) indicating that risk for infection with foodborne trematodes in villages near freshwater bodies is 2.15-fold higher compared to that farther from the water. In 2 villages on the Khong River and Nam Pong water resources development project in northeastern Thailand, lower prevalences of O. viverrini were observed near the river and reservoir compared with villages not using these water sources. These observations can be explained by low snail densities in the dam reservoir (10) and the Khong River, the latter because of faster current (33).

Discussion and Conclusions

In an attempt to update the current picture of foodborne trematodiasis, we estimate that 601.0, 293.8, 91.1, and 79.8 million people are at risk for infection with *C. sinensis, Paragonimus* spp., *Fasciola* spp., and *Opisthorchis* spp., respectively. In the absence of recent national figures for at-risk populations, number of persons infected, and spatiotemporal distribution of these diseases in most trematodiasis-endemic countries, our estimates should be used judiciously.

Several issues are worth highlighting. First, estimates of persons at risk for major foodborne trematodes are considerably higher than most recent (dating back 10 years) comprehensive estimates. For example, the at-risk population for infection with C. sinensis was estimated to be 289 million people in the mid 1990s (17), which is less than half of the current estimate. Second, of great concern is the high number (15 million) of C. sinensis infections recently reported from China (1). Thus, within 10 years the number of C. sinensis infections has more than tripled in this country, which warrants in-depth investigations on the underlying causes. Third, it is important to juxtapose these observations with trends observed over the same period, but with an emphasis on soil-transmitted helminthiasis and schistosomiasis. In many parts of Southeast Asia, including China, the number of people infected with Schistosoma japonicum and the major soil-transmitted helminths (i.e., Ascaris lumbricoides, hookworms, and Trichuris trichiura) has decreased (38,39). These decreases are the result of socioeconomic development and chemotherapy-based illness control programs that largely depend on treatment with praziquantel, albendazole, and mebendazole. The issue of why there was an increase in the number of persons infected with C. sinensis when decreases were observed for S. japonicum and soil-transmitted helminthes therefore arises. We speculate that aquaculture development is the key risk factor.

Aquaculture is a rapidly growing food sector, mainly in the developing world, and particularly in Asian countries. Development of this sector is of pivotal importance for adequate supplies of food, generation of income, and employment. Different farmed aquatic products are affordable parts of the diet and essential contributors to human health in the developing world (24). However, aquaculture development results in ecologic transformations (40), and numerous aquatic animal diseases have emerged. Overcrowding and poor environmental conditions have been observed on fish farms, which lead to reduced immunity and higher susceptibility to common diseases (41). For example, massive infection with heterophyid metacercariae of aquacultured eels has been documented in Taiwan; dissection showed <3,762 heterophyid metacercariae in a single fish (42). In Tasmania, a higher number

PERSPECTIVES

Tuble 2: otdates company	g ale pierelenee er reeuwe			
Study site, period (reference)	Population sample	Characteristics of water body	Prevalence	RR (95% CI)
Asillo irrigation area, Peru, 1999 (26)	338 school children	500-hectare irrigation area with irrigation canals and drainage channels	Fasciola hepatica: 18.8%, 20.3%, 31.3% in 3 schools in irrigation scheme	NA
Kimhae county, Republic of Korea, 1974 (27)	1,809	River region	Clonorchis sinensis: 72.1% near riverside and 41.3% inland	1.74 (1.57–1.92)
Goyang county, Republic of Korea, 1974 (27)	578	River region	C. sinensis: 32.7% near riverside and 6.3% inland	5.16 (3.04-8.75)
Hadong Gun, Republic of Korea, 1978 (28)	1,163	Rivers and streams	Metagonimus yokogawai: 5.4%– 90.8% in villages close to river and streams and 4% in village 4 km from river	7.44 (2.83–19.54)
Pohang industrial belt, Republic of Korea, 1989 (29)	3,180 employees; 200 for questionnaire analysis	Hyungsai River basin	C. sinensis: 52% of infected employees lived near river compared with 27.9% of uninfected employees	1.85 (1.28–2.67)
Okcheon-gun, Republic of Korea, 2000 (30)	1,081	Geum-Gang River	C, sinensis: 14.2% of inhabitants near river were infected compared with 3.2% of inland residents	4.51 (2.64–7.70)
			Metagonimus spp.: 8.4% of inhabitants near river were infected, compared with 1.7% of inland residents	5.01 (2.4010.46)
Nong Wai irrigation area, Khon Kaen, Thailand, 1974–1975 (31)	627 children	Irrigation canal and channels	Opisthorchis viverrini: 7.3% in irrigated villages and 3.3% in nonirrigated villages	2.20 (0.87–5.51)
Nam Pong development project, Khon Kaen province, Thailand,	3,183	Reservoir and irrigation scheme	O. viverrini: 27.1% in irrigated villages and 17.2% in traditional villages (no irrigation)	1.63 (1.34–2.00)
1977–1978 (21)			O, viverrini: 10.8% lakeside and 11.5% in resettlement areas	0.93 (0.66–1.31)
Chonnabot village, Khon Kaen province, Thailand, 1980–1982 (32)	4,638; 246 for incidence calculation	Wide, shallow reservoirs that remained dry in 1981–1982	O. viverrini: 47% in uninfected individuals becoming positive within 1 year while reservoirs were flooded and 20% during period when reservoirs were dry†	2.17 (1.42–3.29)
18 villages in Nong Khai and Loei provinces, Thailand; 1981–1982 (33)	1,259	Khong River and Huang River (flowing water)	O. viverrini: 51.7% and 52.6% in villages >5 km from river and 27.9% and 21.7% in villages closer to river	0.47 (0.40–0.56)
12 provinces of Vietnam, 1994–2000 (34)	>20,000	Red River delta region	C. sinensis: ≤31% in coastal delta region, 5% in mountainous area, and 16.3% in highlands. <i>O. viverrini:</i> highest in urban coastal areas	NA
Mantaro valley, Peru, 2000 (35)	206 children	Small streams		Odds ratio 17.22
All studies				2.15 (1.38–3.36)

Table 2. Studies comparing the prevalence of foodborne trematode infections in villages close to water bodies with distant villages*

of trichodinids and cilian protozoan parasites were found in fish raised on farms compared to fish caught in natural bodies of water (43).

In reviewing the literature, we found that residents living near bodies of fresh water have, on average, a 2.15fold higher risk for infections with foodborne trematodes compared to inhabitants of distant villages. Unfortunately, all studies that could be included in our metaanalysis were conducted either in the Republic of Korea or Thailand, and several of these studies date back to the 1970s. Our finding is consistent with previous observations that most of the locally caught aquatic foods are eaten in the communities near freshwater bodies (17,25). However, with improving transportation and distribution systems, which allow efficient transportation of fish, the amount sold outside the local community is likely to increase considerably. Thus,

Figure 4. Metaanalysis of studies comparing the prevalence of foodborne trematode infections in villages close to water bodies with distant villages. Values on the x-axis are relative risks. Horizontal bars show 95% confidence intervals. The solid vertical line represents the mean of the combined measure. The diamond represents the combined measure.

the spatial distribution of foodborne trematodiasis will change, with an increasing prevalence of these infections in villages where no aquatic products are farmed. We suggest that future studies examine the present spatial distribution of foodborne trematodiasis in Asian countries, compare prevalence of infection in aquaculture workers with other professional groups, and determine the prevalence of parasites in fish raised in aquaculture ponds compared with natural water bodies.

This review emphasizes the important role aquaculture plays in transmitting foodborne trematodiasis. In view of the rapid growth of this food sector, strategies to reduce the current impact of these diseases and to reverse their emergence are mandatory. Safe, efficacious, and inexpensive single-dose oral drugs, such as praziquantel and trictabendazole, are available to treat foodborne trematodiasis and will remain the backbone of control (5). To enhance sustainability, chemotherapy should be used with new technologies to ensure food safety, sound health education campaigns for properly cooking aquatic foods, and access to improved sanitation.

This study was supported by the Swiss National Science Foundation (project no. PMPDB-10622 to J.K. and PPOOB-102883 to J.U.).

Dr Keiser is a postdoctoral fellow at the Department of Medical Parasitology and Infection Biology, Swiss Tropical Institute. Her research interests include epidemiologic aspects of several tropical diseases, as well as novel treatment options for foodborne trematodiasis.

Dr Utzinger is project leader at the Department of Public Health and Epidemiology, Swiss Tropical Institute. His research interests include the epidemiology and control of foodborne trematodiasis, malaria, schistosomiasis, and soil-transmitted helminthiasis.

References

- I. Lun ZR, Gasser RB, Lai DH, Li AX, Zhu XQ, Yu XB, et al. Clonorchiasis: a key foodborne zoonosis in China. Lancet Infect Dis. 2005;5:31-41.
- 2. Cross'JH. Changing patterns of some trematode infections in Asia. Arzneimittelforschung. 1984;34:1224-6.
- 3. Seo BS. Socio-economic and cultural aspects of human trematode infections in Korea. Arzneimittelforschung, 1984;34:1116-8.
- Fried B, Graczyk TK, Tamang L. Food-borne intestinal trematodiasis in humans. Parasitol Res. 2004;93:159–79.
- Keiser J, Utzinger J. Chemotherapy for major food-borne trematodes: a review. Expert Opin Pharmacother. 2004;5:1711-26.
- Abdussalam M, Käferstein FK, Mott KE. Food safety measures for the control of foodborne trematode infections. Food Control. 1995;6:71-9.
- 7. Food and Agricultural Organization of the United Nations. Production, accessibility, marketing and consumption patterns of freshwater aquaculture products in Asia: a cross-country comparison. Rome: The Organization. 2001.
- Tidwell J, Allan GL. Fish as food: aquaculture's contribution. Ecological and economic impacts and contributions of fish farming and capture fisheries. EMBO Rep. 2001;2:958–63.
- 9. Muir J. Managing to harvest? Perspectives on the potential of aquaculture. Philos Trans R Soc Lond B Biol Sci. 2005;360:191-218.
- 10. Food and Agricultural Organization of the United Nations. World agriculture; towards 2015/2030. Rome: The Organization; 2002.
- Keiser J, Castro MC, Maltese MF, Bos R, Tanner M, Singer BH, et al. Effect of irrigation and large dams on the burden of malaria on a global and regional scale. Am J Trop Med Hyg. 2005;72:392–406.
- Erlanger TE, Keiser J, Castro MC, Bos R, Singer BH, Tanner M, et al. Effect of water resource development and management on lymphatic filariasis and estimates of populations at risk. Am J Trop Med Hyg. 2005;73:523-33.
- Keiser J, Maltese MF, Erlanger TE, Bos R, Tanner M, Singer BH, et al. Effect of irrigated rice agriculture on Japanese encephalitis, including challenges and opportunities for integrated vector management. Acta Trop. 2005;95:40–57.
- Saleha AA. Liver fluke disease (fascioliasis): epidemiology, economic impact and public health significance. Southeast Asian J Trop Med Public.Health. 1991;22:361–4.
- 15. Canete R, Yong M, Sanchez J, Wong L, Gutierrez A. Population dynamics of intermediate snail hosts of *Fasciola hepatica* and some environmental factors in San Juan y Martinez municipality, Cuba. Mem Inst Oswaldo Cruz. 2004;99:257–62.
- Mas-Coma S. Human fascioliasis: epidemiological patterns in human endemic areas of South America, Africa and Asia. Southeast Asian J Trop Med Public Health. 2004;35(Suppl 1):1–11.
- World Health Organization. Control of foodborne trematode infections. Report of a WHO study group. Geneva: The Organization; 1995.
- Haswell-Elkins M, Levri E. Food-borne trematodes. In: Cook G, Zumla A, editors. Manson's tropical diseases. 21st ed. London: W.B. Saunders; 2003. p. 1471–86.

PERSPECTIVES

- Population Division, Department of Economics and Social Affairs of the United Nations. World population prospects: the 2004 revision. New York: United Nations; 2004.
- Moyou-Somo R, Kefie-Arrey C, Dreyfuss G, Dumas M. An epidemiological study of pleuropulmonary paragonimiasis among pupils in the peri-urban zone of Kumba town, Meme Division, Cameroon. BMC Public Health. 2003;3:40.
- 21. Sornmani S, Schelp FP, Vivatanasesth P, Pongpaew P, Sritabutra P, Supawan V, et al. An investigation of the health and nutritional status of the population in the Nam Pong Water Resource Development Project, northeast Thailand. Ann Trop Med Parasitol. 1981;75:335-46.
- Kamiya M, Ooi HK. Current status of food-borne parasitic zoonoses in Japan. Southeast Asian J Trop Med Public Health. 1991;22(Suppl): 48-53.
- Chen MG. Fasciola hepatica infection in China. Southeast Asian J Trop Med Public Health. 1991;22:356–60.
- Subasinghe RP. Epidemiological approach to aquatic animal health management: opportunities and challenges for developing countries to increase aquatic production through aquaculture. Prev Vet Med. 2005;67:117-24.
- 25. Coates D. Inland capture fishery statistics of Southeast Asia: current status and information needs. Bangkok: Asia-Pacific Fishery Comission, Food and Agriculture Organization of the United Nations; 2002.
- Esteban JG, Gonzalez C, Bargues MD, Angles R, Sanchez C, Naquira C, et al. High fascioliasis infection in children linked to a man-made irrigation zone in Peru. Trop Med Int Health. 2002;7:339-48.
- 27. Choi DW. Clonorchis sinensis: life cycle, intermediate hosts, transmission to man and geographical distribution in Korea. Arzneimittelforschung. 1984;34:1145-51.
- Kim DC, Lee OY, Jeong EB. Epidemiological conditions of Metagonimus yokogawai infection in Hadong Gun, Gyeongsang Nam Do. Kisaengchunghak Chapchi. 1979;17:51-9.
- 29. Kim SS, Han MH, Park SG, Lim HS, Hong ST. A survey on the epidemiological factors of clonorchiasis in the Pohang industrial belt along the Hyungsan River, Kyongsangbuk-do. Kisaengchunghak Chapchi. 1990;28:213-9.
- Lee GS, Cho IS, Lee YH, Noh HJ, Shin DW, Lee SG, et al. Epidemiological study of clonorchiasis and metagonimiasis along the Geum-gang (River) in Okcheon-gun (county), Korea. Korean J Parasitol. 2002;40:9–16.
- 31. Harinasuta C, Sornamani S, Migasena P, Vivatanasesth P, Pongpaew P, Intarakao C, et al. Socio-economic, health and nutritional status of the villagers in the Nong Wai irrigation area, Khon Kaen, northeast Thailand. Southeast Asian J Trop Med Public Health. 1976;7:601-21.

- 32. Upatham ES, Brockelman WY, Viyanant V, Lee P, Kaengraeng R, Prayoonwiwat B. Incidence of endemic *Opisthorchis viverrini* infection in a village in northeast Thailand. Am J Trop Med Hyg. 1985;34:903-6.
- 33. Tesana S, Sithithaworn P, Prasongwatana J, Kaewkes S, Pipitgool V, Pientong C. Influence of water current on the distribution of *Opisthorchis viverrini* infection in northeastern villages of Thailand. Southeast Asian J Trop Med Public Health. 1991;22:93–8.
- 34. De NV, Murrell KD, Cong le D, Cam PD, Chau le V, Toan ND, et al. The food-borne trematode zoonoses of Vietnam. Southeast Asian J Trop Med Public Health. 2003;34:12–34.
- 35. Raymundo LA, Flores VM, Terashima A, Samalvides F, Miranda E, Tantalean M, et al. Hyperendemicity of human fasciolosis in the Mantaro Valley, Peru: factors for infection with *Fasciola hepatica*. Rev Gastroenterol Peru: 2004;24:158-64.
- Cucherat M, Boissel JP, Leizorovicz A, Haugh MC. EasyMA: a program for the meta-analysis of clinical trials. Comput Methods Programs Biomed. 1997;53:187-90.
- DerSimonian R, Laird N. Meta-analysis in clinical trials. Control Clin Trials. 1986;7:177-88.
- de Silva N, Brooker S, Hotez PJ, Montresor A, Engels D, Savioli L. Soil-transmitted helminth infections: updating the global picture. Trends Parasitol. 2003;19:547-51.
- Utzinger J, Keiser J. Schistosomiasis and soil-transmitted helminthiasis: common drugs for treatment and control. Expert Opin Pharmacother. 2004;5:263-85.
- Naylor RL, Goldburg RJ, Primavera JH, Kautsky N, Beveridge MC, Clay J, et al. Effect of aquaculture on world fish supplies. Nature. 2000;405:1017-24.
- Murray AG, Peeler EJ. A framework for understanding the potential for emerging diseases in aquaculture. Prev Vet Med. 2005;67:223–35.
- Ooi HK, Wang WS, Tu CY, Chang HY, Chen CI. Natural mass infection by heterophyid metacercariae in aquacultured Japanese eel in Taiwan. Dis Aquat Organ. 1999;35:31–6.
- 43. Nowak BF, Dawson D, Basson L, Deveney M, Powell MD. Gill histopathology of wild marine fish in Tasmania: potential interactions with gill health of cultured Atlantic salmon, *Salmo salar L*. J Fish Dis. 2004;27:709–17.

Address for correspondence: Jennifer Keiser, Swiss Tropical Institute, PO Box, CH-4002 Basel, Switzerland; fax: 41-61-284-8105; email: jennifer. keiser@unibas.ch

International Symposium on Emerging Zoonoses Medical and Veterinary Partnerships To Address Global Challenges

March 22-24, 2006 Marriott Marquis Hotel Atlanta Georgia USA

For Symposium agenda and registration information visit www.isezconference.org

TOXICITY IN TILAPIA ZILLI AND CLARIAS LAZERA (PISCES) INDUCED BY ZINC, SEASONALLY

A. M. HILMY, N. A. EL-DOMIATY, A. Y. DAABEES and H. A. ABDEL LATIFE Department of Zoology, Faculty of Science, Alexandria University, Alexandria, Egypt

(Received 23 June 1986)

Abstract—1. Subadult teleosts, *Tilapia zilli* and *Clarias lazera*, were exposed in laboratory bioassays to lethal and sublethal concentrations of zinc, seasonally (at range of temperature between 9.3 ± 1.5 and $25 \pm 1^{\circ}$ C).

2. It appears that *Tilapia* is more susceptible to Zn than *Clarias* and both species are more resistant to Zn toxicity at lower temperature (during winter).

3. To determine the uptake and tissue distribution of Zn in the two species, gill, liver and muscles were analysed at moderate temperature (during spring). After a 96 hr exposure period, Zn was decreased in the following order: gill > liver > muscle.

INTRODUCTION

There is no doubt that Zn is biologically essential. It is ubiquitous in plants; microorganisms and animals. Its deficiency results in loss of appetite, inability to gain weight, skeletal abnormalities, parakeratotic oesophageal and skin lesions. However, ingestion of excess Zn results in fever, nausea, vomiting, and pathological changes in some tissues (Burch *et al.*, 1975; Ueda *et al.*, 1984; Somasundaram *et al.*, 1984).

Several years ago, investigations were made to study the toxic effects of heavy metals on aquatic organisms (Doudoroff and Katz, 1953; Skidmor, 1964; Sprague and Ramsay, 1965). Many factors have been shown to affect the relative toxicity of these metals to the aquatic animals, particularly fish (Mallatt, 1985). Temperature is one important factor that could affect metal toxicity, since most aquatic organisms are poikilothermic.

The present account deals with comparative studies on the relative resistance of two teleost species to Zn. Evaluation of the toxicological effects was based on the observations of mortality rates and behavioural changes. Its bioaccumulation in gills, liver and muscles was also determined.

MATERIALS AND METHODS

Subadult Tilapia zilli and Clarias lazera (fish) were collected from ponds at the Nozha hydrodrom in Alexandria, Egypt. The average physicochemical characteristics of the water were: hardness (CaCo₃), 20-22 mg/l; dissolved oxygen, 90%; pH, 6.7. Animals were maintained in a photoperiod of 12 hr dark and 12 hr light. Two static bioassay tests were carried out in each scason. The first was made using *Tilapia zilli*, while the second was carried out using *Clarias lazera*. In general, the methodology for the bioassays was similar to that of Hilmy *et al.* (1985). The stock solution of zinc was made by dissolving reagent grade ZnSO₄ · SH₂O in distilled water at 30 mg Zn²⁺/ml. Aliquots of this stock were added to the bioassay containers about 60 min after the assay organisms to achieve the desired Zn²⁺ concentrations.

Both behaviour and deaths of the test organisms were recorded during the 96 hr exposure period. Seasonal

changes in LC_{100} , LC_{75} , LC_{25} and LC_{0} , for each species after 24, 48, 72 and 96 hr, were determined according to the method of the American Public Health Associations (1971).

At a moderate temperature (during spring) and after the determination of the 96 hr LC_{50} for each species, the gills (gill rackers, arches and filaments), livers and muscles were excised and prepared for Zn^{2+} analyses. Zn determination was carried out as previously published by Hilmy *et al.* (1986) except that the tissues were dried at 105°C for 48 hr before digestion.

RESULTS

Survival patterns

On the basis of 24, 48, 72 and 96 hr exposure periods, LC_{100} , LC_{75} , LC_{50} , LC_{25} and LC_0 were estimated for *Tilapia zilli* and *Clarias lazera*, seasonally (Tables 1-8). Accordingly, these tables clearly show that the first species is more sensitive to Zn toxicity than the latter. Seasonal variations of the lethality of Zn vary

> Table 1. Concentrations of Zn^{2+} (mg/l) added to medium at start, and the resulting survival of various percentages of *Tilapia zilli* at 15.3 ± 2.1°C (in autumn)

		Time	(hr)		
	24	48	72	-96	
LCINO	52	47	43	40	
LC ₂₅	43	41	38	34	
LCw	38	34	32	27	
LC	29	25	22	18	
LCO	24	20	14	12	

Table 2. Concentrations of Zn^{2+} (mg/l) added to medium at start, and the resulting survival of various percentages of *Tilapia zilli* at 9.3 ± 1.5°C (in winter)

	Time (hr)					
	24	48	72	96		
LC100	60	57	50	47		
LC25	55	52	45	40		
LC _{so}	49	45	40	33		
LC2	50	47	38	25		
ເດັ	40	37	30	18		

Table 3. Concentrations of Zn^{2+} (mg/l) added to medium at start, and the resulting survival of various percentages of *Tilapia zilli* at 18.5 ± 1°C (in spring)

	Time (hr)					
	24	48	72	96		
LCim	37	36	33	30		
LCre	35	33	29	26		
LCm	33	29	24	21		
LC	22	17	14	11		
LCo	21	16	12	10		

Table 4. Concentrations of Zn^{2+} (mg/l) added to medium at start, and the resulting survival of various percentages of *Tilapia* zilli at 25 ± 1.4°C (in summer)

	Time (hr)					
	24	48	72	96		
LCian	32	29	28	26		
LC75	27	24	23	19		
LCw	22	18	16	13		
LC	17	13	9	7		
LC	12	8	5	2		

Table 5. Concentrations of Zn^{2+} (mg/l) added to medium at start, and the resulting survival of various percentages of *Clarias lazera* at 15.3 \pm 2.1 °C (in autumn)

-	Time (hr)				
	24	48	72	96	
LC100	90	79	72	70	
LCR	72	65	59	56	
ເເຜ	58	52	46	40	
LCM	45	39	33	22	
rc ⁰	31	29	19	16	

dramatically depending on changes in water temperature of each season. Teleasts were more susceptible to Zn at 25 ± 1 than at $9.3 \pm 1.5^{\circ}$ C, by factors that ranged between 2.9-3.5 and 1.6-1.7 in the first and second species, respectively.

Behaviour changes

The behavioural patterns were the same for both species. At high concentrations there was agitation, air gulping, accelerated ventilation with rapid mouth and opercular movements which became arrhythmic and convulsion. At low concentrations the symptoms were less acute. The fish showed signs of tiredness and lost positive rheotaxis after a period of weakness and apathy.

Accumulation

Teleosts were exposed for 96 hr to 21 or $38 \text{ mg Zn}^{2+}/1$ for the first or the second species, respectively (which represents the 96 hr LC₅₀ at the spring season). Among survivors, the highest Zn

Table 6. Concentrations of Zn^{2+} (mg/l) added to medium at start, and the resulting survival of various percentages of *Clarias lazera* at 9.3 ± 1.5°C (in winter)

	Time (hr)					
	24	48	72	96		
LC100	92	88	85	75		
LCm	79	77	72	65		
,; LCm	68	60	58	52		
LCne	59	52	47	42		
ເຕັ	45	42	37	32		

Table 7. Concentrations of Zn^{2+} (mg/l) added to medium at start, and the resulting survival of various percentages of *Clarias lazera* at 18.5 ± 1°C (in spring)

	Time (hr)								
	24	48	72	96					
LCion	80	76	71	64					
LC75	67	63	56	47					
LC	56	52	43	38					
LC	42	40	28	26					
ເດັ	32	20	18	15					

Table 8. Concentrations of Zn^{2+} (mg/l) added to medium at start, and the resulting survival of various percentages of *Clarias lazera* at $25 \pm 1^{\circ}$ C (in summer)

·····	Time (br)					
	24	48	72	96		
LCum	56	53	51	39		
LC	48	45	42	32		
LCm	41	37	33	26		
LCm	32	28	26	19		
LC	26	20	17	14		

residues were found in gills followed by liver. The muscles accumulated the smallest amount (Table 9).

DISCUSSION

Survival patterns

The response of *Tilapia zilli* and *Clarias lazera* to Zn toxicity was quite different. It appears that the first species is more sensitive than the latter. The acute lethality values, in the present study, indicate that these two teleost species are more resistant to Zn toxicity than other aquatic animals. For example, Cairns and Scheier (1958) found that the 96 hr LC_{50} for snails ranged from 0.79 to 1.27 mg Zn²⁺/l, while Thorp and Lake (1974) mentioned that the 96 hr LC_{50} for the fresh water fish, *Paratya tasamaniensis*, was 1.1 mg Zn/l. On the other hand, the LC_{50} for Zn to juvenile flag fish, *Jourdanella floridae*, was 1.5 mg/l (Spehar, 1976).

Our results indicate that water temperature altered the lethality of Zn to the two species. Therefore, Zn

Table 9. Concentrations of Zn^{2+} in gill, liver and muscle of teleosts after 96 hr exposure to the LC₂₀ of Zn^{2++}

		Gi	11	Tissu Liv	er	Mu	cle
Species	Treatment	Mean	Range	Mean	Range	Mean	Range
Tilapia zilli	Control Treated	0.070 ± 0.003 38.000 ± 7.800	0.030-0.100 34.00-43.000	$\begin{array}{c} 0.050 \pm 00.001 \\ 23.000 \pm 3.700 \end{array}$	00.010-00.090 18.000-26.000	0.010 ± 00.002 2.000 ± 00.700	0.007-00.030 1.500-03.700
Clarias Idzera	Control Treated	$\begin{array}{r} 00.090 \pm 00.060 \\ 49.0 \underline{00} \pm 5.800 \end{array}$	00.050-00.150 46.000-52.000	$\begin{array}{c} 00.080 \pm 00.005 \\ 34.000 \pm 4.500 \end{array}$	00.060-00.120 29.000-39.000	0.029 ± 00.003 5.000 ± 00.900	0.0090.030 3.0006.500

*Each value represents the mean of three experiments \pm the SD, expressed in mg Zn²⁺/g tissue dry weight.

toxicity appears to be enhanced by temperature as a stressor. It may have produced this effect through transient change in metabolic rates. Fish accumulate Zn from the water primarily through the gills (Eisler, 1967). Its uptake could be controlled by the amount of water passing through the gills. Slowing of metabolism due to cold (Heath, 1973) may have induced longer survival by reducing ventilation rate and consequently Zn uptake. Similarly, metabolic acceleration due to heat may have shortened survival by accelerating Zn accumulation.

Several studies have shown that as water temperature rises, waterborn toxicants became lethal to fish at lower concentrations. For example, heat stresses shortened LC₅₀s of goldfish exposed to lithium or ammonium ions (Powers, 1917), blue gills exposed to Zn (Burton *et al.*, 1972) and fiddler crabs exposed to cadmium (O'Hara, 1973). Similar results were also obtained by Bass *et al.* (1977).

Behavioural changes

The loss of positive rheotaxis is a good indication of any toxic response, but in the case of Zn it takes place when poisoning is already irreversible. Signs of poisoning before loss of positive rheotaxis are not the same at high and lower concentrations; the air gulping and the increased opercular movement observed at high concentrations contrast with the general apathy and ataxia; but without apparent respiration difficulties observed at low concentrations. A comparable behaviour was reported by Matthiessen (1974) for Sarotheron mossamblcus. An interpretation of the toxicity data is that two poisoning mechanism may take place, one occurring at high concentrations and provoking a rapid suffocation by destruction of the gill epithelium, the other prevailing at low concentrations and consisting of an inhibition of the main metabolic pathways.

Accumulation

The present data indicate that the gills and livers contain high levels of Zn after the 96 hr exposure period. Therefore, it seems apparent that the concentration of Zn in the gill and liver can be used to detect acute Zn poisoning. The analyses of Zn-residues in muscles of both species show that they contained small amounts. These results agree with the observation of Windom *et al.* (1973), who found that seven out of eight species of chondrichthyes had higher Zn levels than in the muscles.

After a single injection of 20 mg Zn/kg to rats, Heilmaier *et al.* (1985) noticed that Zn increased metallothionein content in eight tissues, being most effective in the liver. Metallothionein induction by Zn was associated with an accumulation of Zn not bound to metallothionein.

REFERENCES

- American Public Health Association, American Water Works Association and Water Pollution Control Federation (1971) Standard Methods for Examination of Water and Waste Water, 13th edn. New York.
- Bass M. I., Berry C. R. and Heath A. G. (1977) Histological

effects of intermittent choline exposure on bluegill (Lepomis macrochrius) and rainbow trout (Salmo gairdneri). Water Res. 11, 731-735.

- Burch R. E., Hahn H. K. and Sullivan F. (1975) Newer aspects of the roles of zinc, manganese, and copper in human nutrition. *Clin. Chem.* 21, 501-519.
- Burton D. T., Morgan E. L. and Cairns J. (1972) Mortality curves of blue gills (*Lepomis macrochirus* Rafinesque) simultaneously exposed to temperature and zine stress. *Trans. Am. Fish. Soc.* 101, 435-441.
- Cairns J. and Scheier A. (1958) The effects of temperature and hardness of water upon the toxicity of zinc to the pond snail *Physa heterostropha* (Say). *Notul. Nat.* 308, 1-11.
- Doudroff P. and Katz M. (1953) Critical review of literature on the toxicity of industrial wastes and their compounds to fish. II. The metals as salts. Sewage ind. Wastes 25, 802-839.
- Eisler R. (1967) Acute toxicity of zinc to the killifish, Fundulus heteroclitus. Chesapeake Sci. 8, 262-264.
- Heath A. G. (1973) Ventilatory responses of teleost fish to exercise and thermal stress. Am. Zool. 13, 491-503.
- Heilmaier H. and Summer K. (1985) Metallothionein content and zinc status in various tissues of rats treated with iodoacetic acid and zinc. Arch Tox. 56, 247-251.
- Hilmy A. M., Shabana M. B. and Daabees A. Y. (1985) Bioaccumulation of cadmium: toxicity in *Mugil cephalus*. *Comp. Biochem. Physiol.* 81C, 139-143.
- Hilmy A. M., El Domiaty N., Daabees A. and Abou-Taleb E. (1986) Studies of Zn, Mg, Cd, Ca and Fe in cadmium poisoned toads before and after treatment with EDTA. *Comp. Biochem. Physiol.* 85C, 167–170.
- Mallatt J. (1985) Fish gill structural changes induced by toxicants and other irritants: a statistical review. Can. J. Fish. Sci. 42, 630-648.
- Matthiessen P. (1974) Some effects of slow release bis(tri-nbutyltin) oxide on the tropical food fish, *Tilapia moss*ambica (Peters). In Controlled Release Pesticide Symposium, Report No. 25. The University of Akron, Ohio.
- O'Hara J. (1973) The influence of temperature and salinity on the toxicity of cadmium to fiddler crab, Uca pugilator. U.S. Dep. Commer. Noaa, Nm/s Fish Bull. 71, 149-153.
- Powers E. B. (1917) The goldenfish (*Carassium carassius*) as test animal in the study of toxicity. III. *Biol. Monogr.* 4, 121.
- Skidmore J. F. (1964) Toxicity of zinc compounds to aquatic animals with special reference to fish. Quart. Rev. Biol. 39, 227-248.
- Somasundaram B., King P. and Shackley S. (1984) The effect of zinc on the ultrastructure of the trunk muscle of the larvae of *Clupea harengus L. Comp. Biochem. Physiol.* 79C, 311-315.
- Spehar R. L. (1976) Cadmium and zinc toxicity to flagfish, Jordanella floridae. J. Fish. Res. Bd Can. 33, 1939-1945.
- Sprague J. and Ramsay B. (1965) Lethal levels of mixed copper-zinc solutions for juvenile salmon. J. Fish. Res. Bd Can. 22, 425-432.
- Thorp V. and Lake P. (1974) Toxicity bioassays of cadmium on selected freshwater invertebrates and the interaction of cadmium and zinc on the freshwater shrimp, Paratya tasmaniensis (Riek). Aust. J. Mar. Freshwat. Res. 25, 97-104.
- Ueda A., Harada K., Ueda T. and Nomura S. (1984) Experimental study on the pathological changes in lung tissue caused by zinc stearate dust. *Ind. Health* 22, 243-253.
- Windom H., Stickney R., Smith D., Willitf E. and Taylor F. (1973) Arsenic, cadmium, copper, mercury and zinc in some species of north atlantic finfish. J. Fish. Res. Bd Can. 41, 275-279.

ATTACHMENT 21

Graph of Rainfall vs. Time for 2000, 2001, 2002, 2005, 2006, 2007, 2008, 2009

with

Documented Fishkill Events

Rainfall vs Time

Temperature vs Time

ATTACHMENT 22

Stormwater Runoff Calculations Prepared by EEC

Land uses and areas taken from Attachment 4C

Attachment 22

Graeme Hall Catchment Area

Current Stormwater Runoff Calculations

Catchment Basin Land Use Areas

Land Use	Acres
Single-Family Residential	610
Agriculture (row crops)	160
Agriculture (pasture)	230
Undeveloped Forest Land	80
Low-Intensity Commercial	70
Total	1150

Typical Runoff Concentrations for General Land Use Categories¹

	Total N	Total P	BOD	TSS	Copper	Lead	Zinc
Land Use Area	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
Single-Family Residential	2.07	0.327	7.9	37.5	0.016	0.004	0.062
Agriculture (row crops)	2.65	0.593		19.8	0.022	0.004	0.03
Agriculture (pasture)	3.47	0.616	5.1	94.3			
Undeveloped Forest Land	1.15	0.055	1.4	8.4			
Low-Intensity Commercial	1.18	0.179	7.7	57.5	0.018	0.005	0.094

¹ Obtained from Table 4-17 of "Evaluation of Current Stormwater Design Criteria within the State of Florida" prepared for FDEP, June 2007

	inches ²
2008 Annual Rainfall Total	49.9

² Obtained from Barbados Meteorological Service for Grantley Adams Airport from 2000-2009

Calculated Annual Mean Runoff Volume

		Runoff
	Runoff	Volume
Land Use Area	Coefficient ³	(in/yr)
Single-Family Residential	0.202	10.08
Agriculture (row crops)	0.067	3.34
Agriculture (pasture)	0.067	3.34
Undeveloped Forest Land	0.067	3.34
Low-Intensity Commercial	0.633	31.59

³ Obtained from Table 4-24 of "Evaluation of Current Stormwater Design

Criteria within the State of Florida" prepared for FDEP, June 2007 assuming:

(1) the soils are most similar to the southeast coast of Florida (i.e. Cluster 5), and

(2) the soils are classified as shallow sandy soils (i.e. hydrologic soil group B).

Calculated Annual Mean Loading from each Land Use Area

	Total N	Total P	BOD	TSS	Copper	Lead	Zinc
Land Use Area	(lbs/yr)						
Single-Family Residential	2883	455	11001	52220	22	6	86
Agriculture (row crops)	321	72	0	2399	3	0	4
Agriculture (pasture)	604	107	888	16423	0	0	0
Undeveloped Forest Land	70	3	85	509	0	0	0
Low-Intensity Commercial	591	90	3856	28794	9	3	47
Total	4468	727	15830	100344	34	9	137

Attachment 22A

Graeme Hall Catchment Area

Future Stormwater Runoff Calculations for Proposed Land Use Change -Barbadian Agricultural Lands Development to Residential/Commercial

Catchment Basin Land Use Areas

Land Use	Acres
Single-Family Residential	745
Agriculture (row crops)	0
Agriculture (pasture)	230
Undeveloped Forest Land	80
Low-Intensity Commercial	95
Total	1150

Typical Runoff Concentrations for General Land Use Categories¹

	Total N	Total P	BOD	TSS	Copper	Lead	Zinc
Land Use Area	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
Single-Family Residential	2.07	0.327	7.9	37.5	0.016	0.004	0.062
Agriculture (row crops)	2.65	0.593		19.8	0.022	0.004	0.03
Agriculture (pasture)	3.47	0.616	5.1	94.3			
Undeveloped Forest Land	1.15	0.055	1.4	8.4			
Low-Intensity Commercial	1.18	0.179	7.7	57.5	0.018	0.005	0.094

¹ Obtained from Table 4-17 of "Evaluation of Current Stormwater Design Criteria within the State of Florida" prepared for FDEP, June 2007

	inches ²
2008 Annual Rainfall Total	49.9

² Obtained from Barbados Meteorological Service for Grantley Adams Airport from 2000-2009

Calculated Annual Mean Runoff Volume

		Runoff
	Runoff	Volume
Land Use Area	Coefficient ³	(in/yr)
Single-Family Residential	0.202	10.08
Agriculture (row crops)	0.067	3.34
Agriculture (pasture)	0.067	3.34
Undeveloped Forest Land	0.067	3.34
Low-Intensity Commercial	0.633	31.59

³ Obtained from Table 4-24 of "Evaluation of Current Stormwater Design

Criteria within the State of Florida" prepared for FDEP, June 2007 assuming: (1) the soils are most similar to the southeast coast of Florida, and (2) the soils are classified as shallow sandy soils (soil group B).

Calculated Annual Mean Loading from each Land Use Area

	Total N	Total P	BOD	TSS	Copper	Lead	Zinc
Land Use Area	(lbs/yr)						
Single-Family Residential	3521	556	13436	63777	27	7	105
Agriculture (row crops)	0	0	0	0	0	0	0
Agriculture (pasture)	604	107	888	16423	0	0	0
Undeveloped Forest Land	70	3	85	509	0	0	0
Low-Intensity Commercial	802	122	5233	39077	12	3	64
Total	4996	788	19642	119786	39	10	169

Attachment 22A

Graeme Hall Catchment Area

Stormwater Runoff Calculations

Current Estimate:

Total Annual Mean Loading under existing site conditions:

Total N	Total P	BOD	TSS	Copper	Lead	Zinc
(lbs/yr)	(lbs/yr)	(lbs/yr)	(lbs/yr)	(lbs/yr)	(lbs/yr)	(lbs/yr)
4468	727	15830	100344	34	9	137

Future Estimate:

Total Annual Mean Loading if 160 acres is converted from agriculture use to residential and commercial use:

Total N	Total P	BOD	TSS	Copper	Lead	Zinc
(lbs/yr)	(lbs/yr)	(lbs/yr)	(lbs/yr)	(lbs/yr)	(lbs/yr)	(lbs/yr)
4996	788	19642	119786	39	10	169

Future Differential:

Increased Annual Mean Loading for proposed change in land use:

Total N	Total P	BOD	TSS	Copper	Lead	Zinc
(lbs/yr)	(lbs/yr)	(lbs/yr)	(lbs/yr)	(lbs/yr)	(lbs/yr)	(lbs/yr)
528	61	3812	19442	5	2	32
+	+	+	+	+	+	+

net change

ATTACHMENT 23

Graeme Hall Sanctuary Water Quality and Barbados Proposed Water Quality Standards

Marine Water Quality Standard

	2010 Graeme Hall Result (Avg)	Barbados Proposed Marine Standard	Parameter Notes	Human Health Effects
Enterococci (cols/100 ml)	842	35	Indication of waste from animals	Disease
Nitrate (mg/l)	0.15	0.0098	NO ₃ oxide of nitrogen nutrient/fertilizer	Drinking water less than 10 ppm
Total phosphorus (mg/l)	0.4	0.015	Nutrient/fertilizer	Drinking water
Total suspended solids (mg/l)	39	5	Amount of material suspended in water column: sewage 200+/-	Drinking water less than 5 ppm
Chlorophyll-a (ug/l)	33	0.0005	Indicator of eutrophication	N/A
Turbidity (NTU)	12.3	1.5	Clarity of water	N/A
Zinc (ug/l)	0.029	0.015	Trace metal Bioaccumulation	Drinking water standard
Salinity (ppt)	1.4	n/a	Brackish 6-15 ppt Seawater 30-35 ppt	N/A
Dissolved oxygen (mg/l)	4.6	90% sat. (7.01 mg/l at 27.7°C, 3000 uS)	Greater than 5 mg/l for fish recommended	N/A
ATTACHMENT 24

Resumes of Key Personnel

ROBERT E. WALLACE III, P. E. PRESIDENT

Mr. Wallace has comprehensive environmental engineering, testing and design experience of over thirty-five years. Mr. Wallace has set himself above the rest by becoming a knowledge base for all aspects of environmental engineering. Areas of specialization include, but are not limited to; Environmental Audits, Water Resources Engineering, Wastewater Collection, Treatment and Disposal Design, Wastewater Operations and Management, Environmental Permits, Water Quality Measurement, Site Development Design, Air Source Design and Permitting, Sound Level Measurement, Industrial Wastewater Design, Radon Measurement, Waste Solidification, and asbestos Surveys - Management Plans. Mr. Wallace sets new standards with his focus, continued training and genuine concern for the environment.

EDUCATION

Bachelor of Science in Environmental Engineering, Univ. of South Florida, 1974

PROFESSIONAL LICENSURE

Professional Engineering License, Florida #21608 Professional Engineering License, Georgia #15249 Professional Engineering License, Alabama #15185 Professional Engineering License, Indiana #208727 Professional Engineering License, Tennessee #21134 Professional Engineering License, Puerto Rico #14521

TRAINING AND CERTIFICATIONS

Asbestos Abatement Supervisor - EPA Certified Asbestos Building Survey - EPA Certified Asbestos Management Plan - EPA Certified Certified Environmental Manager, #33624 Certified Operator, Class C, Wastewater #2627 Certified for Noise Measurement and Control Florida Asbestos Consultant - #EA00024 Hazardous Materials Site Safety - OSHA 40 Hour Requirement Radon Measurement Technician - RO236 Water Well Contractor, #2877

PROJECT EXPERIENCE

Engineering design including land use planning and site development design for: water supply and distribution, wastewater collection and treatment and stormwater collection and treatment.

ROBERT E. WALLACE III, P. E. PRESIDENT

Industrial wastewater pretreatment, treatment and disposal systems including oils, laundry, heavy metals, phosphate tailings, organic chemicals and acidic wastewaters. Designed state of the art treatment system for petroleum wastewater to meet strict ocean discharge standards.

Indoor Air Quality Investigations for sick buildings and worker exposure to indoor contaminants. Participated in discovery and correction of severe carbon monoxide episode in industrial plant.

Conduct Environmental Audits for residential, commercial, industrial and undeveloped land for environmental liability control for lending institutions and buyers.

Air Source Design and Permitting for numerous sources with a variety of control equipment such as cyclones, baghouses, water scrubbers, incinerators and vapor combustor.

Instrumental in obtaining environmental permitting in Hillsborough County of the first cypress wetlands to be used for treated wastewater renovation and recycle. Design and mitigation of wetland uses and enhancements. Restoration projects designed and maintained.

Stormwater Sampling and Design of systems for the effective treatment of urban runoff. Numerous design for stormwater management in both quantity and quality consideration. Authored, "Water Quality Element of Downtown Miami Area Wide DRI."

Sound Level Measurement for County Ordinance compliance in commercial and industrial establishments as well as OSHA worker exposure measurement for industry.

Investigated and designed remedial action plans for Hazardous Waste involving contaminant, treatment and disposal systems. Designed Solidification project for 10,000 cy of sludge and soil for on-site remedial action and utilized solidified mass for a parking lot base.

Groundwater contamination studies to determine the extent of plume movement. Designed containment, treatment and disposal systems.

Asbestos Abatement Project Manager for monitoring removal of chrysotile asbestos fire-proofing from historic building in St. Petersburg, Florida. Performed building inspections and management plans for commercial and industrial clients.

Federal Wastewater 201 Construction Grants Program Manager; responsible for three planning areas in Hillsborough County. The South Hillsborough 201 Plan

ROBERT E. WALLACE III, P. E. PRESIDENT

was presented as a model for efficient plan completion at a FDER/EPA sponsored seminar.

Conducted on volunteer basis a series of dye trace and water quality tests on the Sulphur Springs System in North Tampa. These tests investigated the interconnection of sinkholes, established travel times and proved stormwater to be the source of bacterial contamination of the closed Sulphur Springs Pool.

Designed and Permitted Construction and Demolition Debris landfill facilities and other Solid Waste Disposal Systems including incineration and transfer. Active interest in leaf and yard waste recycling.

Environmental Wastewater Permitting for the Hillsborough County Environmental Protection Commission, including point source water quality monitoring, intensive stream surveys, and wasteload allocation modeling.

Construction and design coordinator of expansion of the University of South Florida Wastewater Treatment Facility to 3.5 MGD and installation of the Brewery Waste Pretreatment Lagoon and the Beach Park Collection System for the City of Tampa.

EMPLOYMENT

1979 – Present	President, Environmental Engineering Consultants, Inc.
1978 to 1979	Civil Engineer, Hillsborough County Division of Public Utilities (Florida)
1976 to 1978	Environmental Engineer, Hillsborough County Environmental Protection Commission
1975 to 1972	City of Tampa Department of Sanitary Sewers

Mr. Pryor has over twenty-five years of experience utilizing his knowledge of environmental assessments, testing, compliance and geology. Areas of specialization include, but are not limited to: Soil and Ground Water Testing, Interpretation and Reporting, Monitoring Well Installation, Remedial Systems Design, Groundwater Modeling, C & D Debris Landfill Permitting, Underground and Aboveground Storage Tank Regulations, Petroleum Cleanup Regulations, Hazardous Waste Regulations, and Stormwater Regulations. Mr. Pryor has been instrumental in interpreting results into compliance reporting for our clients. Mr. Pryor is committed to the environment and has demonstrated his knowledge and professionalism in his written contributions to journals and newsletters.

EDUCATION

University of South Florida, Tampa, FL. <u>Coursework:</u> Remedial Action (Graduate class), 1994 Advanced Hydrogeology (Graduate class), 1992 Introduction to Hydrogeology (Undergraduate class), 1990

Bachelor of Science in Geology, Univ. Waterloo, Waterloo, Canada, 1983

PROFESSIONAL LICENSURE

Professional Geologist #0001897, 1996

TRAINING AND CERTIFICATIONS

SWFWMD Well Drilling Contractors License #9193 (1991)
OSHA 40 Hour Hazardous Site Safety Training (1991)
OSHA 8 Hour Refresher (Updated through 2007)
ASTM Groundwater and Vadose Zone, Monitoring and Sampling Technology (1991)
Copper and Lead Rules, Hillsborough County HRS (1993)
FDEP Requirements for: Above and Underground Storage Tank Management, Nationwide Institute for Storage Tank Management (1999)
FDEP Bureau of Laboratories, SOP for Field Sampling (2002)
FDEP P2 Pollution Prevention Conference (1998)
NWWA: Designing In-situ Waste Recovery Systems (1991)
Regenesis Bioremediation (1997)
Florida Remediation Conference (2001 – 2006)
How to Comply with Hazardous Waste Regulations (1991)

RICHARD PRYOR, P.G. SENIOR ENVIRONMENTAL SCIENTIST

٢

PROJECT EXPERIENCE

Numerous assessments and reports in compliance with FDEP Storage Tank and Petroleum Cleanup and Brownfield regulations and Consent Orders, including Site Assessment Reports, Remedial Action Plans, and Pre-approval Packages. Designed and deployed groundwater remediation systems involving injection of oxygen releasing materials, potassium lactate, activated carbon, air strippers, sparge tanks, recovery wells, injection wells, and natural attenuation.

Written and performed numerous Phase II Audits for real estate transactions. Permitting of three construction and demolition debris landfills. Permitting of wastewater treatment plants. Performed numerous inspections for hazardous waste rules compliance.

NPDES compliance: Preparation of stormwater pollution prevention plans and performance of sampling in compliance with federal stormwater regulations.

SPCC compliance: Performed inspections and preparation of Spill Prevention Control and Countermeasure Plans and necessary updates.

SWFWMD: Participated in design and permitting of storm water retention and conveyance systems. Hold SWFWMD contractors license for drilling.

EMPLOYMENT

1989 to Present	Professional Geologist/ Senior Environmental Scientist, Environmental Engineering Consultants, Inc.
1981 to 1984	Assistant Geologist, Canamax Resources Toronto, Ontario, Canada

ANGELO TULIMIERI

EDUCATION B.A., Interdisciplinary Natural Sciences-Biology, University of South Florida, 2000 B.A., Mass Communications, University of South Florida, 1971

PROFESSIONAL EXPERIENCE

Self-employed since 1991, dealing successfully with controversial wetland issues that arise between owner's rights and public agencies. Duties include delineating wetland lines including ACOE lines, resolving wetland permitting issues, designing wetland mitigation and restoration, preparing wetland planting bids and work contracts, providing project management, conducting listed species surveys, and coordinating with individuals, developers, regulators, geologists, soil scientists, engineers, surveyors, lawyers, executives and technicians.

Advise applicants and/or permittees concerning regulatory requirements, including jurisdiction, processing, evaluation, and the likelihood of project approval.

Prepare detailed site evaluations to establish base environmental conditions including wetland delineations and characterization of biological and physical features and concerns.

Prepare jurisdictional determinations, including ACOE wetlands delineations and characterizations to satisfy requirements of the General Permit.

Reviewed/site plans proposed for rezoning and subdivisions, commercial, and industrial projects as regarded the protection of wetlands. Responsible for the approval or denial of site plans for projects ranging upwards of 1,000 acres or more in size in regard to wetland protection. Identified problem areas for environmentally sensitive projects in relation to proposed dredging and filling; and/or the 'discharge'of dredged or fill materials into wetlands and waters of the State and/or the U.S.

Delineated tens of thousands of linear feet of wetland lines and recommended for approval hundreds of wetland related land alteration permits after appropriate review and modification. Training included delineating wetlands, evaluating wetland mitigation justification and success; performing ecological assessments; analyzing site plans; interpreting aerial photos and maps (topographic, vegetation, and soils); identifying hydric soils; reviewing and commenting on permits and site plans; and applying environmental policy. Cross training included the use of the 1987 COE Wetland Delineation Manual with the ACOE, and hydric soil identification with the Soil Conservation Service (now known as the NRCS). Assisted in developing the EPC's in-house Standard Operating Procedures Manual.

Monitored the implementation of special conditions of permits, such as reporting requirements or compensatory mitigation, providing consultation and approvals as appropriate, evaluating proposed or required changes, and modifying permits when necessary to reflect revised conditions/requirements.

Employment

- 1991 present Plant Ecologist/Environmental Scientist Tampa Bay region, FL
- 1991 & 1987-1989 Environmental Scientist EPC Hillsborough County, FL
- 1990 Environmental Specialist EPC Hillsborough County, FL
- 1989 1990 Research Assistant Center for Wetlands, UF, Gainesville, FL
- 1986 Naturalist Hillsborough Community College, FL